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C1 : Neither of them looks the other in the eye.

C2 : As P1 faces P2, P2 returns a stunned 

expression.

C3 : P2 looks away, her lips trembling.

C4 : P2 glares at P1 with tears in her eyes.

C5 : P1 gets to his feet.

C1 : No one looks.
C2 : As SOMEONE
faces SOMEONE, …
…
C5 : SOMEONE gets up MICap

(Our joint model)

…

No one looks [SEP] As P1 faces P2, 
… [SEP] P2 looks … [SEP] … [SEP] 
P1 gets up [SEP] [EOS]

Identity-aware Captions
Stage 1. 

Multi-
sentence 

Captioner

…

Two-Stage Approach

Stage 2. 
Fill-in 

identity 
model

C1 : -
C2 : [P1], [P2],
…
C5 : [P1]

C1 : No one looks.
C2 : As __ faces __ 
…
C5 : ___ gets up.

V1 V2 V3 V5V4

Figure 1. Identity-aware captioning. Left: To understand the story in a set of videos, captions refer to characters by a unique local identifier
(e.g. P1, P2, . . .). The Fill-in-the-blanks (FITB) task provides these captions with blanks (removing names) and asks a model to fill local
person ids. Middle: End-to-end captioning for a videoset is achieved in two stages [29]. First, captions are generated with someonetags,
and then the FITB module is applied to fill-in names. Right: We propose a single-stage encoder-decoder id-aware captioning approach
that can switch between generating the caption with ids or filling in the ids in a caption, jointly learning from both tasks.

Abstract

Characters are an important aspect of any storyline and
identifying and including them in descriptions is neces-
sary for story understanding. While previous work has
largely ignored identity and generated captions with some-
one (anonymized names), recent work formulates id-aware
captioning as a fill-in-the-blanks (FITB) task, where, given
a caption with blanks, the goal is to predict person id la-
bels. However, to predict captions with ids, a two-stage
approach is required: first predict captions with someone,
then fill in identities. In this work, we present a new sin-
gle stage approach that can seamlessly switch between id-
aware caption generation or FITB when given a caption
with blanks. Our model, Movie-Identity Captioner (MI-
Cap), uses a shared auto-regressive decoder that benefits
from training with FITB and full-caption generation ob-
jectives, while the encoder can benefit from or disregard
captions with blanks as input. Another challenge with id-
aware captioning is the lack of a metric to capture subtle

differences between person ids. To this end, we introduce
iSPICE, a caption evaluation metric that focuses on identity
tuples created through intermediate scene graphs. We eval-
uate MICap on Large-Scale Movie Description Challenge
(LSMDC), where we show a 4.2% improvement in FITB ac-
curacy, and a 1-2% bump in classic captioning metrics.

1. Introduction

Building computer vision models that understand the story
of a movie is a long-standing challenge. A step towards
this is movie description [30, 37, 38]. Given a short clip
of 2-5 seconds, models are required to generate a caption
that describes the visual scene. Captions in the Large Scale
Movie Description Challenge (LSMDC) [38], a combina-
tion of [30, 37], are obtained from audio descriptions (AD)
that are used to convey the (visual) story to a visually im-
paired audience. The original version of the LSMDC chal-
lenge suggests captioning a single clip and anonymizes all
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character names with someone.
While using the someone tag to describe a character’s

activity in a single video is acceptable, the lack of iden-
tity continuity across a videoset (group of N consecutive
videos) hampers understanding. To remedy this, Pini et
al. [31] extend MVAD [30] as MVAD names where char-
acter names are predicted by linking to the appropriate face
detection/track; and Park et al. [29] propose a fill-in-the-
blanks (FITB) task to replace someone tags with local clus-
ter identities (e.g. P1, P2, . . .) in a videoset (Fig. 1 left).

The latter approach [29] provides two advantages: (i) it
does not require time-consuming ground-truth annotations
linking faces and blanks [31]; and (ii) using local cluster ids
helps convey the story1 without the need for models with
world knowledge (CLIP [33], GPT [32], etc.) or an IMDb
castlist with photographs [14], making the approach appli-
cable to indie films or home-edited videos.

To generate id-aware captions, [29] proposes a two-stage
approach shown in Fig. 1 (middle). The first stage [28] in-
gests a videoset and generates a captionset (a set of N cap-
tions, one for each video) using the someone tags; while
the second stage replaces someone with appropriate local
person id labels. While the two-stage setting unites the two
worlds of video description and character identification, it is
not ideal as errors in captioning may adversely affect FITB
as both methods are modeled independently. In this work,
we propose a single-stage approach (Fig. 1 right) that can
seamlessly switch between both tasks.

Challenges with Fill-In. For the FITB task, [29] encodes
blanks in the ground-truth (GT) captionset using bidirec-
tional context through the BERT encoder. These blanks at-
tend to the face features clustered within a single video, not
accounting for other faces coming from the videoset. Using
the blank representations, the person ids are predicted in an
auto-regressive manner. We note some disadvantages with
this approach: (i) Faces are clustered within each video.
This means identity information across videos is not di-
rectly observed by the model. (ii) When a character is men-
tioned in the caption, their face need not be present in the
clip (e.g. Fig. 1 left, C4 and C5 mention P1 whose face is
turned and not visible). (iii) BERT-based blank embeddings
provided at the encoder are unable to capture face informa-
tion properly, resulting in a model that largely focuses on
text embeddings to solve FITB (e.g., in [29], FITB accuracy
only improves by 1.5% (64.4 to 65.9) with visual inputs).

Proposed model benefits. We overcome these problems
using a new paradigm for id-aware multi-video descrip-
tion through a single-step sequence-to-sequence model. We
unify the two tasks of FITB and caption generation, by auto-
regressively unrolling the descriptions along with their lo-

1Note, cluster ids can be easily mapped to gender- and culture-
appropriate names instead of using P1, P2, . . . for storytelling.

cal character ids, via a Transformer based encoder-decoder
model. Our model, dubbed as the Movie-Identity Captioner
(MICap), enables joint training and independent evaluation
for both tasks: (i) given only the videoset, our model gener-
ates an id-aware captionset; and (ii) when a captionset with
someone tags exists, our model fills in local identities.

To overcome text-only shortcuts, we propose auto-
regressive decoding of the full caption even for FITB and
show that our multimodal model outperforms a text-only
model significantly. We teacher force the ground-truth cap-
tion containing the blanks (person ids), and predict one to-
ken at a time using causal masking. Note, learning happens
only at select tokens where person id labels are predicted.
This way the model (decoder) learns to sequentially use the
GT (teacher forced) caption for the FITB task with uni-
directional (causal) attention. During inference, we switch
between the two tasks by deciding whether the decoder is
teacher forced with a given captionset or not.

Identity-aware evaluation. Existing captioning metrics
like CIDEr [50] and BLEU [27] do not account for iden-
tity sensitive descriptions. For example “P1 is walking to-
wards P2” and “P2 is walking towards P1” will result in
high n-gram based scores due to common middle words.
We propose a new identity-aware caption evaluation metric
iSPICE. Specifically, we are motivated by SPICE’s [1] abil-
ity to parse a caption into a scene graph, and match a pre-
dicted caption with ground-truth based on similarity across
generated tuples. To compute iSPICE, we intervene in this
process and remove tuples not associated with a person la-
bel before computing the F1 scores.

Contributions. In summary, (i) we propose a new
paradigm for identity-aware multi-sentence movie descrip-
tion using a single-stage approach that unifies FITB with
full caption generation. (ii) We formulate this task as
an auto-regressive sequence-to-sequence generation that is
able to describe the video and use local person id labels
across a videoset (multiple videos). We show that joint
training improves knowledge sharing and boosts perfor-
mance. (iii) We enable seamless task switching allowing in-
dependent evaluation of (a) caption generation with identi-
ties, and (b) filling in identity labels given a caption. (iv) We
propose a new identity-aware captioning metric, iSPICE,
that extends SPICE, and show its sensitivity to identities
while evaluating captions. (v) Finally, MICap improves
over the state-of-the-art for FITB by 4.2% and identity-
aware captioning by 1.4% CIDEr and 1.8% METEOR.

2. Related Work
We address related work from three areas: (i) video caption-
ing at large, (ii) identity-aware captioning, and (iii) metrics
used for evaluating captions.

Video captioning has gained a lot of attention since the ad-
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vent of deep learning. The typical task is to generate a single
sentence description for a trimmed video, and is formulated
as a sequence-to-sequence problem [12, 22, 23, 42, 51, 52,
58]. A more challenging setup is multi-sentence genera-
tion, typically applied to longer videos and requires long-
term temporal consistency [28, 36, 45, 57]. Video situation
recognition, VidSitu [17, 39] presents a structured alterna-
tive where multiple captions are generated per event based
on the semantic role labeling framework.

Different from multi-sentence captioning, dense video
captioning, requires temporally localizing and generating
captions for every event in an untrimmed video [18, 55,
56, 62]. While most approaches for dense video captioning
use a 2-stage approach, i.e. temporal localization with event
proposals then event captioning [18, 53, 54], recent meth-
ods, jointly model the two tasks for better temporal consis-
tency [5, 7, 8, 20, 25, 35, 43, 44, 53, 55, 62]. The state-of-
the-art, PDVC [55], learns DETR-style event queries and
performs localization and captioning over each query us-
ing 2 separate heads. Recently, Vid2Seq [56] proposed to
further unify the two tasks by using a single sequence-to-
sequence model and generating both the localization and
captions with a single auto-regressive Transformer decoder.
Similar to above ideas, we unify two seemingly different
tasks of character identification and description by formu-
lating them as an auto-regressive sequence generation task.

Id-aware captioning datasets. None of the above works
focus on person identity while generating captions. Vid-
Situ [39], perhaps the closest, contains references to people
by descriptions such as man in a black jacket. This is an
issue when the domain is movie description [30, 38], where
identities are anonymized to someonewhich hinders build-
ing practical applications like Audio Descriptions [13] for
visually impaired users. While [31] links character names in
descriptions with face tracks, they require significant anno-
tation effort that is not scalable. A more recent Movie Au-
dio Description dataset, MAD [46], is a popular source for
movie descriptions. But it uses real names that require mod-
els with world knowledge. Different from above, Park et
al. [29] propose identity-aware captioning as a fill-in-the-
blanks task where they assign local person ids (cluster ids)
to characters appearing in 5 consecutive video clips. We
adopt this setting for our work.

Id-aware captioning methods. Identity-aware captioning
is a challenging task that has recently started to attract at-
tention. Among the first works, [29] proposes a 2-stage
pipeline of first captioning with identities anonymized as
someone using a multi-sentence captioning model [28], fol-
lowed by learning an identity prediction FITB model that
fills in the someone with local person identities. However,
as discussed in the introduction (Challenges with Fill-In),
the specific 2-stage approach suffers from several disad-
vantages. Different from [29], we propose a single stage

sequence-to-sequence model, that outperforms the 2-stage
approach. In this area, another work [60] requires ground-
truth mapping between person identities (blanks) in the de-
scription to face tracks in the videos. However, this ap-
proach is not scalable. Very recently, AutoAD-II [14] pro-
posed to generate movie descriptions with proper names,
on the MAD [46] dataset. While innovative, this approach
requires additional IMDb castlist information with pho-
tographs. While modeling proper names directly is useful,
tagging names to unique person ids in a local videoset is
possible and is the motivation for works on person cluster-
ing [3, 48] as opposed to person identification [26, 47].
Caption evaluation metrics are typically based on n-gram
matching, with few differences. CIDEr [50], BLEU [27],
and METEOR [11] all evaluate n-gram similarities between
a single or multiple candidate references and the generated
caption. Recently, Large Language Models (LLMs) are
used for reference-based (e.g. BERTScore [61], CLAIR [6])
or or Large Vision-Language Models (VLMs) for reference-
free caption evaluation (e.g. CLIP Score [15]). However,
model-based metrics may be difficult to interpret, and also
require the model to be sensitive to identities. Differ-
ent from both directions, SPICE [1] evaluates captions by
first transforming them into a scene graph and analyz-
ing presence of shared tuples between the predicted and
ground-truth (reference) captions. However, none of the
metrics reliably evaluate identity-aware captions, as a ro-
bust metric should be sensitive to identity manipulations
(swap/add/remove). We propose a new metric iSPICE that
focuses primarily on person-identity specific semantics.

3. Method
We present a single-stage sequence-to-sequence approach
for identity-aware fill-in-the-blanks (FITB). Later, we will
show that this architecture can be easily re-purposed for
generating video descriptions.
Notation. Before we start, we define some notation. For
the rest of this section, we will operate with a videoset N
consisting of N video clips Vi and corresponding captionset
C = {Ci}Ni=1, where Ci describes video Vi. As both sets
come from consecutive videos, it is very likely that same
characters appear across them. As an example, consider the
videoset frames and captionset shown in Fig. 1.

3.1. Auto-regressive FITB

In FITB, we replace each person-id (P1, P2, . . .) with a
blank. We denote Ĉ as the captionset with B blanks. For-
mally, we define the captionset as a sequence of L words
[wj ]

L
j=1, some of which have been converted to blanks

{bk}|B|
k=1. The goal of our model is to fill each blank with the

correct person-id label from the set P = {Pl}|P|
l=1. Note, the

person-id labels are reusable across videosets, i.e. a charac-
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I3D (Kinetics 400) CLIPBERT ArcFace

blank is 
throwing a 

knife at blank

blank is 
staring at 

blank

Linear Layer Linear Layer Linear Layer Linear Layer

Transformer Encoder (TE)

Transformer Decoder (TD)
(Full captioning)

Blank Emb.

Action Emb.

Sem. Emb.

Face Emb.

Blank Type Emb.

Action Type Emb.

Sem. Type Emb.

Face Type Emb.
Vid Emb.

Seg. Emb.

Fc. Clus. Emb.

Fc. Bbox Emb.

Face Mem. Emb.Blank Mem. Emb.

Action Mem. Emb.

Sem Mem. Emb.

Shared
parameters

Transformer Decoder (TD)
(FITB)

P1 is staring at P2 …

[SOS] P1 is staring at P2

P1 is staring at P2 …

[SOS] P1 is staring at P2

Tokens where 
learning occurs

Only used in FitB

Figure 2. Identity-aware captioning. Left: illustrates the Transformer Encoder used to capture multimodal inputs such as text (blanks),
action, semantic, and face. These tokens are used as memory for the Transformer Decoders. Right: the same Transformer Decoder can be
used for both tasks of full caption generation and fill-in-the-blanks (FITB). The model is trained end-to-end with losses applied to tokens
indicated in purple. Text tokens are not presented to the decoder for full caption generation. Joint training improves knowledge sharing
resulting in performance improvements.

ter only needs to be referred consistently by the same iden-
tity within a videoset.

We present Movie-Identity Captioner (MICap), an auto-
regressive Transformer encoder-decoder model for filling
person blanks. MICap consists of two parts: (i) Feature
extractors and a Transformer encoder to build the caption-
ing memory (Fig. 2 left); and (ii) A Transformer decoder
that switches between FITB or full captionset generation
(Fig. 2 right). For clarity, we will highlight differences to
prior work [29] throughout this section.

3.1.1 Creating the Captioning Memory

Visual feature extraction. We extract 3 features from the
videoset to capture semantic, action, and face information.

Semantic embeddings are captured using CLIP [33].
From each video Vi, we sub-sample frames fit at 5 fps and
encode them with the CLIP image encoder. For efficient
batching, we truncate or pad to T=50 frames per video,
and stack them to create semantic features Fs ∈ RNT×ds

.
Action embeddings are captured using I3D [4]. Simi-

lar to [29], each video is divided into S=5 segments, and
features within each segment are mean pooled. We stack
features across the videoset to obtain Fa ∈ RNS×da

.
Faces are detected using Retina Face [10] and repre-

sented using Arcface [9]. Across the videoset, we collect
a maximum of F=300 face detections. With each face de-
tection, we associate the video index i (for Vi) from which it
is derived and a normalized spatial bounding box location.
We stack features to obtain Ff ∈ RF×df

.
We bring all these features to a common d dimen-

sional space using separate linear projection layers for each
modality: Wmod ∈ Rd×dmod

, where mod takes on values: s
for semantic, a for action, and f for face.

Captionset feature extraction. Similar to [29], we also ex-
tract blank embeddings by feeding the captionset to BERT
(fine-tuned for gender prediction as in [29]) and using the
contextualized tokens:

[ ˆCLS, ŵ1, . . . , b̂k, . . .] = BERT([CLS, w1, . . . , bk, . . .]) . (1)

The blank embedding is a concatenation of contextualized
tokens: bk = [ ˆCLS, b̂k]. We stack these to create a ma-
trix B ∈ R|B|×2·dbert

and transform them to the same space
through a linear projection Wbert ∈ Rd×2·dbert

.

Face clustering. Instead of creating face clusters within
each video and using blank embeddings to attend to them
(as done in [29]) we adopt a soft approach for incorporating
cluster information in MICap. First, we perform clustering
using DBSCAN across all F detections in the videoset, re-
sulting in G, a set of face groups. This allows our model to
associate faces across videos as the same or different per-
son. Next, we prevent propagating errors caused by cluster-
ing and mean pooling representations by adding a cluster-id
based learnable embedding Efcl to the face representations.

Additional embeddings are added to various features to
orient the model: (i) Etyp ∈ Rd×4 disambiguates between
the 4 types of features. (ii) Evid ∈ Rd×N consists of N
embeddings to inform the model of the source video index
for any visual or blank token. (iii) Eseg ∈ Rd×S , together
with Evid, allows to localize any feature to the correct video
and segment. (iv) Efcl ∈ Rd×|G| is the face cluster index
embedding described above, and (v) Ebbox ∈ Rd×4 trans-
forms normalized face detection bounding box coordinates
to provide the model spatial information.

We create input tokens as follows (with appropriate in-
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dexing hidden for brevity):

B̂ = WbertB+Etyp
0 +Evid , (2)

F̂s = WsFs +Etyp
1 +Evid +Eseg , (3)

F̂a = WaFa +Etyp
2 +Evid +Eseg , (4)

F̂f = WfFf +Etyp
3 +Evid +Eseg +Efcl +Ebbox. (5)

A Transformer encoder (TE) [49] of LE layers is used
to combine and refine individual representations mentioned
above. Thus, the final memory bank is:

M = [B̃, F̃s, F̃a, F̃f ] = TE([B̂, F̂s, F̂a, F̂f ]) . (6)

3.1.2 Auto-regressive Identity Prediction

We now present the process of filling blanks. Similar to
the encoder, we use a couple embeddings for the decoder.
(i) Evid (shared with encoder) informs the decoder of the
video index that is being captioned; and (ii) Epos encodes
learnable position embeddings similar to the original Trans-
former [49]. We use the memory embeddings extracted
from the video as key-value pairs and blanks in the Trans-
former decoder (TD) as queries. Given a captionset Ĉ, we
generate the next word as

hj+1 = TD([w1, . . . , wj ];M) , (7)

wj+1 = argmax
V

WVhj+1 . (8)

hj+1 represents the output of TD at the j+1th timestep and
is obtained through a series of LD decoder layers that com-
pute self-attention to previous words, and cross-attention to
the memory. WV is a linear classifier in RV×d, where V is
the word vocabulary.

For the FITB task, the captionset already contains the
correct caption words. Thus, the output prediction is rele-
vant only when wj+1 is a blank bk. In such a case, we can
use a smaller output classifier WP that picks one among P
person-id labels. We rewrite the above equations as:

hj+1 = TD([w1, . . . , wj ];M) , (9)

wj+1=ŷk = argmax
P

WPhj+1 , (10)

where ŷk ∈ P is the predicted person-id label for blank bk.
Training and inference. We train MICap by applying a
cross-entropy loss at every blank:

LFITB = −
|B|∑
k=1

yk log softmaxP
(
WPhj+1

)
, (11)

where yk is the correct label for blank bk. The key differ-
ence to [29] is that our decoder observes each word of the
captionset in an auto-regressive manner.

During inference, we simply follow Eq. (10) to compute
person-id label predictions for blanks in a captionset.

3.2. Joint Fill-in and Captioning

We first present how MICap can be adapted for generating
the entire captionset. Then, we will present the opportunity
of joint training.
From FITB to generating the captionset. In this scenario,
the model is shown the videoset N and expected to generate
an id-aware captionset C. We make two small changes:

(i) The memory bank is restricted to visual features,
M = [F̃s, F̃a, F̃f ]. In fact, we cannot compute blank em-
beddings B̃ as the captionset needs to be predicted.

(ii) When decoding the next word of the captionset, we
use an augmented vocabulary consisting of normal lan-
guage tokens (from V) and person-id labels (from P). We
predict the next word as shown below:

V∗ = V + P , (12)
hj+1 = TD([w1, . . . , wj ];M) , (13)

ŵj+1 = argmax
V∗

WV∗
hj+1 , (14)

and train our model to minimize

Lcap = −
L∑

j=1

wj+1 log softmaxV∗

(
WV∗

hj+1

)
. (15)

We can use Eq. (14) during inference to predict the entire
captionset until the end-of-sentence token is triggered.
Joint training. Can we train the same instance of MICap to
generate the captionset and fill-in-the-blanks with identity
information? Yes, we suggest an efficient way to do so.

Given a batch of data consisting of multiple paired
videosets and captionsets (N , C), we forward it through
the model twice. In the first forward pass, we replace
the person-id labels with blanks, i.e. create Ĉ, and com-
pute losses and gradients to predict the blank’s labels (see
Eq. (11)). In the second forward pass conducted on the same
batch, we assume that C is not available as input and use the
augmented vocabulary V∗ to compute loss and gradients for
each word as in Eq. (15). We can either accumulate gra-
dients and optimize parameters at the end of both forward
passes or optimize parameters after each pass.

Note, the classifier parameters WP are subsumed under
WV∗

. We find that sharing the classifier WV∗
for both

forward passes works best.
Thus, we unite seemingly disparate tasks of filling in

person-id labels in blanks and generating the full caption-
set in a single model with a single set of parameters.

4. Identity-aware SPICE
Inspired by a metric used in image captioning evaluation
called Semantic Propositional Image Caption Evaluation
(SPICE) [1], we propose a new metric – identity-aware
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SPICE (iSPICE for short) – to evaluate the quality of video
descriptions, especially pertaining to identity labels.

Why SPICE? The classic captioning metrics bor-
rowed from language translation such as BLEU [27],
ROUGE [21], METEOR [11], and CIDEr [50] rely pri-
marily on n-gram overlap. However, as indicated in [1],
“n-gram overlap is neither necessary nor sufficient for two
sentences to convey the same meaning”. SPICE is shown
to have a high correlation with human judgement (0.88) as
compared to METEOR (0.53) or CIDEr (0.43) on the MS-
COCO image captioning dataset [1].

How is SPICE calculated? SPICE estimates quality of a
caption in two stages. First, the reference and predicted cap-
tion are converted to scene graphs [16, 41] that explicitly
encode objects, attributes, and relationships. This abstrac-
tion provides a list of tuples Tr and Tp for the reference and
predicted captions. SPICE is the F1-score that measures
logical conjunction (overlap):

SPICE = F1(Tr, Tp) . (16)

iSPICE is a simple modification of SPICE. We intervene at
the list of tuples and filter out tuples that do not have at least
one character identity. We define

iSPICE = F1(T p2+
r , T p2+

p ) · F1(T p1
r , T p1

p ) , (17)

where T p2+
r denotes the list of tuples with a person-id la-

bel having 2 or more elements and T p1
r is a set of person-

id labels in the reference captionset. The first term scores
whether the correct person-id label is used together with a
verb or attribute, while the second term checks that the total
number of person-id labels match. A couple examples of
the matching process are presented in the supplement.

Validation. We validate iSPICE by an experiment that mea-
sures sensitivity to changes in identity. Given a reference
captionset, we compare it against itself to obtain a base
score s. Next, we modify the reference captionset by swap-
ping, adding new, or removing existing id labels.

1. Swapping: Here, id tokens are replaced with another
id present in the captionset. The number of these tokens
is selected at random for each captionset. We first identify
eligible id tokens whose ids are present more than once in
the captionset. This is done to prevent the case where stan-
dalone ids are selected and replaced with each other that
does not change the meaning. For example, the caption P1
carries P2 is equivalent to P2 carries P1 if P1 and P2 are
not re-used elsewhere in the captionset. When the id occurs
multiple times, e.g. P1 carries P2. P2 is unconscious, the
replacement P2 carries P1. P2 is unconscious changes the
meaning of the story. Once these eligible tokens are identi-
fied, a random subset is replaced with another id present in
the captionset to generate the modified caption.

Experiments iS S B4 C M R BSc

Swapping 0.55 0.85 0.87 0.86 0.61 0.95 0.99
Addition 0.51 0.86 0.89 0.88 0.6 0.95 0.99
Removal 0.46 0.84 0.87 0.86 0.6 0.95 0.99

Table 1. Sensitivity of metrics to id manipulation in the original
caption. iSPICE shows highest reduction in performance when re-
placing, adding, or removing ids, indicating that it is a good met-
ric for id-aware captioning iS=iSPICE, S=SPICE, B4=BLEU4,
C=CIDEr, M=METEOR, R=ROUGE, BSc=BERTScore.

2. Addition: Here, we select an id token at random and
change it to an id token that is not present in the current
captionset, adding new identities. Again, we do not replace
tokens whose id appears only once.

3. Removal: Here, we replace a single occurrence id
token (chosen at random) with an id token that exists in the
captionset, thereby removing the identity.
Id normalization. Prior to scoring, a normalization opera-
tion is performed on the captionset. The first unique id label
is set to P1, the second to P2 an so on. This ensures that the
captionsets P2 carries P1 or P4 carries P3, are treated as
the same captionset P1 carries P2.
Results. We compute a new score ŝ for each edited cap-
tionset by comparing it against the reference. We report
the drop in performance ŝ/s as the sensitivity of a metric
to changing identities. We create 3 manipulated samples
for each type and report averaged scores over all 1443 cap-
tionsets from the validation set in Tab. 1. We observe that
iSPICE obtains the smallest score, indicating the highest
sensitivity to manipulating identities, a desirable property.

5. Experiments
We present experiments on the LSMDC [38] dataset in the
identity-aware multi-video captioning setup [29]. We de-
scribe the experimental setup first, followed by implemen-
tation details and metrics. The evaluation is presented for
(i) Fill-in-the-blanks and (ii) Identity-aware captioning.

5.1. Setup

Dataset. LSMDC consists of 128,118 short video clips ex-
tracted from 202 movies. Each video has a caption, either
from the movie script or from transcribed DVS (descriptive
video services) for the visually impaired. The median video
duration is 3 s, average is 4.2 s, and std dev is 3.1 s. The
dataset is split into 101,079 clips for training, 7,408 for val-
idation, 10,053 for public test, and 9,578 for blind test. We
report and compare results on the validation set as the test
set labels are not released and the evaluation server is down.

In the Fill-in challenges, the movie descriptions are eval-
uated on sets of 5 clips taken at a time. Characters are iden-
tified across the clips to provide meaningful narratives. The
training videosets use overlapping clips (e.g. 1-5, 2-6) for
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data augmentation but the val and test videosets are non-
overlapping. We train on 98,527 videosets and report re-
sults on 1,443 val videosets. All three tasks of the LSMDC
challenge [38] are evaluated on the same sets of 5 clips. We
focus on task 2: filling in local person ids; and task 3: de-
scription generation with local character IDs.
Implementation details. Videosets have N=5 clips, we set
the captionset length to 120 tokens. The hidden dimension
for encoder and decoder in MICap is d=512, and we use
LE=2 and LD=3 layers. We train our model with a learn-
ing rate of 5×10−5 for 30 epochs. The vocabulary sizes are
|P|=11 and |V|=30522. We train on one RTX 2080 GPU
with a batch size of 16 videosets/captionsets.
Fill-in metrics. For the Fill-in task we evaluate results us-
ing all pairs of blanks in the captionset as proposed by [29].
Pairs that require both ids to be same are called are evalu-
ated with same accuracy (“Same-acc”). Different id pairs
are evaluated using “Diff-acc”. “Inst-acc” is the combined
accuracy while “Class-acc” computes the harmonic mean.
Captioning metrics. We use METEOR [11], CIDEr [50],
SPICE [1] and our newly proposed metric iSPICE to evalu-
ate the quality of our generated captions.

5.2. Evaluating on the Fill-in Task

MICap makes better use of visual features. In Tab. 2, our
text-only model (row 2) is comparable to [29]’s text-only
(R0). While [29] improves by 1.5% (R1), MICap achieves
a significant 4.7% improvement (R6).
Ablations on visual features. [29] computes face clusters
within a video and provides mean pooled features of faces
in a cluster. R3 of Tab. 2 uses these features in MICap (with
embeddings from Eq. (5)). The only decoder model (only-
dec) achieves a 0.6% improvement, while the encoder-
decoder model (enc-dec) shows 1.4% improvement over
R1. Next, in R4, we swap out face cluster features to indi-
vidual face detections, while still using FaceNet for a fair
comparison; but using embeddings as shown in Eq. (5).
This improves the only-dec model by a further 0.9%, but
enc-dec shows negligible change. We incorporate CLIP
features as additional tokens in the memory, resulting in a
0.35% increase in enc-dec (R5). Finally, in R6, swapping
FaceNet [40] to Arcface [9] results in a relatively large im-
provement of 1.6% (only-dec) and 1.4% (enc-dec).
SotA comparison. Tab. 3 reports results on all 4 FITB met-
rics. As we do not have access to the test set labels and
the evaluation server is inactive, we use FillIn’s results as
a proxy for comparison. First, in the top half, we see that
FillIn [29] outperforms other works. In the bottom half, on
the validation set, we compare our approach against FillIn
showing a significant improvement of 4% on instance ac-
curacy and 3.2% on class accuracy. As we teacher force
captions through the decoder, our only decoder model also

# Method Only Dec Enc-Dec

0 FillIn text-only [29] - 64.4
1 FillIn multimodal [29] - 65.9
2 MICap text-only - 64.45
3 MICap w face clusters of [29] 66.56 67.29
4 MICap w raw face detections 67.48 67.35
5 MICap 4 + w CLIP features 67.38 67.70
6 MICap 5 + w Arcface features 68.94 69.14

Table 2. Ablation study showing the impact of various inputs on
the decoder only and encoder + decoder model. We report class
accuracy as a single metric for comparison.

Method Same Different Instance Class

Test set
Yu et al. [59] 26.4 87.3 65.9 40.6
Brown et al. [2] 33.6 81.0 64.8 47.5
FillIn text-only [29] 56.0 71.2 64.8 62.7
FillIn [29] 60.6 70.0 69.6 64.9

Validation set
FillIn [29] 63.5 68.4 69.0 65.9
Ours (only-dec) 65.1 73.3 73.0 68.94
Ours (enc-dec) 65.7 72.9 73.0 69.14

Table 3. Comparison to SotA on fill-in-the-blanks (FITB, task 2)
of the LSMDC challenge.

Captioning metrics FITB
Method C M S iS Class Acc.

FITB only - - - - 69.14
Full caption only 8.01 12.29 13.11 0.777 -

Joint training 9.09 12.47 13.30 0.788 70.01

Table 4. Ablation showing joint training is better than perform-
ing FITB or full captioning separately. Captioning metrics are
C=CIDEr, M=METEOR, iS=iSPICE, S=SPICE.

outperforms [29] by 3% on class accuracy.

5.3. Evaluating Joint Fill-in and Captioning

We evaluate MICap trained jointly for FITB and id-aware
caption generation. Tab. 4 shows that joint training on fill-in
and captioning improves the performance on both the tasks.
Class accuracy on FITB improves by 0.9% and captioning
metric CIDEr by 1%. We also see a small 0.01% improve-
ment in iSPICE, which we think is important considering
the difficulty of the metric. This suggests that both the
tasks are complementary and can help each other in learn-
ing a better representation. MICap can seamlessly switch
between FITB (id prediction) and full caption generation.
SotA comparison for captioning. We compare against the
two-stage baseline [29], while MICap predicts the captions
and identities in a single stage. Tab. 5 shows that we im-
prove over [29] across all metrics.
MICap’s captions are better. We disentangle identity pre-
diction from caption generation by replacing all person id
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GT : P1 sips his wine and 
glances at Sarah, who 
musters a tight smile.
Pred : P1 smiles.

GT : P2 beams cheerily.
Pred : P2 smiles.

GT : Now in the darkened 
house, P3 comes downstairs 
in a t-shirt and sweatpants.
Pred : P3 enters the house.

GT : P3 lumbers groggily 
into the kitchen and opens 
the refrigerator.
Pred : P3 walks into the 
kitchen and sits down.

GT : P3 turns with a start.
Pred : P4 is at the kitchen 
table.

Figure 3. We show a qualitative example of our joint training approach. The dataset is highly challenging, with shot changes and dark
scenes that are typical in movies. Yet our model is able to perform reasonably well in this example. While the predicted captions (Pred)
are different from the ground-truth (GT), they capture the overall meaning. MICap predicts diverse ids correctly in this case and does not
overfit to only predicting P1, or P1 and P2. In fact, in the last clip, as P3 turns (indicated in GT), we see P4 sitting at the table (indicated in
Pred), which is a correct caption! The last clip also highlights challenges of evaluating captions correctly.

Captions Method C M S iS

1
Fill-in [29]

Same id 7.03 9.41 9.01 0.591
2 All diff ids 7 9.11 12.98 0.202
3 FillIn 7.77 10.68 - -

4
MICap

Same id 8.44 10.9 9.26 0.687
5 All diff ids 8.74 11.01 13.09 0.264
6 MICap (Joint) 9.09 12.47 13.30 0.788

Table 5. We evaluate performance of id-aware captioning
against [29], showing improvements across all metrics. Caption-
ing metrics are C=CIDEr, M=METEOR, iS=iSPICE, S=SPICE.

Method
Captioning metrics FITB

C M S iS Class Acc.

MICap 9.09 12.47 13.30 0.788 70.01

T5 only CLIP 4.9 8.5 7.1 0.755 -
T5 all features 4.5 7.9 6.8 0.723 -
GPT2 only CLIP 3.6 8.7 10.7 0.640 -
GPT2 all features 4.4 8.9 9.2 0.595 -

Table 6. Experiments showing MICap outperforms foundational
models T5-Base [34] and GPT2 [32] adapted/fine-tuned for id-
aware captioning on the same LSMDC dataset.

labels by the same id or all different ids. This allows us
to evaluate captioning performance, independent of identity
prediction. We are pleased that our simple encoder-decoder
approach outperforms a complex adversarial multi-sentence
captioning approach [28] used in stage 1 of [29]. Tab. 5 R1
vs. R4, CIDEr goes up from 7.03 to 8.44, and METEOR
9.41 to 10.9. Similar improvements hold for R2 vs. R5.

Comparison to VLMs. Tab. 6 shows that MICap outper-
forms adaptations of T5 (an encoder-decoder framework)
and GPT-2 (QFormer prefix tokens like CLIPCap [24] or
BLIP2 [19]), fine-tuned for the id-aware captioning task.
We suspect that integrating many diverse visual tokens is
not trivial for VLMs, resulting in comparable performance
when using “only CLIP” or “all features”.

Id-aware metric. iSPICE is a challenging metric as it mul-
tiplies two F1 scores that penalize when the number of iden-
tities are mismatched or tuples incorrect. Tab. 5 shows that

iSPICE changes dramatically when using the same id or all
different ids. We hope that this metric will inspire future
works in this direction of identity-aware captioning.

Attention patterns of MICap’s decoder reveal interesting
insights. For the task of full captioning, we see that tokens
that produce id labels cross-attend more to the face tokens
(from memory) while normal word tokens cross-attend to
CLIP features. We also analyze the attention patterns in
FITB and observe that the model attends to the same clus-
ters when predicting the same labels and also attends to face
detections across the videoset (not restricted to faces in a
single video). Please refer to the supplement for details.

A qualitative example is shown in Fig. 3. We observe
that MICap does a decent job at generating captions (al-
though it is unable to use a rich vocabulary - smiles instead
of beams cheerily). The challenges of caption evaluation
are also clear in the last clip. Several more examples for
both tasks are shown in the supplement.

6. Conclusion

We proposed a new paradigm for identity-aware movie cap-
tion generation. As opposed to the two-stage approach of
first captioning with anonymized names and then filling
in the identities, we proposed a single-stage method that
combines the two tasks via an encoder-decoder sequence-
to-sequence generation framework, that can seamlessly
switch between (i) full caption generation with identities,
or (ii) predict the identities given a caption with anonymized
names. We showed that a single auto-regressive model ben-
efits both tasks and shows positive transfer, leading to state-
of-the-art performance on the LSMDC challenge. We also
proposed an identity-aware captioning metric, iSPICE, that
is sensitive to subtle perturbations in identity and robustly
evaluates captions.
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