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Figure 1. We propose LAENeRF, a method for Local Appearance

Editing of Neural Radiance Fields. LAENeRF enables appearance edits

of arbitrary content in 3D scenes while minimizing background artefacts. For a specified selection, we learn a mapping from estimated ray
termination to output colors via a palette-based formulation, which may be supervised by a style loss. In this way, we elegantly combine
photorealistic recoloring and non-photorealistic stylization of arbitrary content represented by a radiance field in an interactive framework.

Abstract

Due to the omnipresence of Neural Radiance Fields
(NeRFs), the interest towards editable implicit 3D repre-
sentations has surged over the last years. However, edit-
ing implicit or hybrid representations as used for NeRF's is
difficult due to the entanglement of appearance and geom-
etry encoded in the model parameters. Despite these chal-
lenges, recent research has shown first promising steps to-
wards photorealistic and non-photorealistic appearance ed-
its. The main open issues of related work include limited in-
teractivity, a lack of support for local edits and large mem-
ory requirements, rendering them less useful in practice. We
address these limitations with LAENeRF, a unified frame-
work for photorealistic and non-photorealistic appearance
editing of NeRFs. To tackle local editing, we leverage a
voxel grid as starting point for region selection. We learn
a mapping from expected ray terminations to final output
color, which can optionally be supervised by a style loss,
resulting in a framework which can perform photorealistic
and non-photorealistic appearance editing of selected re-
gions. Relying on a single point per ray for our mapping,
we limit memory requirements and enable fast optimization.
To guarantee interactivity, we compose the output color us-

ing a set of learned, modifiable base colors, composed with
additive layer mixing.selection. Compared to concurrent
work, LAENeRF enables recoloring and stylization while
keeping processing time low. Furthermore, we demonstrate
that our approach surpasses baseline methods both quanti-
tatively and qualitatively.

1. Introduction

Novel view synthesis has been completely revolutionized
by Neural Radiance Fields (NeRFs) [27]. NeRFs enable
high-fidelity reconstruction of a 3D scene from a set of in-
put images and their camera poses, building on differen-
tiable volume rendering. Recent methods have successfully
applied NeRFs to dynamic scenes [33, 51, 52], large-scale
scene reconstruction [4, 21, 37] and varying lighting con-
ditions [6, 25]. Local appearance editing of these learned
3D scene representations remains relatively underexplored.
The implicit representation used in NeRFs in the form of a
Multi-Layer Perceptron (MLP) is the main challenge, caus-
ing non-local effects when a single parameter is modified.
Distilled feature fields [19] and per-image 2D masks [22]
have been suggested to facilitate local edits for NeRFs.
However, both of these methods frequently introduce arte-

4969



facts in the non-edited regions. Other editing approaches
support recoloring a NeRF by remapping individual col-
ors [11, 20, 45], try to extract modifiable material quantities
for re-rendering [5, 46], or apply style transfer [13, 49]. Vir-
tually all approaches in these domains do not support con-
trollable local edits, i.e., they always also introduce global
changes, which constrains their viability to the theoretical
domain and impedes their applicability in practice. At the
same time, most approaches struggle with high memory re-
quirements and long compute times, further hampering their
use. Ultimately, no method currently enables simultaneous
style transfer and interactive recoloring.

To address the previously discussed limitations, we pro-
pose LAENeRF, a method for local appearance editing
of pre-trained NeRFs. Choosing NeRFShop [16] and
Instant-NGP (iNGP) [28] as building blocks, we use a 3-
dimensional grid, a subset of iNGP’s occupancy grid, as
our primitive for selecting scene content. Due to the region
growing procedure inherited from NeRFShop, which relies
on a growing queue storing direct neighbors, we can model
smooth transitions to content adjacent to our selection, re-
sulting in more visually appealing edits.

Inspired by previous recoloring approaches [11, 20], we
introduce a novel NeRF-like module designed to learn a
palette-based decomposition of colors within a selected re-
gion. In contrast to previous work, we estimate a per-ray
termination point resulting in a point cloud which represents
the editable region. This design decision reduces mem-
ory requirements and increases performance drastically. We
feed these points into our neural LAENeRF module, which
learns a palette-based decomposition by jointly optimizing
two MLPs and a set of base colors to reconstruct the se-
lected region (see Fig. 1). As LAENeRF learns a function
in 3D space, we can implicitly ensure multi-view consis-
tency and prune outliers. The learned set of colors may be
modified after optimization to enable interactive recoloring.

By providing a style loss during reconstruction,
LAENeRF can stylize the selected region, while keeping
its recoloring abilities and processing time low. We propose
several novel losses to generate high-fidelity results while
respecting the learned 3D geometry and extracting an intu-
itive color decomposition. Finally, we generate a modified
training dataset by blending our edited region with the orig-
inal training dataset and fine-tune the pre-trained NeRF. Our
experiments demonstrate that LAENeRF is not only the first
interactive approach for NeRF appearance editing, but also
qualitatively and quantitatively outperforms previous meth-
ods for local recoloring and stylization.

In summary, we make the following contributions:

(1) We combine photorealistic and non-photorealistic ap-
pearance edits for NeRFs into a unified framework.

(2) We propose the first interactive approach for local, recol-
orable stylization of arbitrary regions in NeRFs.

(3) We propose a new architecture and novel regularizers for
efficient, geometry-aware 3D stylization.

2. Related Work

Photorealistic Appearance Editing i.e. recoloring for
NeRFs, modifies the underlying material colors, without
changing textures or lighting. For this task, several meth-
ods [11, 20, 40, 45] learn a decomposition into a set of
base colors with barycentric weights and per-pixel offsets
with additive layer mixing [35, 36]. This color palette
can be modified interactively during inference. Orthogo-
nally, several approaches recover the material properties di-
rectly [5, 39, 41, 42, 46, 48]. To further enable local recol-
oring, feature fields can be jointly optimized during train-
ing [19]. PaletteNeRF [20] incorporates this idea, allowing
end users to guide recoloring given the selection of a sin-
gle reference point. However, this approach limits the end
user when performing local edits and is prone to introduc-
ing artefacts. ICE-NeRF [22] performs local recoloring by
modifying the most significant weights in the color MLP of
a trained NeRF, given per-image annotations of foreground
and background. This approach works well for bounded or
forward-facing scenes, but struggles for unbounded, 360°
captures due to the large 3D space. In comparison to all
previous methods, our approach ensures that edits remain
local and provides an intuitive interface to artists.

Non-Photorealistic Appearance Editing for NeRFs
modifies textures as well as material properties. Leverag-
ing image style transfer [9, 10, 14], recent methods ap-
ply perceptual losses [9, 17] to radiance fields. Among
these, several propose separate modules for color and
style [7, 13, 15, 31] or progressively stylize a trained NeRF
scene [30, 43, 47, 50]. Another line of works utilizes
two separate NeRFs, one for reconstruction and one for
style [2, 12, 44]. Recent methods have also investigated
modifiable stylization: Pang et al. [31] can generate differ-
ent versions of the same style by utilizing a hash grid [28]
with modifiable hash coefficients. StyleRF [24] utilizes a
feature field for global, zero-shot stylization. Ref-NPR [49]
faithfully propagates the style of a reference image to a
pre-trained NeRF. Our approach requires significantly less
memory and compute resources, leads to higher multi-view-
consistency, allows to apply style transfer only locally, and
enables recoloring of the stylized radiance field within an
interactive framework.

3. Preliminaries

In this section, we revisit volumetric rendering with NeRFs
and outline our procedure for region selection.
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Neural Radiance Fields. NeRFs [27] learn a function
®NCRF : R5 — R47 (p7 d) — (C7 J)? (l)

where p = (z,y, z) and d = (6, ¢) denote the sample posi-
tion and viewing direction, ¢ € [0, 1]? denotes the predicted
output color and o0 € R denotes the predicted volumetric
density. For each pixel, positions r(t) = o + td along a
ray from the camera position o in the direction d are sam-
pled. At N points ¢; : 0 < ¢ < N along r between the
near and far plane, the colors and density are evaluated and
composed using volumetric rendering:

N

C(r) =Y Ti(1 - exp(—0:6:))c, )

i=1

where §; = t;5.1 — t; and the transmittance 7} is given as
i—1
T, =exp | — Zcrjﬁj . 3)
j=1

Through this fully differentiable pipeline, Onerr can be op-
timized with > |C(r) — C(r)||3 for a set of rays R,
where C(r) denotes the ground truth color. With a trained
ONerE> We can compute the estimated depth ¢ using

N

(= Ti(1 = exp(—0i6))tis1, )

i=1
which we use to compute the estimated ray termination

Tierm = 0 + (d. ®)

Region Selection with NeRFShop. NeRFShop [16]
leverages a voxel grid, akin to the occupancy grid O of
iNGP [28], to select arbitrary content in iNGP-based radi-
ance fields. The occupancy grid of iNGP is an acceleration
structure, discretizing the bounded domain into uniformly
sized voxels, with a value of 0 or 1 describing the expected
density within this voxel. We utilize this concept with our
edit grid £, following NeRFShop [16].

To facilitate region selection, the user scribbles on the
projection of the 3D scene on the screen. Subsequently, for
each selected pixel, a ray is cast and the estimated ray ter-
mination T, 1S computed with Eq. (5). Next, we map
each xyy to the nearest voxel in our edit grid £ and set
the corresponding bit in the underlying bitfield. For intu-
itive selection, we support user-controlled region growing
from the selected voxels, by adding the neighboring vox-
els to a growing queue G. During region growing, we add
the current voxel to € and its neighbors to G if the O is
set. Through this workflow, we offer an intuitive method
for content selection within iNGP’s hybrid representation.

4. LAENeRF

Our key insight is that we can reduce computational re-
quirements by optimizing a lightweight, NeRF-like network
given 3D positions xm, Which represents a local, edited
region. Starting from £ defined by the user, we extract
Tierm for all training views, optimize LAENeRF and transfer
the changes to Oyerr With an efficient distillation step. We
present our network architecture in Fig. 2. @y, is featur-
ized using a trainable multi-resolution hash grid [28]. The
encoded input &(@erm) is subsequently passed to shallow
MLPs to predict per-ray barycentric weights w € [0, 1]V#
and view-dependent offsets 6 e [—1,1]3, where Np de-
notes the size of the learnable color palette P € RN#*3.
Finally, we compose our output color as

¢ = clamp (ﬁJT'f’ + 5) . (6)

We featurize d using a spherical harmonics encoding [8, 41]
and use this as an additional input to our offset network.

Input: Estimated Ray Termination. As can be seen in
Fig. 2, LAENeRF learns a mapping from @, to estimated
output color ¢. However, we only require i, of rays r
which intersect £. To correctly handle occlusions and mit-
igate errors due to the edit grid resolution, we require the
alpha accumulated inside the edit grid T}, to be larger than
Tedit = 0.5, where we define T}, as

N
T,=)Y 1(o+tide ) T;(1 - exp(—0i5;)),  (7)

i=1

with 1(-) denoting the indicator function. To obtain accu-
rate depth estimates (, requiring the full accumulation of
alpha, we simultaneously raymarch through both £ and the
occupancy grid O, computing ¢ within the occupancy grid.

Style and Content Losses. As is common in image style
transfer [9, 17], we use separate losses for content and style:

»Ccontent = ||é - C(T)H§7 (8)
Lstyle = /\style“G(s) - G(é)”g, )

where s denotes an arbitrary style image and G(-) denotes
the gram matrix [9] of a feature extracted from a semantic
encoder, e.g. VGG19 [34]. Crucially, we can perform pho-
torealistic recoloring by setting Agy1e = 0, where LAENeRF
learns to reconstruct the selected region due to Eq. (8).

Geometry-preserving Losses for Stylization. We notice
that when we perform non-photorealistic stylization of 3D
regions using only Leonent and Lgyie, small structures are
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Figure 2. Overview of LAENeRF: Given the estimated ray terminations @.m for a region specified by €, we learn a mapping from
positions to weights w and offsets 5. We compose the color ¢ using these latent outputs and a learnable color palette P and supervise with
a content 10ss Lconent and optional style losses Lgyie, £1v, Ldepth-disc t0 Obtain a unified approach which supports recoloring and stylization.

often eliminated in favor of a consistent stylization. In ad-
dition, as imperfect geometry reconstruction from our pre-
trained Onerp leads to noise in xm, We need additional
regularization to encourage smooth, low-noise outputs. To
facilitate detailed, geometry-aware stylization, we introduce
two novel losses, which condition LAENeRF on the esti-
mated geometry of ONegrp.

First, we encourage LAENeRF to limit noise in regions
without depth discontinuities using a depth guidance image:

(VQ)ij = (Cijr1 = Gl 11,5 — Cisl) - (10)

Then, we use this guidance image to restrict a total variation
loss to regions without depth discontinuities. To this end,
we introduce our novel, depth-guided total variation loss as

Lty = v Vé- (1 - V)3, (1n

where Vé denotes the image gradients of ¢ in z/y-
direction, ie. (Vé)zd = ||éi+1,j *éi,j ||% + ||éi,j+1 — éiJ‘ ||§
This loss term remedies noisy prediction for @y, but does
not preserve fine, geometric structures sufficiently. Hence,
we introduce another loss, which is minimized when image
gradients are placed in regions of depth discontinuities:

»Cdepth—disc = _)\depth—disc”Vé . VCH% (12)

Palette Regularization. As we learn a palette-based de-
composition of output colors given in Eq. (6), we require
carefully designed regularization to ensure an intuitive color
decomposition. We introduce a weight loss to encourage
sparse per-pixel predictions:

ACweight = )\weight (1 - H’li)”oo) . (13)

To prevent extreme solutions with a high-frequency offset
function, we use the offset loss from Aksoy et al. [1]:

ﬁoffsel == )\nffset‘ls‘lg (14)

Finally, we regularize P to guarantee valid colors in RGB-
space, i.e. P; ; € [0,1], using

Losene = || P17 ()

Distillation of the Appearance Edits. To transfer the lo-
cal changes encoded in LAENeREF to the pre-trained radi-
ance field, we require an additional fine-tuning step. First,
we obtain a modified training dataset, where we compose
the target color as T, ¢+ (1—T,,)C(r). Thus, rays which did
not intersect £ use the ground truth color C(r) during dis-
tillation, which effectively mitigates background artefacts.

Modelling Smooth Transitions. As our model operates
on a user-defined region of interest and utilizes blending to
construct a new dataset, recoloring or stylization produces
sharp discontinuities on the boundary of £. While this be-
haviour is desirable when cells adjacent to € are not occu-
pied, it may lead to undesirable results otherwise. As the
growing queue G stores adjacency information, we can use
it to model smooth color transitions for more visually pleas-
ing results. First, we construct a new grid G from our grow-
ing queue G. Then, we raymarch using G and O to obtain
the estimated ray terminations for each ray intersecting G,
resulting in another point cloud, which we denote as Z. For
each @y obtained from raymarching through £, we com-
pute the minimum distance to Z:

dmin = min ||xterm - y||2 (16)
YyeEZ
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We construct per-ray transition weights dins € [0, 1] with

dlrans =1- mln(dmlm lest)7 (17)
Tdist

where 74 1S @ hyperparameter controlling the size of the
transition, which we usually set to 1 x 10~2, depending on
the scale of the scene. As can be seen in Fig. 3, we interpo-
late the original color palette P and the user-modified color
palette ’lsmod based on d,ns to get a realistic color transi-
tion. For stylization, we additionally introduce a separate
loss, which adds to the content loss when dyans € (0, 1]:

PN 2
Esmooth = )\smoolh”(c - C) . dlrans”l- (18)
Selection Obtain ®erm Per-Point Min. Distance
a0 1
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Figure 3. Illustration of our proposed distance-based palette in-
terpolation scheme: We calculate distance weights dirans based on
the per-point distance from the edit grid £ to the growing grid G.
When constructing the modified training dataset, we interpolate
between learned palette P and modified palette Prod using dians.

Implementation Details. We build our approach on
torch-ngp [38] and use a resolution of 128 for our edit grid
&, following iNGP [28]. We train LAENeRF for 1 x 10°
iterations with previews available after ~ 20s, and then dis-
till to Onerp for 7 x 10* iterations, which takes no longer
than 5 minutes in total on an NVIDIA RTX 4090. For
LAENEeRF, we use a learning rate of 1 x 1073 for all com-
ponents, except for ’f?, where we use 1 x 10~2. We initial-
ize Np = 8, as the use of Lmooth Tequires a large num-
ber of base colors. 1.5 x 10? iterations before training
is finished, we remove color palettes which do not con-
tribute significantly. For our style loss, we use a VGG19
backbone [34] and utilize features from conv5, conv6,
conv7 for computing Lgy1.. When performing stylization,
we use Agyle = 1.3 x 102, A\py = 1 x 1074, Ageptn-dise =
5 X 10745 Aweight =1x 10777 >\offset =5X 10757 )\smooth =
1 x 1073, If we want to perform photorealistic recoloring,
we set Agyle = ATV = Adepth-disc = 0.

5. Experiments

We use LAENeRF to perform local recoloring and local,
recolorable stylization.

Datasets. We use three well-established datasets for novel
view synthesis in our evaluation. NeRF-Synthetic [27] is
a dataset consisting of synthetic objects with complex ge-
ometry and non-Lambertian materials. This dataset con-
tains 360° captures in a bounded domain with a transparent
background. LLFF [26] is a dataset consisting of forward-
facing captures of real-world scenes in high resolution. The
mip-NeRF 360 dataset [3] contains 360° captures of un-
bounded indoor and outdoor scenes. This provides a chal-
lenging scenario for local appearance editing methods due
to the large number of distinct objects in the scene and the
large 3D space. For LLFF and mip-NeRF 360, we follow
related work [20, 22] and downsample the images by a fac-
tor of 4.

5.1. Photorealistic Appearance Editing

For the recoloring task, we compare our method with
PaletteNeRF [20] and ICE-NeRF [22]. PaletteNeRF
predicts features distilled from an LSeg segmentation
model [19, 23] to enable local editing. In contrast,
ICE-NeRF uses user-guided annotations to recolor a se-
lected region given a target color.

Quantitative Evaluation. For the quantitative evaluation,
we follow ICE-NeRF [22] and measure the Mean Squared
Error (MSE) in the background of the selected region be-
fore and after recoloring. In Tab. 1, we present this met-
ric for three scenes of the LLFF dataset [26]. The fore-
ground region is described by a mask, which was provided
to us by the authors of ICE-NeRF. We perform 7 differ-
ent recolorings per scene and compare against PaletteNeRF
with and without semantic guidance, whereas we also in-
clude the numbers from ICE-NeRF' to facilitate cross-
method comparisons. LAENeRF outperforms previous
methods for this metric, reducing error rates by 59% com-
pared to PaletteNeRF with semantic guidance. Addition-
ally, we provide the same metric for the indoor scenes of
the mip-NeRF 360 dataset [3] in Tab. 2, where we report
average results for 7 recolorings per scene. We use Seg-
ment Anything [18] to obtain masks for a subset of test set
views and compare against PaletteNeRF [20]. We measure
MSE compared to the ground truth test images and use the
same hyperparameters as PaletteNeRF, which also builds
on torch-ngp [38]. As can be seen, LAENeRF after recol-
oring outperforms non-recolored PaletteNeRF, which we
attribute to PaletteNeRF’s concurrent scene reconstruction
and palette-based decomposition. Due to the fairly accurate

'ICE-NeRFs’ implementation is not yet publicly available.

4973



Scene Results from [22] Our Recolorings

PNF ICE-NeRF PNF PNF LAENeRF
(Semantic)
Horns 0.0818 0.0213 0.0195 0.0028 0.0010
Fortress  0.0013  0.0010 0.0011  0.0002 0.0002
Flower  0.0003 0.0003 0.0076 0.0022 0.0007
Average 0.0277 0.0075 0.0094 0.0017 0.0007

Table 1. MSE (}) in the background with respect to
the unmodified images for our method, ICE-NeRF [22] and
PaletteNeRF (PNF) [20] for the LLFF dataset [26]. Note that the
recolorings from [22] are different to ours.

Scene PaletteNeRF LAENeRF
Trained Recolor Recolor Trained Recolor
(Semantic)
Bonsai  0.0015 0.0036 0.0016 0.0011  0.0011
Kitchen 0.0024 0.0125  0.0027 0.0021  0.0022
Room 0.0016  0.0216  0.0056 0.0015  0.0015
Average 0.0018 0.0124  0.0033 0.0016  0.0016

Table 2. MSE ({) in the background with respect to the test im-
ages for our method and PaletteNeRF [20] for the mip-NeRF 360
dataset [3]. LAENeRF exhibits lower error rates compared to
PaletteNeRF, even when comparing trained with recolored.

Ground Truth LAENeRF

ICE-NeRF [22] PaletteNeRF [20]

(Semantic)

Figure 4. Qualitative comparison of our method with related work
on the Horns scene of the LLFF dataset [26]. LAENeRF intro-
duces far fewer artefacts compared to previous methods.

geometry for the 360° captures, our approach introduces
very few background artefacts during recoloring.

Qualitative Evaluation. In Fig. 4, we compare our
method to ICE-NeRF [22] and PaletteNeRF [20]. As
can be seen, our method introduces the fewest artefacts
due to recoloring. To facilitate cross-method comparisons,
we choose the same example as ICE-NeRF and include

Ground Truth

LAENeRF PaletteNeRF [20]

(Semantic)

Bonsai

Room

Figure 5. Qualitative comparison of our method to PaletteNeRF on
the mip-NeRF 360 dataset [3] for small-scale edits. The top-row
detailed view shows the selected region for recoloring, whereas
the bottom-row view shows a background region. Our method
introduces fewer errors in the background whilst recoloring the
selected object faithfully.

Multiple Edits Smooth Transitions Detailed Local Edits

aoa aee

Figure 6. Demonstration of our editing capabilities: LAENeRF
can perform arbitrary edits on any local region with smooth tran-
sitions.

the results from their publication. For the mip-NeRF 360
dataset [3], we compare against PaletteNeRF in Fig. 5.
PaletteNeRF either introduces significant artefacts (see
Room) or is unable to capture small regions with their se-
mantic features (see Bonsai). As mentioned in their publi-
cation, ICE-NeRF struggles with local edits for this dataset,
frequently introducing artefacts in undesired regions.

In Fig. 6, we show some recoloring results only
possible with our method on the synthetic Lego scene.
PaletteNeRF’s semantic features do not permit any of the
shown edits. While ICE-NeRF can perform multiple color
edits, their approach recolors based on a single target color
and thus fails for edits where multiple palette changes are
required. LAENeRF is the only method which can model
smooth transitions between original scene content and the
recolored region.
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5.2. Non-Photorealistic Appearance Editing

For style transfer, we compare our method to Ref-NPR [49],
which stylizes a scene based on one or a few reference im-
ages. As Ref-NPR is not specifically designed for local styl-
ization, we create locally stylized reference images by se-
lecting three training dataset images, applying AdaIN [14]
for stylization using a style image s, and using LAENeRF’s
blending weights to generate three reference images. Ad-
ditional details are available in the supplementary material.

LAENeRF

Ground Truth

Ref-NPR [49]

Drums

Horns

Figure 7. Qualitative comparison of our method to Ref-NPR. The
top-row detailed view shows the selected region for stylization,
whereas the bottom-row view shows a background region. Our
method produces a more detailed stylization while minimizing
background artefacts.

Quantitative Evaluation. For our quantitative evalua-
tion, we measure MSE in the background with respect to
the ground truth test set images. For NeRF-Synthetic [27],
we generate masks for the region to stylize using our
method and use segmentation masks from ICE-NeRF [22]
for LLFF [27] scenes. We report per-dataset results in
Tab. 3. In contrast to Ref-NPR, our approach demon-
strates considerably reduced error rates, especially in syn-
thetic scenes characterized by numerous occlusions. For
forward-facing scenes, Ref-NPR benefits from less vari-
ation between camera poses but still generates about 3x
more errors than ours.

Dataset Ref-NPR  LAENeRF
NeRF-Synthetic [27]  0.0466 0.0071
LLFF [26] 0.0073 0.0025
Average 0.0270 0.0048

Table 3. MSE ({) in the background with respect to the ground
truth test images for our method and Ref-NPR [49]. LAENeRF
significantly outperforms Ref-NPR for synthetic and forward-
facing scenes.

Qualitative Evaluation. In Fig. 7, we show results for
our method and Ref-NPR for synthetic and real-world
scenes. Our approach introduces fewer background arte-
facts compared to Ref-NPR, while stylizing the selected re-
gion with more detail. In Fig. 9, we show additional re-
sults on local, recolorable stylization for all scene types, in-
cluding unbounded, real-world scenes [3]. As can be seen,
our approach is compatible with diverse datasets, stylizes
the selected region faithfully and produces intuitive color
palettes for interactive recoloring.

Ours vs. PaletteNeRF

Preference: Images*

13.78% 17.60%

Preference: Videos*

58.20% 13.11% 28.69%

View-Consistenc:
38.52% 27.05% 34.43%

Il PaletteNeRF

EEm Ours

I No Preference

Ours vs. Ref-NPR

Preference: Images*
8.39% 14.23%

77.37%

Preference: Videos*

58.18% 10.00% 31.82%

View-Consistency*
53.64%

20.91% 25.45%

EEm Ours I No Preference s Ref-NPR

Figure 8. User study results. Participants prefer our method to
related work for image and video outputs. Our method is also
rated higher for view-consistency than Ref-NPR [49]. * indicates
a statistical significance according to Wilcoxon signed rank tests.

5.3. User Study

To further evaluate our approach, we conducted a user
study comparing our approach to PaletteNeRF [20] and
Ref-NPR [49]. We showed the participants pairs of re-
colored/stylized images with recoloring/style and target re-
gion inset and asked which result they preferred (a, b, or
no-preference). Additionally, we presented pairs of recol-
ored/stylized videos of the same scenes and inquired about
preference for visual quality and view-consistency (without
reference). We collected 847 responses from 31 participants
as summarized in Fig. 8. Participants prefer our approach
for both images and videos and rated our approach as more
view-consistent than Ref-NPR. We refer to the supplemen-
tary material for details.

5.4. Time Comparisons

We use the Flower scene of the LLFF dataset [26], for
an exemplary time comparison: With a pre-trained radi-
ance field, PaletteNeRF [20] requires 13.5 min for recol-
oring a selected object, whereas our method accomplishes
the same task in 3 min. When provided with stylized refer-
ence views, Ref-NPR [49] achieves scene stylization in 2.5
min, whereas our approach takes 2 min. More importantly,
we always provide previews after ~ 20s.
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Hotdog

Chair

Flower

Bonsai

Figure 9. Results for local stylization for various scene types. LAENeRF can faithfully transfer the style of an arbitrary style image to a
selected region whilst minimizing errors in the background. Due to our decomposition into base colors, stylized regions remain editable.

6. Limitations

Although LAENeRF is a flexible method for local ap-
pearance edits of NeRF, some challenges remain. Similar
to [31], our ability to modify stylized regions is restricted,
specifically to adjusting palette bases post-training. We
leverage the pre-trained NeRF to perform geometry-aware
appearance modifications. As noted in other works [3, 29,
32], radiance fields often trade geometric fidelity for vi-
sual quality by modelling non-Lambertian effects with ad-
ditional samples behind the surface, posing a challenge to
our point-based optimization scheme. Particularly for real-
world scenes, this may lead to reduced quality in the edited
region. Another disadvantage of LAENeRF lies in the sep-
aration of optimization and distillation. This design choice

allows for interactive recoloring of stylized content as an in-
termediate step but incurs additional time for generating a
modified training dataset and NeRF fine-tuning.

7. Conclusion

We present LAENeRF, a unified framework for photore-
alistic and non-photorealistic appearance editing of NeRF.
By elegantly combining a palette-based decomposition
with perceptual losses, we enable interactive recoloring
of stylized regions. = We demonstrate state-of-the-art
local appearance editing results, benefiting from our
geometry-aware stylization in 3D. LAENeRF outperforms
existing works quantitatively and qualitatively for local
recoloring and local stylization. By open-sourcing our
approach we will bring NeRF-editing to a large audience.
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