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Abstract

We introduce Infinigen Indoors, a Blender-based proce-
dural generator of photorealistic indoor scenes. It builds
upon the existing Infinigen system, which focuses on natural
scenes, but expands its coverage to indoor scenes by intro-
ducing a diverse library of procedural indoor assets, includ-
ing furniture, architecture elements, appliances, and other
day-to-day objects. It also introduces a constraint-based
arrangement system, which consists of a domain-specific
language for expressing diverse constraints on scene com-
position, and a solver that generates scene compositions
that maximally satisfy the constraints. We provide an ex-
port tool that allows the generated 3D objects and scenes
to be directly used for training embodied agents in real-
time simulators such as Omniverse and Unreal. Infinigen
Indoors is open-sourced under the BSD license. Please visit
infinigen.org for code and videos.

1. Introduction
Synthetic data rendered by conventional computer graph-
ics has seen increasing adoption in computer vision[10,
38, 41, 42, 46, 48, 61] and AI research[20, 28, 76], espe-
cially for 3D vision[26, 45, 71, 73–75, 83] and embodied
AI[12, 32, 36, 68, 70, 87]. Synthetic data can be rendered
in unlimited quantities and can automatically provide high-
quality 3D ground truth, enabling large-scale training of
computer vision models and embodied agents. Notably,
many state-of-the-art 3D vision systems[72, 75] and robotic
systems [33, 39] have been trained purely in simulation yet
perform surprisingly well in the real world zero-shot.

A promising direction for creating synthetic data is pro-
cedural generation, which uses mathematical rules to create
3D objects and scenes, as opposed to manual sculpting or
real-world scanning. These mathematical rules can have pa-
rameters that are randomized to allow infinite variations. For
example, trees can be generated through a recursive set of
rules that randomly branch off. Compared to reusing a fixed,
static set of 3D assets, procedural generation can greatly

improve the diversity of the synthetic data and the simulated
environments.

Infinigen [60] is a recent work that pushed the idea of
procedural generation to the limit. Infinigen is an open-
source system that generates photorealistic 3D scenes fully
procedurally, meaning that every 3D asset, from shape to
material, from large structures to small details, is completely
procedural, without using any external static asset. Being
fully procedural means that every aspect of the 3D scene,
from the details of individual objects to their arrangements
in a scene, can be customized and controlled by simply
modifying the underlying mathematical rules. As a result,
a 3D scene can be randomized at all levels down to the
smallest details, as opposed to only at the level of object
arrangement, which was common in earlier work that used
procedural generation.

However, the current Infinigen system is limited to natural
scenes and objects (terrains, animals, plants, etc.). Although
natural scenes could be sufficient for training foundation
models as evidenced by natural evolution [60], this hypothe-
sis remains unproven and may require additional advances
in learning algorithms and architecture designs. Evidence
from the current literature suggests that synthetic training
data that more closely approximates the application domain
is still likely to lead to better downstream performance.

To overcome this limitation, we introduce Infinigen In-
doors, a procedural generator of photorealistic indoor scenes.
It expands the coverage of Infinigen to indoor scenes, which
are relevant for many high-impact applications including
robotics and augmented reality. Infinigen Indoors generates
diverse indoor objects, including furniture, appliances, cook-
ware, dining utensils, architectural elements, and other com-
mon day-to-day objects. It also generates full indoor scenes,
including the interior of multi-room, multi-floor buildings,
with object arrangements that are physically and semanti-
cally plausible. Fig. 1 shows random samples of generated
scenes, and Fig. 2 shows some automatic annotations.

Like the original Infinigen, Infinigen Indoors is not a
fixed set of 3D models or scenes; instead, it is an open-
source generator that can create unlimited variations both
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Figure 1. Random, non cherry-picked sample of images generated by our system. From top left to bottom right, we show images from
dining rooms, bathrooms, living rooms and kitchens. Please see the supplement for an extended random sample.

at the object level and at the scene level. Infinigen Indoors
is also 100% procedural, using no external assets and using
only mathematical rules to generate everything from scratch.

Infinigen Indoors builds upon the original Infinigen and
Blender [8] but makes significant new contributions. The
main contributions include (1) a library of procedural gen-
erators of indoor assets, (2) a constraint-based arrangement
system, (3) a tool to export the generated scenes to real-time
simulators such as NVIDIA Omniverse [54] and Unreal
Engine[13].

Our second contribution—a constraint-based arrangement
system—offers a new capability specifically targeting indoor
settings. Indoor scenes are artificial, and object arrangement
exhibits a greater degree of regularity than natural scenes:
for example, furniture usually does not block the entrance of
a room. We thus develop a system that lets the user specify
scene arrangement constraints through a domain-specific
language using a set of Python APIs. The constraints cover
many types of common arrangement, including symmetry
(“Place chairs symmetrically around the table”), spatial rela-
tion (“Place plant pots close to windows ”), quantity (“An
equal number of knives and forks”), physics (“Ensure vases
do not overhang”), and accessibility (“Ensure there is free-
space in-front of all appliances”). The constraints can be
understood as a type of declarative procedural rules, which
express what the user desires but not how to achieve it. Like
other procedural rules, the constraints can be randomized
and can be customized by the user.

In addition to constraint specification, our arrangement

system also includes a constraint solver, which searches
for an arrangement that maximally satisfies a set of given
constraints. Our solver greedily performs simulated anneal-
ing on whole-house floor plans, followed by large furniture
layouts and then small objects. Compared to existing ap-
proaches for scene arrangement, our solver is highly expres-
sive, supporting complex compositional constraints that are
challenging or infeasible for existing approaches. In addi-
tion, it is the first solver integrated with an open-source and
fully procedural generator.

Our constraint-based arrangement system is a significant
contribution because it vastly improves the generation sys-
tem’s usability and customizability. Because it separates
constraint specification from constraint solving, a user can
conveniently express the objectives of procedural generation
without worrying about implementation. This capability is
not available in the original Infinigen, where the user has to
customize the procedure rules at the implementation level.

Our third contribution—exporting to real-time
simulators—is also noteworthy because it allows the
generated 3D objects and scenes to be directly used for
training embodied agents in real-time simulators such as
Omniverse. Thus, Infinigen Indoors can supply diverse
3D assets for simulation environments and enhance their
domain randomization.

To validate the effectiveness of the generated data and
demonstrate our system’s unique customizability, we use
Infinigen Indoors to generate synthetic data for shadow re-
moval and occlusion boundary detection, two tasks that lack
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Dataset Arrangement Procedural Provides # Scenes # Assets Free External Asset SourceMethod Assets Procedural Code in Total in Total Assets

3DSSG [78] Real-world scans No N/A 1.5K 48K Yes None
Matterport3D [6] Real-world scans No N/A 2K - Yes None
Stanford 2D-3D-S [2] Real-world scans No N/A 270 - Yes None
ScanNet [9] Real-world scans No N/A 1.5K - Yes None
SceneNN [27] Real-world scans No N/A 100 - Yes None
OpenRooms [44] Real-world scans No No 1.3K 3K No ($500) ShapeNet [7], Scan2CAD [3], Adobe Stock [30]
Replica [69] Artist layouts No N/A 18 - Yes AI Habitat [49]
Structured3D [3] Artist layouts No N/A 22K 472K No Professional Designers
Hypersim [63] Artist layouts No N/A 461 59K No ($6000) Evermotion Architectures [14]
InteriorNet [43] Artist layouts No N/A 22M 1M No Manufactures / Kujiale [37]
Habitat 3.0 [34] Artist layouts No N/A 211 18.7K Yes Floorplanner [15], Proffesional Designers
3D-FRONT [17] Artist layouts No N/A 19K 13K Yes 3D-FUTURE [18]
Robotrix [19] Artist layouts No N/A 16 - No UE4Arch [77], UnrealEngine Marketplace [31]
DeepFurniture [47] Artist layouts No N/A 20K - No Adobe Mixamo [29]
SceneNetRGBD [94] Obj. Cat. Dist. No N/A ∞ 5.1K Yes SceneNet [23], ShapeNet [7]
LUMINOUS [93] Optimizer No Yes ∞ 2K Yes AI2-THOR [36]
SceneNet [24] Optimizer No No ∞ 3.7K Yes 3DModelFree [16], ModelNet [86], Archive3D [1], Stanford database
ProcTHOR [10] Heuristics No Yes ∞ 1.6K Yes AI2-THOR [36], Professional Designers
Aria [52] - - No 100K 8K - -

Infinigen Indoors (Ours) Constraint Language Yes Yes ∞ ∞ Yes None

Table 1. Comparisons to existing datasets and generators. Many existing datasets/generators use external, static asset libraries and have
limited number of scenes. Ours is fully procedural, without using any external source. Dashes represent numbers we could not acquire or
estimate.

a

TextText

(a) (b) (c)

(d) (e) (f)

(h) (i)(g)

Figure 2. Each image (a) is rendered from a mesh (b), from which
we can also extract Depth (c), Surface Normals (d), Occlusion
Boundaries (e), Segmentation (f), Bounding Boxes (e) and Optical
Flow (h), with Albedo (i) from rendering metadata.

abundant existing training data. Our experiments show that
data from our system improves generalization performance
on indoor scenes.

Like the original Infinigen, Infinigen Indoors will be open-
sourced under the BSD license to enable free and unlimited
use by everyone, and to enable community contributions of
additional procedural generators.

2. Related Work
We provide a detailed comparison of Infinigen Indoors with
existing datasets and generators in Tab. 1.
Real-world datasets. Various real-world datasets have been
introduced for indoor scene understanding [2, 6, 9, 27, 66, 67,
78], including the earlier and widely used NYUv2 [66] and
Sun RGB-D [67], as well as more recent datasets [2, 4, 9, 78].
However, real-world datasets are labor intensive to collect
and limited in size. In addition, real-world 3D ground truth
can be difficult to acquire due to the limitations of depth

sensors which include limited resolution and range, errors
with transparent/reflective surfaces, and artifacts at object
edges.

Synthetic Indoor Datasets. There are many existing syn-
thetic datasets for indoor scenes [3, 17, 19, 24, 34, 36, 43,
47, 63, 69]. However, the underlying 3D assets of many
datasets are not freely accessible, limiting their utility. In
addition, most use a static library of 3D assets, limiting their
diversity. Recent work [10, 93] has incorporated procedural
generation for scene layout and floor plan generation, but
still relies on static libraries of objects and materials. In con-
trast, Infinigen Indoors is 100% procedural, with all assets
from shape to texture generated from scratch with unlimited
variation.

Object arrangement and layout generation. Constraints
are potent tools to describe the layout of a scene. Early works
like [88] represent constraints as hard-coded programs, and
[50] represent them as physical relations. Data-driven works
like [40, 56, 57, 62, 82, 84] learn constraints implicitly from
data. Such implicit constraints are less customizable, inter-
pretable, and controllable than Infinigen Indoors. Recently,
modeling constraints using probabilistic graphs have become
more popular: [89] uses pairwise grouping, while [11, 91]
further extends it to spatial and hierarchical constraints. [90]
uses factor graphs to parse the constraints, while [51] models
them with Bayesian network. [58, 92] formulates constraints
as potentials Markov Random Fields on a fixed graph, which
capture only non-compositional and associative constraints
for rooms and objects.

Compared to existing systems, ours is the first to inte-
grate directly with procedural object generators, and our
constraint language is higher level and more easily extend-
able than existing systems. Our system specifies high level
goals for abstract classes of objects (e.g. ’furniture’, ’stor-
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Figure 3. Random samples of procedurally generated doors
(top), staircases (middle/bottom) and windows/warehouse shelving
(bottom-right).

Figure 4. Random samples of procedurally generated ovens, dish-
washer and sinks (top/middle), living-room furniture (middle) and
bathroom fixtures (bottom).

Figure 5. Random samples of procedurally generated furniture,
including sofa, chairs and beds (top), tables (middle/bottom), and
shelves (bottom).

age’), rather than exhaustive distance/angle distributions for
specific objects [91] which must be fitted to example scenes.
Our language also supports compositional constraints such
as “place glassware only on shelves against a diningroom
wall.” These features allow users to write new constraints
for their specific needs, including domains without existing
artist-made scenes. Our constraint solver uses simulated
annealing, following prior work [91], but involves moves
that are unique to our constraint language, including up-
dates to object-object relations or changing the parameters
of procedural objects (e.g. the size of a table).

3. Method
3.1. Procedural Asset Generation

All assets used in Infinigen Indoors are generated from
scratch by compact probabilistic programs. These programs
have many human-controllable parameters, which are ran-
domized by default, or can be manually overridden by the

Figure 6. Random samples of procedurally generated tableware, in-
cluding dinnerware (Row 1-2), cookware (Row 2), food containers
(Row 3) and dining utensils (Row 4).

Figure 7. Random samples of procedurally generated home decora-
tions, including lamps, hardware, balloons, wall decor (top), rugs,
book stacks, vases and plants (bottom). Small assets for decoration
purposes, usually attached to the ground or walls.

Figure 8. A collection of materials generated in Infinigen Indoors.
The first figure shows one material per generator, with columns
(1-3) used on assets of various sizes, (4-5) used on assets and rooms,
and (6) for abstract art and text. The second figure shows multiple
materials from the same generator with different parameters.

user. These parameters are used along with additional low-
level random noise to generate meshes via geometry nodes,
modifiers, or mesh manipulations in Blender. We provide
a total of 79 randomized procedural object generators. By
category, we cover Appliances (10 generators, 112 params),
Windows/Doors/Staircases (14 generators, 127 params), Fur-
niture (17 generators, 216 params), Decorations (15 gener-
ators, 92 params), and Small Objects (19 generators, 194
params). See the supplement for a list.
Architectural elements shown in Fig. 3 are integrated into
room as fixtures. We use array repetition of atomic compo-
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Figure 9. Example usage of our constraint specification API, speci-
fying the quantity and aesthetic constraints for a dining table and
chairs.

nents to build staircases, and mesh booleaning to cut out the
panels of doors and windows.
Large objects shown in Fig. 4 and 5 provide assets related
to cooking, seating and storage. We use soft-body colli-
sion simulation to model soft blankets, clothing, and stuffed
pillows when they are put on a supporting surface.
Small objects shown in Fig. 6 and 7 can be attached to sup-
port surfaces, walls, or ceilings. We also devised a combined
text-and-shape logo generator that produces procedural tex-
ture for fabrics, food packaging, and art decor. We use cloth
simulation to inflate balloons and food packaging with air.
Materials are all procedurally created with Blender’s shader
nodes, as shown in Fig. 8. We provide 30 material generators
with 120 controllable parameters total, split approximately
evenly between types of Wood, Ceramic, Fabric, Metal,
and others. We cover 78% of OpenSurfaces’[5] material
categories, up from 21% for Infinigen.

3.2. Constraint Specification API

Indoor scene layouts are highly regular, and follow complex
rules governing ergonomics, aesthetics and functionality.
Moreover, the rules that apply to a particular object depend
on context - for example, tables are placed against walls
when used as desks in study rooms, but must be far from
walls and surrounded by chairs when used in a dining room.
To capture this, we provide a high-level Constraint Specifica-
tion API, which allows the user to write complex geometric
scoring functions of sets of objects in the scene. This score
is optimized by the solver to find a satisfactory layout. An
example of the Constraint Specification API is shown in 9.

Each constraint in the specification API can be expressed
as a composition of geometric operators. Geometric opera-
tors are designed to compute spatial and geometric proper-
ties, including minimum distance, rotational and reflection
symmetry, angle alignment, 2D free-space, accessibility and
volume or area of objects. By composing these operators
with nested filtering by semantics and relations, the user can
create scoped constraints that apply only to objects attached

to specific surfaces or rooms. Additionally, these geom-
etry terms are affected by the parameters (length, width,
etc.) of the procedurally generated assets, meaning that
optimizers can automatically discover optimal furniture pa-
rameters given available space and constraints. Our system
features common scalar arithmetic operations, comparisons,
and forall / sum operators to gather results over sets of
objects. Please see the supplement for the full API and more
constraint specification examples.

A more concrete example of our constraint language can
be found in Fig. 9, where the constraint program specifies
common-sense human ergonomics and semantic relations
found in residential homes. This constraint graph has a
total of 1058 nodes, which compute 11 hard constraints
and 25 score terms (soft constraints). We provide example
constraint specifications for living rooms, bathrooms, dining
rooms, kitchens, and warehouses. See the supplement for
the full constraint program and example constraints.

For generating training data, we believe many users will
consider creating custom constraints tailored to particular
applications. Our constraint system is designed to allow
easy customization. Our initial spec. has avg. 15 constraints
specific to each room: approx. 15 lines of Python. We believe
this cost is very tractable when users need customization.

3.3. Arrangement Solver

Because our Constraint Specification API is flexible, the
solver needs to search a prohibitively large space in which
finding an exact minimum is impossible. To deal with this,
it uses Simulated Annealing[35] with Metropolis-Hastings
criterion [25, 53]. The solver first takes the current state
s and randomly chooses a move category. It then uses the
constraint graph to generate a proposed state s′ that can be
reached using the move. The current and proposed states are
evaluated on the graph specified by the provided constraints
and score terms, yielding loss terms l(s) and l(s′). Then, the
solver calculates transition probability between the s and s′

as
p(s′|s) = min[exp(l(s)− l(s′))/τ, 1]

where τ is the temperature of the solver, which cools expo-
nentially from τ = 0.25 to τ = 0.001.

Our solver allows both discrete and continuous moves:
Addition - Adds a procedural object to the scene.
Deletion - Deletes an object from the scene.
Relation Plane Change - Assigns an object to another plane.
Resample - Regenerates an object with new parameters.
Reinitialize Pose - Samples a new random pose for an object.
Translate - Translates the object within its DOF plane.
Rotate - Rotates the object around its DOF axis.

We observe that not all moves are equally significant at
each point in the optimization. In an empty scene, object
addition and relation change allow for higher loss reduction,
whereas in a cluttered scene, continuous object movement
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Figure 10. In Fig. a), we show ten randomly generated single-story floor plans with a diverse set of room combinations, connectedness, and
overall contours. In Fig. b), we show results for the generation of multistory floor plans. Floors 0,1,2 are displayed separately. Staircases
connect adjacent floors. We remove exterior walls and ceilings for visibility.

Figure 11. Qualitative room arrangement results, grouped by room type. From left to right, we show bathrooms, dining rooms, living rooms
and kitchens.

allows for higher loss reduction. Thus, we provide a schedule
for moves so that probabilities for discrete moves decay
gradually and probabilities for continuous moves increase.

The objects in an indoor scene are interdependent on each
other, which makes it unfeasible to optimize over all of them
simultaneously. However, they usually depend on each other
hierarchically (e.g. a cup is on the table, which is on the
floor). To exploit this hierarchy, we divide our optimization
into three stages: large object optimization, medium object
optimization, and small object optimization.

Each object is constrained in its movement due to the
constraints specified by the user and the discrete moves
proposed by the solver. For instance, a bookshelf that is
stable against a wall is only allowed to move along the 1D
line between the wall and the floor. Consequently, an object’s
degrees of freedom (DoFs) for rotation and translation are
determined based on its relations to other objects. When the
solver samples a continuous move, it restricts the object’s
motion to these DoFs. When the solver samples a discrete
move, it places the object in the constrained subspace.

Floorplan-specific solver and constraints Our floorplan
generator creates realistic full-house room meshes as shown
in Fig. 10. First, we procedurally generate a room adjacency

graph specifying the number, type, and connectedness of
individual rooms required in the floor plan. This graph is pro-
duced by inference on a probabilistic context-free grammar
on room types, or can be wholly or partially derived from
user input. We define our objective function as a weighted
combination of the terms below, and optimize it using
simulated annealing subject to constraints from the room
adjacency graph. See the supplement for full definitions.

• Shortest path to entrance • Typical room area
• Room aspect ratio • Room convexity
• Room wall conciseness • Functional room area
• Room collinearity • Narrow passages
• Exterior length by room • Exterior corners by room
• Staircase occupancies • Staircase IOU with rooms

We initialize our floorplan solver by generating a random
house outline, and subdividing it using a Mondrian Process
[65] until it produces sufficient spaces for each room. We
extrude a wall segment inwards or outwards at each step, or
swap the assignment subject to the room adjacency graph.
Either action will lead to a change in loss, which we convert
to an acceptance probability using Metropolis-Hasting as
in Sec 3.3. Once solving is complete, we add floor, wall,
and ceiling materials, doors, windows, and staircases, all
subject to constraints based on room type and adjacency. Fig
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Figure 12. A single scene from two different viewpoints in Unreal
Engine 5 (above) and Omniverse Isaac Sim (below). Unreal Engine
runs at 60 FPS and Isaac Sim with physics simulation enabled runs
at 45 FPS, both on RTX 3090s. Differences in lighting are caused
by the variations in simulator import systems.

Figure 13. Qualitative zero-shot results on SRD [59] test dataset.

11 shows the solutions to room arrangements with objects
placed inside.

3.4. Data Export

All Image Shadow Region Non-Sh Region

Test Set Model PSNR↑ RMSE↓ PSNR↑ RMSE↓ PSNR↑ RMSE↓

ISTD [81]
R 31.96 4.27 38.04 6.58 34.13 3.85
R+S 31.72 4.30 37.41 7.06 33.80 3.85

SRD [59]
R 22.83 10.84 25.59 18.75 27.93 7.68
R+S 24.56 9.54 27.39 16.63 29.37 6.67

Table 2. Shadow removal task quantitative performance on ISTD,
ISTD+ and SRD dataset across the three variations of the model.

We develop a one-click tool to export assets from Infini-

Image GT Infinigen-Nature [60] Ours

Figure 14. Qualitative results on synthetic artistic scenes [21].

gen Indoors to real-time simulators, using Universal Scene
Description (USD) or other formats. As seen in Fig. 12,
indoor scenes can be exported to Omniverse Isaac Sim and
Unreal Engine 5 and can be run at interactive frame rates.
This exporting capability allows Infinigen Indoors to help
train embodied agents in virtual environments.

Infinigen Indoors uses Blender’s procedural material sys-
tem, which is by default not portable to other simulators
or scene editors. To resolve this, we provide tools to au-
tomatically post-process and UV-map entire indoor scenes,
and use texture baking to create standard texture maps for
material color, roughness, metallicity and more. We also pro-
vide export code to convert single objects to textured OBJ,
FBX or STL meshes, and automatically generate collision
and articulation information as Universal Robot Description
Format (URDF) files.

4. Experiments

4.1. Solver Performance

To efficiently solve large numbers of constraints in cluttered
scenes, we optimized our solver with various features for
faster convergence. Plane hashing enables faster access to
bounding planes during discrete optimization. BVH caching
enables faster mesh distance and collision calculations by
reusing Bounding-Volume-Hierarchies except when mutated
by a state update. Evaluation caching maintains a cache of
results in the evaluation graph. Move filtering narrows down
the search space in continuous optimization by selectively
pruning candidates to those that can reduce the loss. Place-
holder optimization only generates full meshes when other
objects are assigned to them; otherwise it keeps bounding
boxes. See the supplement for more details.

To analyze the importance of these features, we con-
ducted an ablation in Tab. 3 and Fig. 15, which shows
solver performance with each feature removed. All results
are averaged over 20 random scenes with 5k solver steps.
Our full system provides a ≈ 3x speedup compared to the
non-optimized version. Most of the performance gains come
from BVH caching and Plane Hashing. We observe that dis-
crete changes such as pose re-initialization, relation changes,
and object resampling are necessary for compelling visuals,
but decrease the quantitative score and increase the runtime.
When we run our fully optimized system as long as the
non-optimized version we get a 28% score increase.
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(a) (b) (c) (d)

Figure 15. Qualitative Ablation. From left to right, we show scenes generated by our system with 10K solving steps (a), 1K solving steps (b),
with collision checking removed (c) and with symmetry terms disabled (d)

Method Runtime ↓ Avg. Score (s) ↑ #Objects ↑
Full System 2280.68 80.84 28.94
w/o Discrete change 1872.60 86.20 30.82
w/o Eval. cache 2242.79 80.84 28.94
w/o Move Filter 2633.95 84.75 45.06
w/o Placeholder optim. 2665.18 80.46 27.71
w/o Plane Hashing 3522.86 92.65 34.12
w/o BVH cache 4740.48 80.84 29.06
Full System 100 min. 6080.84 114.72 49.65
w/o Optimization 6308.92 89.43 47.76

Table 3. Ablation of solver performance optimizations.

Perceptual Study We recruited human subjects following
[57] to evaluate the realism of the scenes and the realism
of the layouts. Subjects preferred Infinigen Indoors over
[11, 57, 62, 84] in terms of both realism, layout realism, and
the lack of errors (caveat: “realism” may be influenced by
asset and lighting quality). See the supp. for more details.

4.2. Shadow Removal

To demonstrate its flexibility in data generation, we used
Infinigen-Indoors to create a dataset consisting of 2k image
pairs of shadow and shadow-free variants. These pairs were
generated by toggling the shadow property of lighting within
Blender. For each pair, shadow masks were produced using
Otsu’s thresholding [55] method. We use ShadowFormer
[22] model for the experiments and consider two variations:
only trained on ISTD [81] real dataset (R), and trained on
combination of ISTD and 2k Infinigen Indoors synthetic
dataset (R+S). The results are shown in Tab. 2. While using
synthetic data leads to slightly worse performance on ISTD
dataset, the zero-shot application on SRD [59] dataset shows
clear improvement for generalization to new test datasets.
Qualitative results are shown in Fig. 13.

4.3. Occlusion Boundary Estimation

To validate the effectiveness of Infinigen Indoors, we also
evaluate on the task of occlusion boundary estimation, a
task with limited available data. We produce 1464 images
annotated with ground truth. We train three U-Net [64]
models from scratch separately on these images, on images
generated from Infinigen [60] and Hypersim [63]. We then
compare their performance on a curated test set of photore-
alistic artist-designed synthetic 3D scenes for architecture

Training Dataset ODS OIS mAP

Infinigen-Nature [60] 14.38 19.43 10.80
Hypersim [63] 26.02 19.44 15.69
Infinigen Indoors (Ours) 29.47 30.29 19.09

Table 4. Occlusion boundary quantitative results on a curated
test set of photorealistic artist-designed synthetic 3D scenes for
architecture visualization [21].

visualization [21], since no existing photorealistic indoor
dataset provides such annotations. See the supplement for
more details.

We report the following three metrics [79, 80, 85]: (i)
optimal dataset scale F-score (ODS), representing the best
F-score achieved on the dataset using a uniform threshold
across all test images; (ii) optimal image scale F-score (OIS)
indicating the cumulative F-score on the dataset obtained
with thresholds dependent on individual images; and (iii)
mean average precision (mAP) denoting the mean precision
across the complete recall range.

As we can see in Tab. 4, our Infinigen Indoors-trained
model generalizes better. The model achieves higher per-
formance across all metrics. These findings underscore the
usefulness of Infinigen Indoors as a valuable training re-
source. Qualitative results are depicted in Fig. 14.
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[24] Ankur Handa, Viorica Pătrăucean, Simon Stent, and Roberto
Cipolla. Scenenet: An annotated model generator for indoor
scene understanding. In 2016 IEEE International Conference
on Robotics and Automation (ICRA), pages 5737–5743, 2016.
3

[25] W. K. Hastings. Monte Carlo sampling methods using
Markov chains and their applications. Biometrika, 57(1):97–
109, 1970. eprint: https://academic.oup.com/biomet/article-
pdf/57/1/97/23940249/57-1-97.pdf. 5

[26] Rasmus Laurvig Haugaard and Anders Glent Buch. Surfemb:
Dense and continuous correspondence distributions for object
pose estimation with learnt surface embeddings. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 6749–6758, 2022. 1

[27] Binh-Son Hua, Quang-Hieu Pham, Duc Thanh Nguyen, Minh-
Khoi Tran, Lap-Fai Yu, and Sai-Kit Yeung. Scenenn: A scene
meshes dataset with annotations. In 2016 fourth international
conference on 3D vision (3DV), pages 92–101. Ieee, 2016. 3

[28] Braden Hurl, Krzysztof Czarnecki, and Steven Waslander.
Precise synthetic image and lidar (presil) dataset for au-
tonomous vehicle perception. In 2019 IEEE Intelligent Vehi-
cles Symposium (IV), pages 2522–2529. IEEE, 2019. 1

[29] Adobe Inc. Adobe mixamo. https://www.mixamo.
com, . 3

21791



[30] Adobe Inc. Adobe stock. https://stock.adobe.
com/3d-assets, . 3

[31] Epic Games Inc. Unreal engine marketplace. https://
www.unrealengine.com/marketplace/en-US/
store, . 3

[32] Stephen James, Zicong Ma, David Rovick Arrojo, and An-
drew J Davison. RLBench: The robot learning benchmark &
learning environment. IEEE Robotics and Automation Letters,
5(2):3019–3026, 2020. 1

[33] Elia Kaufmann, Leonard Bauersfeld, Antonio Loquercio,
Matthias Mueller, Vladlen Koltun, and Davide Scaramuzza.
Champion-level drone racing using deep reinforcement learn-
ing. Nature, 620:982–987, 2023. 1

[34] Mukul Khanna, Yongsen Mao, Hanxiao Jiang, Sanjay Haresh,
Brennan Schacklett, Dhruv Batra, Alexander Clegg, Eric
Undersander, Angel X Chang, and Manolis Savva. Habitat
synthetic scenes dataset (hssd-200): An analysis of 3d scene
scale and realism tradeoffs for objectgoal navigation. arXiv
preprint arXiv:2306.11290, 2023. 3

[35] Scott Kirkpatrick. Optimization by simulated annealing:
Quantitative studies. Journal of Statistical Physics, 34(5-6):
975–986, 1984. 5

[36] Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt,
Luca Weihs, Alvaro Herrasti, Daniel Gordon, Yuke Zhu, Ab-
hinav Gupta, and Ali Farhadi. AI2-THOR: An interactive 3D
environment for visual AI. arXiv preprint arXiv:1712.05474,
2017. 1, 3

[37] Kujiale. Kujiale.com. https://www.kujiale.com/.
3

[38] Hei Law and Jia Deng. Label-free synthetic pretraining of
object detectors. arXiv preprint arXiv:2208.04268, 2022. 1

[39] Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen
Koltun, and Marco Hutter. Learning quadrupedal locomotion
over challenging terrain. Science Robotics, 5, 2020. 1

[40] Kurt Leimer, Paul Guerrero, Tomer Weiss, and Przemyslaw
Musialski. LayoutEnhancer: Generating Good Indoor Lay-
outs from Imperfect Data. In SIGGRAPH Asia 2022 Con-
ference Papers, pages 1–8, 2022. arXiv:2202.00185 [cs].
3

[41] Jiankun Li, Peisen Wang, Pengfei Xiong, Tao Cai, Ziwei Yan,
Lei Yang, Jiangyu Liu, Haoqiang Fan, and Shuaicheng Liu.
Practical stereo matching via cascaded recurrent network with
adaptive correlation. In CVPR, 2022. 1

[42] Jiankun Li, Peisen Wang, Pengfei Xiong, Tao Cai, Ziwei
Yan, Lei Yang, Jiangyu Liu, Haoqiang Fan, and Shuaicheng
Liu. Practical stereo matching via cascaded recurrent network
with adaptive correlation. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages
16263–16272, 2022. 1

[43] Wenbin Li, Sajad Saeedi, John McCormac, Ronald Clark,
Dimos Tzoumanikas, Qing Ye, Yuzhong Huang, Rui Tang,
and Stefan Leutenegger. Interiornet: Mega-scale multi-
sensor photo-realistic indoor scenes dataset. arXiv preprint
arXiv:1809.00716, 2018. 3

[44] Zhengqin Li, Ting Yu, Shen Sang, Sarah Wang, Sai Bi, Zexi-
ang Xu, Hong-Xing Yu, Kalyan Sunkavalli, Milovs Havsan,
Ravi Ramamoorthi, and Manmohan Chandraker. Openrooms:

An open framework for photorealistic indoor scene datasets.
2021 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 7186–7195, 2020. 3

[45] Lahav Lipson, Zachary Teed, and Jia Deng. RAFT-Stereo:
Multilevel recurrent field transforms for stereo matching. In
International Conference on 3D Vision (3DV), 2021. 1

[46] Lahav Lipson, Zachary Teed, Ankit Goyal, and Jia Deng. Cou-
pled iterative refinement for 6d multi-object pose estimation.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 6728–6737, 2022. 1

[47] Bingyuan Liu, Jiantao Zhang, Xiaoting Zhang, Wei Zhang,
Chuanhui Yu, and Yuan Zhou. Furnishing your room by
what you see: An end-to-end furniture set retrieval frame-
work with rich annotated benchmark dataset. arXiv preprint
arXiv:1911.09299, 2019. 3

[48] Zeyu Ma, Zachary Teed, and Jia Deng. Multiview stereo with
cascaded epipolar raft. In Computer Vision–ECCV 2022: 17th
European Conference, Tel Aviv, Israel, October 23–27, 2022,
Proceedings, Part XXXI, pages 734–750. Springer, 2022. 1

[49] Manolis Savva*, Abhishek Kadian*, Oleksandr Maksymets*,
Yili Zhao, Erik Wijmans, Bhavana Jain, Julian Straub, Jia
Liu, Vladlen Koltun, Jitendra Malik, Devi Parikh, and Dhruv
Batra. Habitat: A Platform for Embodied AI Research. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), 2019. 3

[50] John McCormac, Ankur Handa, Stefan Leutenegger, and
Andrew J. Davison. Scenenet rgb-d: Can 5m synthetic images
beat generic imagenet pre-training on indoor segmentation?
2017 IEEE International Conference on Computer Vision
(ICCV), pages 2697–2706, 2017. 3

[51] Paul C. Merrell, Eric Schkufza, and Vladlen Koltun.
Computer-generated residential building layouts. ACM SIG-
GRAPH Asia 2010 papers, 2010. 3

[52] META. Project aria. https://www.projectaria.
com/datasets/ase/. 3

[53] Nicholas C. Metropolis, Arianna W. Rosenbluth, Marshall N.
Rosenbluth, and A. H. Teller. Equation of state calculations
by fast computing machines. Journal of Chemical Physics,
21:1087–1092, 1953. 5

[54] NVIDIA. Omniverse. https://developer.nvidia.
com/omniverse. 2

[55] Nobuyuki Otsu. A threshold selection method from gray-
level histograms. IEEE Transactions on Systems, Man, and
Cybernetics, 9(1):62–66, 1979. 8

[56] Wamiq Para, Paul Guerrero, Tom Kelly, Leonidas Guibas, and
Peter Wonka. Generative Layout Modeling using Constraint
Graphs, 2020. arXiv:2011.13417 [cs]. 3

[57] Despoina Paschalidou, Amlan Kar, Maria Shugrina, Karsten
Kreis, Andreas Geiger, and Sanja Fidler. Atiss: Autoregres-
sive transformers for indoor scene synthesis. In Advances in
Neural Information Processing Systems, pages 12013–12026.
Curran Associates, Inc., 2021. 3, 8

[58] Siyuan Qi, Yixin Zhu, Huang Siyuan, Chenfanfu Jiang, and
Song Zhu. Human-centric indoor scene synthesis using
stochastic grammar. 2018. 3

[59] Liangqiong Qu, Jiandong Tian, Shengfeng He, Yandong Tang,
and Rynson W. H. Lau. Deshadownet: A multi-context em-
bedding deep network for shadow removal. In 2017 IEEE

21792



Conference on Computer Vision and Pattern Recognition
(CVPR), pages 2308–2316, 2017. 7, 8

[60] Alexander Raistrick, Lahav Lipson, Zeyu Ma, Lingjie Mei,
Mingzhe Wang, Yiming Zuo, Karhan Kayan, Hongyu Wen,
Beining Han, Yihan Wang, Alejandro Newell, Hei Law,
Ankit Goyal, Kaiyu Yang, and Jia Deng. Infinite photore-
alistic worlds using procedural generation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12630–12641, 2023. 1, 7, 8

[61] Stephan R Richter, Vibhav Vineet, Stefan Roth, and Vladlen
Koltun. Playing for data: Ground truth from computer games.
In ECCV, pages 102–118. Springer, 2016. 1

[62] Daniel Ritchie, Kai Wang, and Yu-an Lin. Fast and Flexible
Indoor Scene Synthesis via Deep Convolutional Generative
Models, 2018. arXiv:1811.12463 [cs]. 3, 8

[63] Mike Roberts, Jason Ramapuram, Anurag Ranjan, Atulit Ku-
mar, Miguel Angel Bautista, Nathan Paczan, Russ Webb, and
Joshua M. Susskind. Hypersim: A photorealistic synthetic
dataset for holistic indoor scene understanding. In Proceed-
ings of the IEEE/CVF International Conference on Computer
Vision (ICCV), pages 10912–10922, 2021. 3, 8

[64] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmenta-
tion. In Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2015: 18th International Conference,
Munich, Germany, October 5-9, 2015, Proceedings, Part III
18, pages 234–241. Springer, 2015. 8

[65] Daniel M. Roy and Yee Whye Teh. The mondrian process. In
Neural Information Processing Systems, 2008. 6

[66] Nathan Silberman and Rob Fergus. Indoor scene segmen-
tation using a structured light sensor. In 2011 IEEE Inter-
national Conference on Computer Vision Workshops (ICCV
Workshops), pages 601–608, 2011. 3

[67] Shuran Song, Samuel P. Lichtenberg, and Jianxiong Xiao.
Sun rgb-d: A rgb-d scene understanding benchmark suite. In
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2015. 3

[68] Sanjana Srivastava, Chengshu Li, Michael Lingelbach,
Roberto Martı́n-Martı́n, Fei Xia, Kent Elliott Vainio, Zheng
Lian, Cem Gokmen, Shyamal Buch, Karen Liu, et al. Behav-
ior: Benchmark for everyday household activities in virtual,
interactive, and ecological environments. pages 477–490,
2022. 1

[69] Julian Straub, Thomas Whelan, Lingni Ma, Yufan Chen, Erik
Wijmans, Simon Green, Jakob J. Engel, Raul Mur-Artal, Carl
Ren, Shobhit Verma, Anton Clarkson, Mingfei Yan, Brian
Budge, Yajie Yan, Xiaqing Pan, June Yon, Yuyang Zou, Kim-
berly Leon, Nigel Carter, Jesus Briales, Tyler Gillingham,
Elias Mueggler, Luis Pesqueira, Manolis Savva, Dhruv Ba-
tra, Hauke M. Strasdat, Renzo De Nardi, Michael Goesele,
Steven Lovegrove, and Richard Newcombe. The Replica
dataset: A digital replica of indoor spaces. arXiv preprint
arXiv:1906.05797, 2019. 3

[70] Andrew Szot, Alex Clegg, Eric Undersander, Erik Wijmans,
Yili Zhao, John Turner, Noah Maestre, Mustafa Mukadam,
Devendra Chaplot, Oleksandr Maksymets, Aaron Gokaslan,
Vladimir Vondrus, Sameer Dharur, Franziska Meier, Wojciech

Galuba, Angel Chang, Zsolt Kira, Vladlen Koltun, Jitendra
Malik, Manolis Savva, and Dhruv Batra. Habitat 2.0: Training
home assistants to rearrange their habitat. In Advances in
Neural Information Processing Systems (NeurIPS), 2021. 1

[71] Zachary Teed and Jia Deng. RAFT: Recurrent all-pairs
field transforms for optical flow. In ECCV, pages 402–419.
Springer, 2020. 1

[72] Zachary Teed and Jia Deng. Droid-slam: Deep visual slam for
monocular, stereo, and rgb-d cameras. In Neural Information
Processing Systems, 2021. 1

[73] Zachary Teed and Jia Deng. DROID-SLAM: Deep visual
SLAM for monocular, stereo, and RGB-D cameras. In
NeurIPS, 2021. 1

[74] Zachary Teed and Jia Deng. Raft-3d: Scene flow using rigid-
motion embeddings. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
8375–8384, 2021.

[75] Zachary Teed, Lahav Lipson, and Jia Deng. Deep patch visual
odometry. arXiv preprint arXiv:2208.04726, 2022. 1

[76] Vajira Thambawita, Pegah Salehi, Sajad Amouei Sheshkal,
Steven A Hicks, Hugo L Hammer, Sravanthi Parasa,
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