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Abstract

Reconstructing outdoor 3D scenes from temporal obser-
vations is a challenge that recent work on neural fields has
offered a new avenue for. However, existing methods that
recover scene properties, such as geometry, appearance, or
radiance, solely from RGB captures often fail when han-
dling poorly-lit or texture-deficient regions. Similarly, re-
covering scenes with scanning LiDAR sensors is also dif-
ficult due to their low angular sampling rate which makes
recovering expansive real-world scenes difficult. Tackling
these gaps, we introduce Gated Fields – a neural scene
reconstruction method that utilizes active gated video se-
quences. To this end, we propose a neural rendering ap-
proach that seamlessly incorporates time-gated capture and
illumination. Our method exploits the intrinsic depth cues
in the gated videos, achieving precise and dense geometry
reconstruction irrespective of ambient illumination condi-
tions. We validate the method across day and night scenar-
ios and find that Gated Fields compares favorably to RGB
and LiDAR reconstruction methods. Our code and datasets
are available here1.

1. Introduction
Large-scale outdoor scene reconstruction is essential for ad-
vancing autonomous robotics, drones, and driver-assistance
systems, serving as the foundation for scene understand-
ing, safe navigation, dataset generation and validation. Ex-
isting works in this domain [68, 76, 96] have typically
adopted a two-step approach. Initially, they infer depth
maps from different poses, utilizing time-of-flight sensors
or RGB captures. Subsequently, these depth estimates are
fused to produce a coherent 3D representation, using either
classical methodologies [25] or learned-based representa-
tions [72]. In contrast, more recent studies [16, 65, 79]
have proposed end-to-end strategies that bypass the esti-
mation of local depth maps as an intermediate representa-
tion. Instead, they directly regress a Truncated Signed Dis-
tance Function (TSDF) [65, 79] or an occupancy volume
[16]. A rapidly growing body of work on neural rendering
[62, 92] offers not only geometrically-accurate scene recon-

*These authors contributed equally to this work.
1https://light.princeton.edu/gatedfields/

Figure 1. From a single video of gated captures (top-row), we
reconstruct an accurate scene representation and render depth pro-
jections (mid-row, right) as accurate as LiDAR scans (mid-row,
left), and we recover 3D geometry and normals (bottom-row).

struction from posed RGB images but also to generate novel
perspectives from unobserved angles. Hinging on implicit
coordinate-based neural representations, RGB-based meth-
ods [7, 8, 55, 100] have been adapted to large open out-
door environments. A recent line of work [37, 71, 86, 93]
includes LiDAR scans for auxiliary depth supervision and
to improve scene reconstruction for urban environments.
However, recovery based on the RGB images exhibit is fun-
damentally limited in the presence of low light [63, 91] or
in the presence of scattering such as fog [49, 69].

A parallel direction of research investigates neural ren-
dering techniques tailored to Time-of-Flight (ToF) sensors
as opposed to the conventional RGB cameras. Existing
methods [41, 84] tackle scene understanding with posed Li-
DAR scans, and have modeled the raw output from a single-
photon LiDAR system [59] or continuous-wave ToF sensor
[4] as additional depth supervision. However, all of these
existing methods struggle with recovering large unbounded
outdoor scenes: while continuous-wave ToF sensors [4] of-
fer signal only in room-sized scenes, methods based on
scanning LiDAR suffer from low angular sampling which
mandates temporal aggregation. Specifically, even today’s
LiDAR sensors boasting 200 scan lines, lag drastically in
resolution compared to current HDR cameras that offer two
orders of magnitude higher vertical pixel counts nearing 10k
and three orders of magnitude higher total resolution.

Addressing these challenges, our work explores scene
reconstruction using active gated imaging. Gated imag-
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ing functions by integrating the transient response from a
scene that has been flash-illuminated by a synchronized
light source [19]. This imaging technique is robust to ad-
verse weather conditions – temporal gating allows us to fil-
ter out backscatter – and provides signal in poorly-lit scenes
[13]. Existing work has exploited this sensing modality to
achieve state-of-the-art depth estimation [89, 90] as well as
object detection [44]. In our approach, we train a neural
field-based representation of the scene, concurrently learn-
ing its geometry, illumination, and material properties. This
is accomplished by integrating the gated imaging formation
model with a neural rendering framework, that jointly learns
the associated gating parameters along with the scene re-
construction. By leveraging the implicit depth cues present
in gated video captures, we are able to reconstruct a de-
tailed 3D geometric model of the scene, as shown in Fig. 1.
Compared to LiDAR-based approaches, our method offers
distinct advantages, as LiDAR systems are inherently con-
strained by their resolution, necessitating additional time-
multiplexed scene captures to aggregate points. This re-
sults in an extended acquisition process for LiDAR-based
methods or, conversely, compromises the geometric detail
of the final estimate. Specifically, for a fixed time acquisi-
tion budget the scene reconstruction from a LiDAR sensor
is less supervised, although offering highly accurate depth
information, the sensor yields data at a volume one order
of magnitude less than that of a camera stereo pair. This
disparity in data quantity means that while the LiDAR pro-
vides precise depth points, it is unable to provide dense and
fine detailed predictions.

To assess our method, we captured a dataset of varied
scenes at day and night conditions, using a vehicle test setup
comprising of LiDAR, RGB and Gated sensors. We com-
pare our method with feed-forward and 3D reconstruction
methods, and assess its superiority in novel depth synthesis
beating the next best method by 21.87% MAE, 3D recon-
struction improving on the baseline by 11% IoU, and per-
forms novel view synthesis with a PSNR of 32.28 dB.

In our work, we make the following contributions:

• We propose a novel neural rendering method and scene
representation that is capable of reconstructing scene ge-
ometry and radiance from active gated camera videos.

• By modeling the gated image formation process and in-
tegrating into differentiable volume rendering, our ap-
proach is able to reconstruct and decompose both passive
and active light transport components conditioned on the
scene parameters in a physically accurate way.

• We validate our method on large outdoor scenes, captured
across different scenarios in both day and night, achieving
a reduction of MAE error in depth precision of 59.8% to
the next best RGB+LiDAR method and 31.7% to the next
best methods using gated images.

2. Related Work

Monocular and Stereo Depth Estimation Depth estima-
tion tasks, from a single image [32, 36, 51, 54], from
stereo image pairs [5, 22, 52, 95], or single/stereo im-
ages with a LiDAR scan [24, 40, 67, 82, 83, 94, 102]
have been at the center of a large body of work. Single
CMOS sensor-based depth estimation from RGB color im-
ages is inherently limited by scale ambiguity. Additional
measurements from LiDAR [9] or ego-vehicle speed [36]
can resolve this ambiguity at the cost of an additional sen-
sor. Similarly, stereo methods rely on an additional cam-
era sensor to resolve ambiguity by triangulating between
two camera views [22]. Training approaches for learned
depth estimation methods using intensity images cover both
unsupervised methods [30, 32, 33, 36, 103], which har-
nesses multi-view geometry consistency, and supervised
techniques [22, 27, 42, 45, 51, 54, 58, 60] relying primarily
on multi-view datasets [45, 51, 60] or time-of-flight cap-
tures [22, 27, 42, 58]. In particular, LiDAR measurements
have been proven as a ground-truth signal for depth super-
vision [2, 22, 27, 42, 54, 58]. Several methods [31, 87] have
mitigated the sparsity and range limitations of scanning Li-
DAR by accumulating scans. However, adverse weather
[14] can make LiDAR ground truth unreliable, and meth-
ods that rely on consistency between camera and LiDAR
[24, 40, 67, 82, 83, 94, 102] suffer from degradations, in-
cluding scan pattern artifacts and temporal distortions.

Time-gated Depth Sensing Time-of-Flight (ToF) sensors
determine depth by emitting light into a scene and calculat-
ing the distance based on the round trip time of the light.
Successful sensing methods can be categorized into three
classes: correlation ToF cameras [38, 46, 48], pulsed ToF
sensors [77], and gated imaging [34, 39]. Correlation ToF
sensors[38, 46, 48] estimate depth by continuously flood-
illuminating the scene and assessing the phase shift between
the emitted and received light. While these sensors can pro-
vide high-resolution depth information, their use is primar-
ily confined to indoor settings due to their susceptibility to
external light interference. Pulsed ToF sensors [77] func-
tion by emitting light pulses toward specific scene points
and measure the total travel time to estimate depth. Emit-
ting collimated light, this approach is robust against ambient
illumination and allows for outdoor depth measurements.
However, its spatial resolution is fundamentally limited ow-
ing to its scanning illumination technique, and its efficacy
can be compromised in adverse weather due to backscatter
[11, 21, 43]. In contrast, gated cameras [12, 34, 39] cap-
ture light from a scene over brief intervals, essentially con-
straining the observable depth to specific range segments.
The inherent gating mechanism of these cameras offers re-
sistance to backscattering, and they allow for the recovery
of detailed depth maps when using a large number of short
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gates [3, 17, 18] Subsequent works have improved gated
depth estimation with few gates by adopting Bayesian ap-
proaches [1, 75] or deep neural networks [35, 89, 90], and
they achieve accurate gated depth estimation for dynamic
outdoor scenes, even under challenging conditions. Re-
cently, Gated Stereo [90] reached state-of-the-art results us-
ing a stereo-gated setup and self-supervision [89].
Neural Scene Reconstruction Recent research has amalga-
mated sets of single-sensor measurements to recover com-
prehensive scene representations. This synthesis has led to
advancements in both novel-view generation [6, 23, 62, 64]
and depth estimation [85] , with neural radiance field meth-
ods [6, 23, 62, 64] emerging as a pivotal approach for repre-
senting scenes as continuous volumetric fields of radiance.
These methods combine this representation with volumet-
ric rendering as a forward model in a test-time optimization
approach. Specific representations that these methods ex-
plore include coordinate-based networks [6, 7, 62, 101], 3D
voxel-grid representation [23, 28, 98], or hybrid approaches
[8, 64, 81]. Subsequent works have extended this represen-
tation to large outdoor scenes [7, 100], and increased the ef-
ficiency at training and test time [8, 23, 64, 98]. Other works
departed from radiance-based representation and explicitly
learned the scene illumination, geometry, and material pro-
prieties [15, 74, 101]. A particular challenge within the field
is reconstructing large urban terrains based on imagery cap-
tured from vehicles [37, 47, 56, 66, 71, 80, 86, 93, 97],
given that a significant portion of the scene is seen from
only a narrow range of viewpoints. This problem is tack-
led by additional supervision cues from sparse LiDAR
[37, 66, 71, 86], pre-estimated depths [26, 37, 73], opti-
cal flow [61, 86] and semantic segmentation [47, 86, 93].
Departing from RGB-based approaches, recent works have
investigated neural reconstruction methods using ToF sen-
sors [41, 59, 84]. Existing methods [41, 84, 99] learn a
neural field from posed LiDAR scans, allowing for the syn-
thesis of realistic LiDAR scans from novel views. Recently,
Malik et al. [59] represent the time-resolved photon count
acquired by a single-photon LiDAR system with a neural
reconstruction method.

3. Gated Imaging Model
In this section, we provide a brief background on gated
imaging as presented in [35] and introduce the pro-
posed gated image formation model. Unlike prior work,
this model incorporates shadow effects and features self-
calibrated parameter learning.

A gated imaging system, illustrated in Fig. 2, utilizes
a pulsed flood-light illumination source p with a synchro-
nized imager that operates with a nanosecond (ns) gated ex-
posure  g that is delayed by  \xi compared to the pulse. This
allows us to capture only photons with round-trip times in-
side the gates, hence specific distance segments in the scene.

Figure 2. Gated Image Formation and Bi-Directional Sampling.
Top-row: Our test vehicle is equipped with a synchronized stereo
camera setup and illuminator that flood-lits the scene with a light
pulse and FoV γ. Using different gating profiles C(z), we cap-
ture three slices with intensity visualised here in red, green and
blue. Illustrated in the middle row, the gating profiles describe
pixel intensity for a point at sensor distance z. The first slice (red)
accounts for close ranges, the green for mid-ranges, and the blue
for far ranges. Bottom-row: we show the ray sampling employed
in our method, based on a bidirectional sampling strategy. We cast
the rays from the illuminator view to explore the occluded areas,
while the rays casted from the camera integrate the reflected scene
response. The shadowed areas are marked in gray.

We formalize this using so-called range intensity profiles
 C_k(2z_c)  given distance  z_c  from the camera, time  t , and a
parameter set  k [35], that is

  C_k(2z_c)=\int \limits _{-\infty }^{\infty } g_k(t-\xi )p_k\left (t\,-\,\cfrac {2z_c}{c}\right )\beta (2z_c)dt, \label {eq:integral_gated_basic} 














 (1)

where c is the speed of light and β(·) models the distance-
dependent decay of the reflected light pulse. The resulting
gated pixel value is

  I_{k}(z_c) = \alpha \iota C_k(2z_c) + \Lambda + \mathcal {D}_k, \label {eq:toteq_gated_basic}       (2)

where  \Lambda represents the passive ambient contribution, α is
the scene reflection, ι the laser illumination, and  \mathcal {D}_k  is an
additive noise term.

This model assumes camera position  \mathbf {o}_c  and the illu-
minator position  \mathbf {o}_i  are collocated. To allow for non-
collocated positions, we express the travel time as  z = z_c + z_i 
, where  z_i  denotes the distance between the illumina-
tor and the point on the surface impacted by the light beam,
represented as  z_i = |\mathbf {x} - \mathbf {o}_i|_2     . Additionally, there may be
areas visible to the camera that remain dark due to potential
occlusions. Modeling shadow effects and attenuation due to
incident angle ω results in the following image formation

  \small I_{k}(z) = \alpha \iota \psi |\mathbf {n} \cdot \omega | C_k(z)+ \Lambda + \mathcal {D}_k. \label {eq:gated_img}         (3)

Here, ψ ∈ [0, 1] serves as a shadow indicator for the pixel,
and ω is the direction of the incident light at that point.
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We extend this model to fit the range intensity pro-
files during optimization, thereby eliminating the need for
their direct measurement. This approach overcomes po-
tential calibration inaccuracies encountered in previous ap-
proaches [89, 90]. We model both the laser pulse pk and
the gate gk as rectangular functions with durations tl,k and
tg,k, respectively. This simplification permits the analytical
computation of the integral in Eq. (1), that is

  \tilde {C}_k \! = \! \begin {cases} \frac {2z}{c}-\xi _k + t_{l,k} & \text {if } \xi _k - t_{l,k} < \frac {2z}{c}< \xi _k \\ t_{l,k} & \text {if } \xi _k < \frac {2z}{c} < \xi _k + t_{g,k} - t_{l,k} \\ \! -\frac {2z}{c} +\! \xi _k \! + t_{g,k} & \text {if } \xi _k + l_{g,k} - t_{l,k} < \! \frac {2z}{c} \! < \xi _k \! + t_{g,k} \\ 0 & \text {otherwise} \end {cases}\
\label {eq:gating_equation_simpl} 



        


 

   
     


        


  


(4)

4. Gated Field
We reconstruct a scene by fitting a neural field representa-
tion to gated videos. We collect videos of three active gated
slices Ik∈{1,2,3} with different gating parameters and one
passive slice IP . We model active illumination by jointly
estimating light and material properties, and separately rep-
resent the ambient light as a radiance field. The proposed re-
construction method relies on both photometric reconstruc-
tion cues and scene priors and is described in the following.

4.1. Neural Gated Fields

We describe the scene proprieties using two neural fields
fGp and fGα, respectively representing the ambient light
scattered in the scene and the reflection of the scene sur-
faces, conditioned on a spatial embedding χ. Moreover, the
laser illumination contribution is represented by a physics-
based model, while shadow effects are simulated through
ray-tracing using the volumetric density field fGd.

Neural Ambient and Reflection Field We represent a
scene as a neural field fG : {x,d, ω}→{σ, α,Λ,n} map-
ping each point in space x viewed from a direction d and
laser direction ω to its volumetric density σ, normal vector
n, scene reflection α and the passive component Λ, that is

  \begin {aligned} \! f_{Gp} &: \{ \mathbf {d}, \chi \} \relbar \joinrel \relbar \joinrel \rightarrow \{ \Lambda \} & \! \text {Ambient Component} \\ \! f_{Gn} &: \{ \mathbf {x}, \chi \} \relbar \joinrel \relbar \joinrel \rightarrow \{ \mathbf {n} \} & \! \text {Surface Normal} \\ \! f_{G\alpha } &: \{ \mathbf {d}, \mathbf {\omega }, \chi \} \rightarrow \, \{ \alpha \} & \! \text {Surface Reflection} \\ \text {with}\quad \! \! \! \! f_{Gd} &: \{ \mathbf {x} \} \: \DOTSB \relbar \joinrel \relbar \joinrel \rightarrow \{ \sigma , \chi \} & \! \text {Vol. Density and Embedding} \end {aligned}       
      
       

         

We condition here normal, ambient and reflectance on a
volumetric embedding via the field fGd : {x} → {σ, χ}
estimating the density σ and embedding χ. This embed-
ding is being shared by the network branches to estimate
the normal with fGn : {x, χ} → {n}, scene reflection
fGα : {d, ω, χ} → {α}, and ambient light component with
fGp : {d, χ} → {Λ}. An overview of the overall Neural

Gated Fields is shown in Fig. 3. We also use a proposal sam-
pler fP as in [7] for efficiency. Both fG and fP are MLPs
(of different size) with multi-resolution hash encoding [64].

Shadow and Illumination Model As the light pulse
emitted by the illuminator is a diverging light beam, we
model it as cone of light with irradiance maximum at the
cross-section center and exponentially decreasing as it di-
verges from the center by the angles γ. As such, we express
the illumination intensity as a 2D higher-order Gaussian G
with mean Ξ, standard deviation Ω and power Θ

  \iota = \eta \mathcal {G}_i (\mathbf {\gamma };\mathbf {\Xi },\mathbf {\Omega }, \mathbf {\Theta }), \label {eq:iota_equation}   (5)

where η is a scaling parameter.
Instead of predicting the shadow indicator ψ(x), we can

directly estimate it using the density field, by computing
the accumulated transmittance along the ray from the pixel
to the point rill(l) = oi + ωl

  \psi (\mathbf {x}) = \exp \left ( - \int _0^{l_{\mathbf {x}}} \sigma (\mathbf {r}_{ill}(l)) \textrm {d}l \right ) \label {eq:psi_equation}  










(6)

The illuminator origin and direction oi, ω are obtained from
the camera as [oi, ω] = R[oc,dc]+T. During training, we
jointly fine-tune the translation and rotation matrices T, R,
as well as oc. We also treat illuminator profile proprieties
as learnable parameters, namely η, Ξ, Ω, Θ and the gating
parameters, i.e. number of accumulated laser pulses mk

before read-out, laser pulse duration tl,k, camera exposure
tg,k, and delay ξk between laser pulse emission and gated
exposure for all three slices k ∈ {0, 1, 2}. In addition, we
optimize a general distance offset d0 for the range intensity
profiles to compensate for internal signal processing delays.

4.2. Gated Field Learning

We learn to acquire a gated capture with camera origin
oc and direction d by casting a ray r(l) = oc + ld for
each pixel into the scene and computing the intensity Ĩk(r)
through volume rendering. Using the gated imaging forma-
tion model from Sec. 3, we define volume rendering as

  \begin {split} \tilde {I}_{k}(\mathbf {r}) = \int _0^{\infty } T(l) \sigma (\mathbf {x}) \int _{-\infty }^{\infty } g_k(t-\xi _k) \beta (l)\\ \cdot \left ( \alpha \iota \psi |\mathbf {n} \cdot \omega | p_k\left (t-\frac {l+l_i}{c}\right ) + \kappa \right ) \textrm {d}t \, \textrm {d}l + \mathcal {D}_k, \end {split} \label {eq:gating_integral_neural} 














 


  







 

(7)

where κ is the ambient level, T (l) = exp(−
∫ l

0
σ(u)du) is

the accumulated transmittance along the ray and li is the
distance of x(l) from the illuminator origin oi. As illus-
trated in Fig. 2, in our volume rendering formulation the
pixel intensity contribution of a point along the ray depends
not only on its accumulated transmittance and volumetric
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Figure 3. Neural Gated Fields. For any point in space x, we learn its volumetric density σ, normal n, reflectance α and ambient lighting Λ
through four neural fields, conditioned on direction d, incident laser light direction ω and spatial embedding χ. The illuminator light ι is
represented by a physics-based model dependent on the displacement angle γ, while the gating imaging process is described by the range
intensity profiles C̃(z) using as input the camera-point-laser distance z, as explained in Sec. 3. With this information, we reconstruct a gated
image Ik through the gated volume rendering formulation introduced in Sec. 4.2. As this process is fully differentiable, we simultaneously
fit neural fields and physical parameters through image reconstruction together with other regularization losses discussed in Sec. 4.3.

density, but also on its distance from the illuminator and
camera origins through C(z), as well as on its relative posi-
tion to the illuminator source via ι and ψ.
We simplify the time-dependent integral using Eq. (4) as

  \begin {aligned} \tilde {I}_{k}(\mathbf {r}) = \int _0^{\infty } T(l) \sigma (\mathbf {x}) \big ( \alpha (\mathbf {x},\mathbf {d}, \mathbf {\omega }) \tilde {C}_k(l+l_i) \psi (\mathbf {x}) \\ \cdot |\mathbf {n} \cdot \omega | \iota ( \gamma ) +\Lambda (\mathbf {x},\mathbf {d}) \big ) \textrm {d}l + \mathcal {D}_k. \label {eq:gating_integral_neural} \end {aligned} 







   

   



(8)

We numerically estimate this spatial integral by numerical
quadrature [62, 88], approximating it with a set of points
Xray. Specifically, for each point xj ∈ Xray, we query the
neural field fG to infer the normal vector nj , scene reflec-
tion αj , volumetric density σj and ambient light component
Λj . The laser illumination intensity ιj is instead computed
following the physics-based model defined in Eq. (5). The
gated intensity Ĩk is then expressed as

  \tilde {I}_{k}(\mathbf {r}) = \sum _{j=0}^{N} w_j \Big ( \underbrace {\alpha _j \Tilde {C}_{j} \psi _j |\mathbf {n}_j \cdot \omega _j | \iota _j}_{\substack {\text {Active} \\ \text {Component}}} +\underbrace {\Lambda _j}_{\substack {\text {Passive} \\ \text {Component}}} \Big ) +\mathcal {D}_k, \label {eq:gating_integral_neural} 









     












(9)

  w_j = \exp (-\sum _{k=1}^{j-1}\sigma _k \delta _k) (1-\exp (-\sigma _j\delta _j) ). \label {eq:weights_appr}  



  (10)

The shadow indicator ψj from Eq. (6) is similarly approxi-
mated by sampling on rill = oi + ωj l a set of points Xill

bounded between oi and xj

  \psi _j = \exp (-\sum _{k}^{\mathbf {X}_{ill}}\sigma _k \delta _k).  



 (11)

For the passive slice, the active component is null, further
simplifying to

  \tilde {I}_{P}(\mathbf {r}) = \sum _{j=0}^{N} w_j \Lambda _j +\mathcal {D}_P. \label {eq:gating_integral_neural_passive}  




   (12)

Both Xray and Xill are sampled using a proposal network
[7] fP that, analogously to fGd, predicts point-wise densi-
ties converted with Eq. (10) to proposal weights ŵ for sam-
pling with piece-wise-constant probabilities.

4.3. Training Supervision
We supervise the predicted passive and active gated frames
applying a photometric loss Lc, regularize the volumetric
density with a depth loss Ld and by supervising the shadow
estimate with Ls. We regularize normal and reflectance es-
timates through Lnc and Lα, respectively.
Photometric Loss We supervise with ground truth captures
for active and passive gated slice reconstruction as
  \mathcal {L}_{c} = \sum _{k,r}\Vert \tilde {I}_k(\mathbf {r}) - I_k(\mathbf {r}) \Vert _2 + \sum _r \Vert \tilde {I}_P(\mathbf {r}) - I_P(\mathbf {r}) \Vert _2 \label {eq:gating_integral_neural} 




 



    (13)

Volume Density Regularization As additional training su-
pervision, we use the depth estimate D̂(r) of a pretrained
stereo depth estimation algorithm [90] as pseudo ground-
truth to regularize the ray termination distribution [26]

  \mathcal {L}_{d} = \sum _{\mathbf {r}} \sum _j \text {log}w_j \exp \left ( - \frac {(l_j - \hat {D}(\mathbf {r}))^2}{2s^2} \right ) \delta _i \label {eq:depth_loss} 









  




 (14)

We regularize the density field by partially supervising
the shadow indicator ψ. Each pixel whose active intensity
IkA = Ik − IP in any of the three gated slices is above a
certain threshold ϵi is considered as visible from the illumi-
nator. We hence supervise the expected shadow value for
such rays rv ∈ {r|∀k ∈ {1, 2, 3} : IkA(r) > ϵi} as

  \mathcal {L}_{s} = \sum _{\mathbf {r}_v} \Vert 1- \int T(l) \sigma (\mathbf {x}) \psi (\mathbf {x}) dl \Vert _2 \label {eq:shadow_loss} 





  (15)

Normals Consistency Following [88], for each sampled
point x we enforce a consistency between the predicted nor-
mal n and the density gradient n̂(x) = − ∇x

||∇x|| , and we
penalize normals which are back-facing the camera as
  \! \! \! \mathcal {L}_{nc}\! =\! \sum _{\mathbf {x}}\! w(\mathbf {x}) \! \left ( \Vert \mathbf {n}(\mathbf {x}) \! - \! \hat {\mathbf {n}}(\mathbf {x}) \Vert _2 \! + \! \max (0,\hat {\mathbf {n}}(\mathbf {x})\! \cdot \! \mathbf {d})^2 \right ) \label {eq:normal_consistency} 









(16)

Reflectance Regularization We enforce the predicted
scene reflection α to be spatially consistent within ϵx, i.e.

  \mathcal {L}_{\alpha } = \sum _{\mathbf {x}} w(\mathbf {x}) \left ( \Vert \alpha (\mathbf {x},\mathbf {d}) - \alpha (\mathbf {x}+\mathbf {\epsilon _x},\mathbf {d}+\mathbf {\epsilon _d}) \Vert _2 \right ) . \label {eq:reflectance_reg_loss} 



      (17)
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Here the ω dependency of α is omitted here for brevity. We
also include an angular noise ϵd that we set high at the be-
ginning of the training and then decrease it exponentially.
By forcing the reflectance to behave as fully diffuse at the
beginning of the training, we disincentive it to bake in the
effects from lighting or shadowing, hence improving the
disjoint learning of the scene components.
Total Training Loss Combining the different losses we ob-
tain the following loss formulation:

  \mathcal {L} = \lambda _{1} \mathcal {L}_{c} +\lambda _2 \mathcal {L}_d +\lambda _3 \mathcal {L}_s +\lambda _4 \mathcal {L}_{nc} + \lambda _5 \mathcal {L}_{\alpha }, \label {eq:tot_loss}           (18)

see λ1,...,5 hyperparameters in the Supplementary Material.

5. Implementation Details
We train for 35,000 steps and a batch size of 4096 rays. As
optimizer we use ADAMW [57] with β1 = 0.9, β2 =
0.999, learning rate 10−2 for fP and fG, 10−4 for the cam-
era poses optimization, 10−4 for the laser profile and gated
parameters. We train on two NVIDIA V100 GPUs, for ap-
proximately 3 hours. The proposal network fP is comprised
of two MLPs and trained following [7]. Additional architec-
ture details, training procedures, and hyper-parameters are
found in the Supplementary Material.

6. Dataset
To conduct this work, we have collected a diverse set of
10 static sequences, recorded in both day and night condi-
tions across North America. To this goal, we equipped a
test vehicle with a NIR gated stereo camera setup (Bright-
Way Vision), an automotive RGB stereo camera (OnSemi
AR0230), a LiDAR sensor (Velodyne VLS128) and a
GNSS with IMU (Xsens MTi-7), as shown in Fig. 4. Each
gated camera has a resolution of 1280x720 pixels, 10 bit
depth and runs at 120 Hz, split up to collect the three ac-
tive and one passive slice. The illuminator source consists
of two vertical-cavity surface-emitting laser (VCSEL) mod-
ules, which illuminate the scene with a laser pulse with
duration of 240-370 ns and a wavelength of 808 nm. The
RGB cameras provide 12 bit HDR images with resolution
of 1920x1080 pixels and 30 Hz frame-rate. The LiDAR has
a vertical resolution of 128 lines and 10 Hz framerate, while
the GNSS sensor runs at 4 Hz. Example captures from the
dataset are being visualized in Fig. 4. In total, we collect
2650 samples, captured in both day (1223 samples) and
night (1427 samples). We divide it in training, validation
and test splits with a 50-25-25 split.

As ground-truth, we construct a large-scale ground-truth
pointcloud by aggregating LiDAR scans with LIO-SAM
[78] and removing noisy points. Additional details on the
accumulation are provided in the Supplementary Material.

7. Assessment
In this section, we validate the proposed method quantita-
tively and qualitatively. Specifically, we investigate scene

Figure 4. Top: Example captures from our collected dataset across
different urban and suburban areas in North America. From left to
right: RGB image, active gated slices (with red for slice 1, green
for slice 2 and blue for slice 3), passive slice, projected LiDAR
scan, accumulated LiDAR. Bottom: Sensors setup with LiDAR,
stereo Gated camera, stereo RGB camera, IMU and GNSS.

reconstruction at both day and night, using novel depth and
view synthesis for 2D evaluation, and surface reconstruc-
tion for the 3D evaluation. To this end, we compare our ap-
proach to state-of-the-art feed-forward depth estimation al-
gorithms and neural scene reconstruction methods. We also
conduct ablation experiments to validate our design choices.

Depth Reconstruction We assess the quality of depth
synthesis of Gated Fields for camera poses unseen during
training. We use as ground truth the accumulated and fil-
tered LiDAR pointcloud. Unlike previous works relying
on single LiDAR scans for evaluation [35, 89, 90], we use
as ground truth an accumulated LiDAR pointcloud as de-
scribed in Sec. 6. This allows us to evaluate the depth re-
construction up to 160 m accurately and without bias. We
follow previous works [89, 90] and use as depth evalua-
tion metrics RMSE, MAE, ARD, σi < 1.25i, i ∈ {1, 2, 3}.
We compare our method against 9 feed-forward depth esti-
mation methods, namely SimIPU [53], AdaBins [10], DPT
[70], DepthFormer [54] and CREStereo [50] for monocu-
lar and stereo RGB methods, Gated2Gated [89] and Gat-
edStereo [90] for monocular and stereo gated estimation
methods. We also compare our method against depths ren-
dered with other neural reconstruction algorithms, using
RGB images [7],[63],[29],[26] LiDAR [84], RGB+LiDAR
[86], [37], and a varying-appearance method [29] for gated
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Figure 5. Qualitative comparison of the proposed Gated Fields and state-of-the-art depth estimation approaches, including LiDAR-
NeRF [84], StreetSurf [37], NLSPN [67], and Gated Stereo [90]. Compared to baseline methods, we are able to reconstruct fine geometry
details like branches or poles, also for far distances. Unlike RGB methods, Gated Fields is unaffected by poor ambient lighting, and unlike
LiDAR-based methods it is able to reconstruct sharp object discontinuities. The active gated slices are visualized in red for slice 1, green
for slice 2 and blue for slice 3.

captures. Results for day and night sequences are pre-
sented in Tab. 1. We outperform the next best neural field
method by 21.87% MAE and 30.35% in RMSE. For night
sequences the performance difference sharpens, with Gated
Fields outperforming the best RGB-based method [50] by
3.14 m MAE. This performance decline is to be attributed to
the limited pixel information present in RGB captures taken
at night time, making impossible to learn a meaningful 3D
representation of the scene, as shown qualitatively in Fig. 5.
LiDAR-based methods are unaffected by the change in il-
lumination, but suffer from the limited sensor resolution.
On the other hand, gated cameras retrieve information-rich
captures both day and night, which Gated Fields can explic-
itly leverage during training. We confirm that employing
state-of-the-art neural field methods on gated captures does
not yield accurate results, as they are not able to model the
gated imaging formation and can only fit the ambient light
component.

3D Reconstruction We evaluate the 3D scene reconstruc-
tion capabilities of Gated Fields using the accumulated Li-
DAR pointcloud as ground truth. We follow [20] and extract

for both the 3D ground truth pointcloud and different neu-
ral field-based methods a voxelized occupancy grid of the
scene, and compute intersection over union (IoU), Preci-
sion and Recall between ground truth voxels and estimated
ones. Quantitative results are shown in Tab. 3. Our method
outperforms RGB baselines [7, 29] by an average of 15%
IoU. RGB baselines using additional LiDAR sensor [37, 86]
data partially improve the results, but such methods are still
unable to reconstruct finer surfaces details and struggle at
night. On the other hand, Gated Fields is able to recover
finer geometries using gated, illumination and depth cues,
and the quality does not degrade with diminishing ambient
light, as shown in Fig. 5. See details on evaluation and fur-
ther qualitative results in the Supplementary Material.

Novel View Synthesis For novel view synthesis, we com-
pare our method with Mip-NeRF360 [7], a state-of-the-art
neural radiance field-based method, and K-Planes [29], to
implicitly model the time-varying appearance of the static
scene. Mip-NeRF [7] struggles to reconstruct novel views
due to the inherent difficulty of modeling the gating imag-
ing effects, resulting in a PSNR of 17.16dB. By learning
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METHOD
Modality RMSE ARD MAE δ1 δ2 δ3

[m] [m] [%] [%] [%]

Test Data – Night (Evaluated on Accumulated LiDAR Ground-Truth Points)

2D
D

E
P

T
H

C
O

M
PA

R
IS

O
N

GATED2GATED [89] Gated 13.33 0.28 8.57 61.78 90.30 94.90
GATEDSTEREO [90] Stereo-Gated 10.10 0.20 5.97 82.86 93.35 96.52
SIMIPU [53] RGB 19.33 0.44 14.21 40.67 77.99 89.80
ADABINS [10] RGB 21.14 0.38 14.28 51.72 80.00 90.64
DPT [70] RGB 14.17 0.28 9.90 62.82 88.32 94.42
DEPTHFORMER [54] RGB 14.32 0.29 10.08 61.19 87.72 94.57
CRESTEREO [50] Stereo-RGB 14.22 0.13 7.27 82.21 90.10 94.32
NLSPN [67] RGB+LiDAR 11.12 0.18 6.48 77.15 90.81 96.00
MIPNERF360 [7] RGB 23.80 0.51 16.43 41.60 61.75 76.16
K-PLANES [29] RGB 19.70 0.41 13.66 44.39 66.20 81.46
RAWNERF [63] RGB 27.46 0.64 19.75 34.32 54.33 69.41
DEPTH-NERF [26] RGB 15.23 0.26 10.04 61.67 86.23 93.87
SUDS [86] RGB+LiDAR 11.07 0.17 6.17 79.49 88.41 95.31
STREETSURF [37] RGB+LiDAR 10.86 0.15 5.90 82.16 93.57 96.96
LIDAR-NERF [50] LiDAR 10.21 0.12 4.72 87.71 95.05 97.78
GATED FIELDS [50] Gated 7.92 0.12 4.13 90.61 95.76 97.90

Test Data – Day (Evaluated on Accumulated LiDAR Ground-Truth Points)

2D
D

E
P

T
H

C
O

M
PA

R
IS

O
N

GATED2GATED [89] Gated 9.26 0.22 6.69 58.46 93.70 97.38
GATEDSTEREO [90] Stereo-Gated 6.32 0.09 3.30 92.86 97.31 98.53
SIMIPU [53] RGB 13.54 0.31 10.08 52.90 86.49 95.65
ADABINS [10] RGB 12.74 0.25 8.39 69.84 89.13 95.52
DPT [70] RGB 10.34 0.21 7.08 77.61 94.29 97.24
DEPTHFORMER [54] RGB 9.06 0.19 6.09 81.19 94.14 97.42
CRESTEREO [50] Stereo-RGB 7.35 0.09 3.45 94.48 97.23 98.50
NLSPN [67] RGB+LiDAR 10.34 0.17 5.97 77.83 91.16 96.11
MIPNERF360 [7] RGB 16.91 0.31 9.53 70.89 84.43 90.92
K-PLANES [29] RGB 12.37 0.24 8.55 63.16 79.68 91.70
RAWNERF [63] RGB 15.10 0.23 9.38 65.90 84.90 92.43
DEPTH-NERF [26] RGB 10.34 0.17 6.07 78.97 90.75 96.53
SUDS [86] RGB+LiDAR 9.11 0.17 5.84 80.96 95.08 98.33
STREETSURF [37] RGB+LiDAR 9.60 0.13 5.35 83.94 95.32 98.56
LIDAR-NERF [50] LiDAR 8.13 0.10 3.86 88.99 95.49 98.06
GATED FIELDS [50] Gated 6.15 0.09 2.91 93.88 97.32 98.75

Table 1. Comparison of our proposed approach and state-of-the-
art approaches on depth synthesis. Best results in each category
are in bold and second best are underlined.

Im. Formation Depth Normal Active Shadow RMSE MAE PSNR SSIM
Model Sup. Illum. [m] [m] [dB]

Test Data – Night

A
B

L
A

T
IO

N End2End [62] ✗ ✗ ✗ ✗ 27.34 19.95 17.43 0.633
Gated ✗ ✗ ✗ ✗ 9.34 8.35 23.47 0.889
Gated ✓ ✗ ✗ ✗ 6.72 5.43 25.84 0.908
Gated ✓ ✓ ✓ ✗ 3.78 2.82 30.66 0.946
Gated ✓ ✓ ✓ ✓ 3.39 2.51 30.91 0.95

Test Data – Day

A
B

L
A

T
IO

N End2End [62] ✗ ✗ ✗ ✗ 30.03 19.22 16.77 0.66
Gated ✗ ✗ ✗ ✗ 11.64 6.34 26.77 0.915
Gated ✓ ✗ ✗ ✗ 9.20 4.22 26.88 0.922
Gated ✓ ✓ ✓ ✗ 9.45 4.31 32.15 0.946
Gated ✓ ✓ ✓ ✓ 8.88 4.12 32.28 0.948

Table 2. Ablation studies of the Gated Fields contributions, on a
subset of the test dataset. We investigate different image formation
models, neural fields components and supervision losses.

a time-varying appearance, K-Planes improves the quality
reaching 27.42dB PSNR for day but only 19.35dB for night,
as the model fails to learn an accurate scene geometry rep-
resentation without ambient light information. Gated Fields
outperforms these baselines in both day and night, reaching
a PSNR of 32.28dB.

Ablation Experiments To assess the role and contribu-
tion of the different components of our method, we conduct

Method Modality IoU Precision Recall
[%] [%] [%]

3D
R

E
C

. MIPNERF360 [7] RGB 6.32 7.34 31.21
STREETSURF [37] RGB+LiDAR 5.41 6.31 27.35

SUDS [86] RGB+LiDAR 8.96 9.88 49.09
LIDAR-NERF [84] LiDAR 20.03 32.38 34.44
Gated Fields (ours) Gated 22.25 25.01 66.51

Table 3. Comparison of Gated Fields and state-of-the-art scene
reconstruction methods. We evaluate over 3D occupancy recon-
struction, using as ground truth the voxelized accumulated LiDAR
pointcloud. Best results in each category are in bold and second
best are underlined.

an ablation study in Tab. 2. In particular, we consider as
starting point a single neural field directly inferring one in-
tensity value for each of the four slices (3 active + 1 pas-
sive), and obtain an average MAE of 19.58 m. By sepa-
rately predicting ambient light and reflectance, and recon-
structing the gated image as in Eq. (2), we significantly im-
prove the MAE to 7.34 m . However, this approach still per-
forms poorly on flat-color areas during the day and in un-
illuminated areas during the night due to lack of any depth
cue. By adding the depth supervision, we are able to super-
vise also such areas and the PSNR improves by 4.83dB. By
adding the angular-dependent attenuation and regularizing
the reflectance in Eq. (17), the model is able to disentangle
the material proprieties from other spurious effects. Finally,
by explicitly modeling the shadow, casted by the illumina-
tor, we improve final depth reconstruction to 3.32 m MAE.

8. Conclusion
We introduce Gated Fields, a neural rendering method ca-
pable of reconstructing scene geometry from video cap-
tures of active time-gated cameras. The method hinges on
a differentiable gated image formation as part of the ren-
dering formulation, and it jointly learns geometry, ambi-
ent light and surface proprieties, represented implicitly as
neural field components, alongside illumination and gating
parameters, represented with physics-based models. Exten-
sive experiments on real-world large-scale scenes validate
that our method is able to precisely reconstruct a 3D scene
both in day and night-time conditions. Our approach out-
performs existing RGB and LiDAR methods by 21.87% on
MAE, as well as baseline methods using gated captures by
31.67%. In the future, we hope to extend the proposed ap-
proach by “closing the loop” and providing dynamic feed-
back to the gated acquisition, allowing for adaptive gated
scene reconstructions.
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