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Where can I put cushions?

(b)

Full of cushions

Cushion would look better 

on the couch.

(a)

Full of cushions

Cushion should go on 

armchair for comfort.

Embodied Semantic Placement

(c)

right side of the gray sofa 

leaning against the armrest 

also presents a tidy option 

for a cushion.

in the center of the gray 

sofa's seat, which is 

currently unoccupied.

Figure 1. Semantic Placement. Consider asking an agent to place cushions in a living room. In (a), the couch on the right is already full

with cushions, and a natural human preference would be to place the cushion against the backrest of the armchair. In (b), a natural placement

preference would be center of the couch. We propose the problem of Semantic Placement (SP) – given an image and a name of an object, a

vision system must predict a semantic mask indicating a valid placement for the object in the image. For both (a) and (b) GPT4V gives

meaningful natural language responses but, as we show, struggles to localize regions precisely in pixel space. (c) Our SP predictions enable

a Stretch robot [1] from Hello Robot to perform Embodied Semantic Placement (eSP) task within a photorealistic simulated environment.

Abstract

Computer vision tasks typically involve describing what is

present in an image (e.g. classification, detection, segmenta-

tion, and captioning). We study a visual common sense task

that requires understanding ‘what is not present’. Specif-

ically, given an image (e.g. of a living room) and a name

of an object ("cushion"), a vision system is asked to predict

semantically-meaningful regions (masks or bounding boxes)

in the image where that object could be placed or is likely

be placed by humans (e.g. on the sofa). We call this task: Se-

mantic Placement (SP) and believe that such common-sense

visual understanding is critical for assitive robots (tidying a

house), AR devices (automatically rendering an object in the

user’s space), and visually-grounded chatbots with common

sense. Studying the invisible is hard. Datasets for image

description are typically constructed by curating relevant

images (e.g. via image search with object names) and asking

humans to annotate the contents of the image; neither of

those two steps are straightforward for objects not present in

∗Work done as part of the internship at PRIOR @ AI2
†Equal advising

the image. We overcome this challenge by operating in the

opposite direction: we start with an image of an object in

context, which is easy to find online, and then remove that ob-

ject from the image via inpainting. This automated pipeline

converts unstructured web data into a dataset comprising

pairs of images with/without the object. With this proposed

data generation pipeline, we collect a novel dataset, contain-

ing ∼1.3M images across 9 object categories. We then train

a SP prediction model, called CLIP-UNet, on our dataset.

The CLIP-UNet outperforms existing VLMs and baselines

that combine semantic priors with object detectors, gener-

alizes well to real-world and simulated images and exhibits

semantics-aware reasoning for object placement. In our

user studies, we find that the SP masks predicted by CLIP-

UNet are favored 43.7% and 31.3% times when comparing

against the 4 SP baselines on real and simulated images. In

addition, leveraging SP mask predictions from CLIP-UNet

enables downstream applications like building tidying robots

in indoor environments.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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1. Introduction

When tasked with putting away a cushion in a home, humans

quickly bring to bear extensive priors about how cushions

are used and where they are most frequently placed. For

instance, cushions are generally put on or near seating areas

(e.g., on a couch). However, these priors themselves are not

enough: consider an example living room shown in Fig. 1(a).

As shown in the figure, the couch already has cushions on

both armrests so, to avoid redundancy, one might place the

cushion against the back of the armchair for the comfort

of anyone who might later sit upon it. On the other hand,

given the same task with the image from Fig. 1(b), the an-

swer might change to placing the cushion in center of the

couch to give the room a more aesthetically pleasant feel

as the armchair already has a cushion on it. Notice that the

answer from humans about object placement changes based

on changes in the visual context. We call this task Semantic

Placement (SP), and believe that such common-sense visual

understanding is critical for assistive robots (tidying a house),

AR devices (automatically rendering an object in the user’s

space), and visually-grounded chatbots with common sense.

How can we build vision systems with SP prediction

abilities? Modern computer vision tasks have focused on

classifying, localizing, and describing what is visible in an

image (e.g. classification, object detection, segmentation,

and captioning). Most visual representation learning

approaches, e.g. CLIP [2–6], use losses that encourage the

learned representations to capture what is shown in the

image but are not designed to be used to answer queries

about the invisible in the image zero-shot; the visual context

generated by these models is, however, extremely valueable

and we use CLIP as the visual backbone in this work. Recent

advances in vision-and-language (VLM) foundation models

has made some progress in this direction. We can ask

VLMs questions that require reasoning about the invisible,

conditioned on visual context to infer the answers to a ques-

tion. However, existing VLMs are still in early stages and

struggle to answer queries that require precise localization

in pixel space as shown in our experiments (see Sec. 5).

In this paper, we study the problem of Semantic Placement

(SP) of objects in images. In particular, given an image

(e.g. showing a living room) and name of an object ("cush-

ion"), a vision system is tasked to predict a pixel-level mask

highlighting semantically-meaningful regions (referred as

SP masks) in an image where that object could be placed or

is likely to be placed by humans (e.g. a couch). Learning to

predict SP masks is hard, since the target object is typically

not visible in the given image. Datasets for image description

are typically constructed by curating relevant images (e.g.

via image search with object names) and asking humans to

annotate the contents of the image; neither of those two steps

are straightforward for objects not present in the image.

To overcome this challenge, we propose to operate in the

opposite direction – specifically, we start with an image of an

object in context (which is easy to find online) and remove

that object from the image via inpainting [7, 8]. This auto-

mated pipline converts unstructured web data into a a dataset

comprising pairs of images with/without the object at scale

without expensive human annotation. However, inpainting

models are not perfect. We find that SP prediction models,

when trained on inpainted images, tend to latch onto inpaint-

ing artifacts. This leads to high performance on inpainted

images, but lower performance on real images. To remedy

this, we propose a novel data augmentation method, com-

bining results from multiple inpainting models, diffusion

based augmentations, and common data augmentations (re-

fer Sec. 3.1 section for more details). Using this automated

pipeline, we generate a large SP dataset using real world

images from LAION [9], including ∼1.3 million images

across 9 object categories.

We propose a simple method for SP mask prediction

by using a frozen CLIP [2] backbone with a language

conditioned UNet [10] decoder inspired by LingUNet [11]

and CLIPort [12], in Sec. 3.3. First, we pretrain the

CLIP-UNet model on images from our SP dataset and then

finetune on a small high-quality image dataset of ∼80k
synthetic images collected from synthetic HSSD [13] scenes,

where inpainting is unnecessary as objects can be removed

programmatically from the underlying 3D scenes. We find

finetuning on this small but high-quality dataset with ground

truth object placement annotations improves performance of

our CLIP-UNet baseline and enables better generalization

to both real and synthetic images.

For evaluation we use 400 real world images from

LAION [9] and ∼18k from HSSD [13] scenes. We find that

CLIP-UNet outperforms strong baselines leveraging VLMs,

including LLaVa-1.5 [14] and GPT4V [15], and methods

using open-vocabulary object detection and segmentation

models with placement priors coming from LLMs. In user

studies, we find that the SP mask predicted by our method

are favored 43.7% times against the baselines on real images

and by 31.3% times on images from HSSD scenes.

SP mask predictions hold potential for a variety of down-

stream applications, including assistive agents, real-time AR

rendering, and visually-grounded chatbots. In this paper, we

demonstrate that SP masks predicted by CLIP-UNet enable

embodied agents to perform Embodied Semantic Placement

(eSP) task in a photorealistic, physics-enabled simulated

environment, Habitat [16–18] using Hello Robot’s Stretch

robot [1]. In eSP, an agent is spawned at a random location in

an indoor environment and is tasked with placing an instance

of a target object category at a semantically meaningful lo-

cation with access to robot observations (RGB, Depth, and

pose) and SP masks from a SP model. Using SP masks

predicted by our CLIP-UNet model, agent achieves a 12.5%
success rate on 8 categories when evaluated in 10 unique
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indoor scenes over 106 episodes. While the absolute success

is indeed low, we note that majority of failures ∼80% for

downstream eSP task are due to imperfect control policy

for object placement and fine-grained navigation, which is

orthogonal to the focus of this work. We show a qualitative

example of a placement prediction by our agent for object

category ‘cushion’ while performing the task in Fig. 1 (c).

In summary, our contributions include: (1) a novel task

called Semantic Placement (SP), (2) an automated data cu-

ration pipeline leveraging inpainting and object detection

models to supervise an end-to-end SP prediction model us-

ing real-world data, (3) a novel data augmentation method

to alleviate overfitting to inpainting artifacts, and (4) our

approach generates SP predictions which generalize well to

the real-world and enable downstream robot execution.

2. Related Work

Object Affordance Prediction from Common-sense Rea-

soning. Object affordance [22–24] is defined as a func-

tion that can map images of object to potential interactions

that are possible, like holdable, pushable, liftable, placeable,

etc. Learning such a function requires learning characteris-

tics of a object based on visual appearance, semantics, or

physical characteristics. In contrast, we are interested in

Semantic Placement task which requires reasoning about

placement of an object that is not present in the image using

the context and semantics of what is present in the image.

Prior works [25–27] have leveraged LLMs to extract ob-

ject affordances in the form of states like whether a object

is misplaced or is it a receptacle i.e. where you can place

another objects, to build agents to tidy up a indoor environ-

ment. LLMs [28–33] and VLMs [34–41] demonstrate strong

common-sense reasoning about object affordances based on

visual appearance or semantics, however they seldom output

SP mask/heatmap predictions with sufficient granularity that

is required for downstream tasks of precise placement .

Learning Visual Affordances for Object Placement. Also

related to SP is prior work on object affordances [22–24] for

tasks such as tabletop manipulation [12, 42–44], articulated

manipulation [45–49], dexterous grasping [50], and inter-

actions between embodied agents and environments [51].

These works focus on learning affordances for manipulation

about where to interact and how to interact with the object

by leveraging labelled simulation data, exocentric images,

and limited real world robot data. In contrast, our work fo-

cuses on predicting plausible locations for placing objects

which are not present in an image based on visual context

by leveraging automatically generated large scale labelled

data. The problem we explore is more closely aligned with

the concept of learning object-object affordances [52–54],

which includes the challenge of placing objects within/on

the receptacles. Perhaps the most similar to our work is

O2O [54] which predicts 3D affordances maps using point

cloud inputs. The O2O model was trained with data collected

through simulated interactions, resulting in more geometry-

aware affordance predictions, with limited generalization

ability. In comparison, we propose learning a SP model

using both images in the wild [9] and a high-quality simula-

tion environment [13] which leads to better generalization

ability. Similar to our method, recent approaches also pro-

pose learning visual affordances from natural images [55],

human-captured videos [56], or images paired with synthe-

sized interactions [57, 58]. However, these works focus on

learning affordances for what is present in the image, in con-

trast, we study learning placement localization for objects

that are not present.

3. Approach

We introduce our dataset generation pipeline in Sec. 3.1,

synthetic finetuning dataset in Sec. 3.2 and describe our SP

model and learning procedure in Sec. 3.3.

3.1. Dataset Generation

To collect paired data for training (referred as LAION-SP)

the SP model, we propose leveraging recent advances in

open-vocabulary object detectors, segmentation models, and

image inpainting models. With these powerful off-the-shelf

“foundation” models, we can generate paired training data at

scale using images in the wild. Fig. 2 shows our automated

data generation pipeline, including five steps:

(A) Query Image. First, we gather 1M indoor images from

the LAION dataset by using text queries such as ‘living

room’, ‘bedroom’, and ‘kitchen’ to filter out irrelevant im-

ages i.e. images not from houses.

(B) Find Objects of Interest. Next, for each image we use

Detic [19], an open vocabulary object detector, to detect ob-

jects of interest for our task. We use 9 target object categories

in this paper, specifically Plotted Plant, Lamp, Cushion, Vase,

Trash Can, Toaster, Table Lamp, Alarm Clock, and Laptop.

For each detected instance, we generate a segmentation mask

using SAM [20]. We use SAM masks instead of Detic masks

as they are fine-grained and result in better inpainting perfor-

mance. For information on how we prompt SAM and Detic

to generate segmentation masks, see Appendix A.

(C) Inpaint Objects of Interest. Using the detection results,

we pass the segmentation masks of instances of a sampled

object category and original image to one of the two inpaint-

ing models (each sampled with 50% probability), LAMA [7]

or Stable Diffusion [59], to generate an inpainted sample.

Specifically, we randomly sample a few instances of a target

object category and 1-4 distractor objects of different cate-

gory for inpainting. We add distractor instances to make the

task of SP prediction more challenging as the model cannot

simply predict the, possibly only, free space. This also helps

prevent the model from overfitting to inpainting artifacts.

(D) Filter. Inpainting models are imperfect and we need
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LAION

Text Queries 

living room 
kitchen
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& 
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Stable Diffusion

SDEdit

Discard

(A) Query Images

Sample a pair of objects

distractor objects

(B) Find Objects of Interest 

Inpainted Image

(C) Inpaint Objects of Interest

Detic 
Filter

(D) Filter (E) Enhance Image Quality 
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Fail

2x Augmented Images
5% noise

Prompt: 4k, HD
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Diffusion

LAMA

1-p

p

Figure 2. Automatic Training Dataset Generation Pipeline Utilizing Foundation Models and Web Data. Our pipeline consists of five

steps. (A) Query Images: we collect raw images from LAION [9] using sample text queries such as ‘living room’ shown in the leftmost

panel. (B) Find Objects of Interest: we employ Detic [19] and SAM [20] to identify the segmentation masks of objects of interest. (C)Inpaint

Objects of Interest: we use inpainting models to remove the objects of interest from the images. (D) Filter: we discard images where

impainting failed by attempting to detect inpainted objects. (E) Enhance Image Quality: we leverage Stable Diffusion img2img [8] and

SDEdit [21] to enhance the quality of the generated images, which is crucial for training our Semantic Placement model.

strict validation mechanisms to check if inpainting was suc-

cessful or not. To do so, we use 2D instance matching

between original and inpainted images using the detections

from Detic [19]. Specifically, if we find an object instance

post-inpainting with IOU greater than 90% with an instance

from original image, the inpainting model failed and we dis-

card the generated result. All samples that pass the validation

check are kept as part of training dataset.

(E) Enhance Image Quality. In our initial experiments, we

found that training the SP model directly using the dataset

generated by the Filter step leads to overfitting.1 The model

quickly latches onto the artifacts introduced from the in-

painting models. To mitigate this issue, we generate two

augmented versions of each inpainted image with the help

of diffusion models. To create the first augmented variant,

we add 5% Gaussian noise to the image and use SDEdit [21]

to denoise the image similar to Affordance Diffusion [57].

To create the second variant, we feed the inpainted image

to Stable Diffusion img2img [8] model and prompt it with

‘high resolution, 4k’ which, in practice, results in small ob-

ject texture changes. We find this acts as regularization and

helps avoid overfitting on inpainting artifacts during training.

For each image processed in this way, we are left with two

augmented and inpainted images, both paired with SP an-

notations for an object category corresponding to the SAM

masks generated at the beginning of the processing to form

training samples. In total, we generate 1,329,186 images

with an object category and its corresponding SAM mask

from 48,728 unique images queried from the LAION dataset.

In Tab. 1, we show the number of generated images per

object category. Fig. 3 showcases three qualitative exam-

ples generated by our dataset generation pipeline, including

Cushion, Laptop, and Plotted Plant. In addition to LAION-

SP training dataset of ∼1.3M images we also create a dataset

of 400 unseen original images from LAION for our evalua-

tion referred as LAION-SP Val dataset.

1The model trained on the inpainted images without quality enhance-

ment (i.e., Step E) yields ∼0 TP zero-shot evaluating on HSSD dataset.

Category Potted Plant Lamp Cushion Vase Trash Can

# Images 207,366 320,922 323,541 417,591 13,353

Category Toaster Table Lamp Alarm Clock Laptop

# Images 23,928 5,559 14,496 2,430

Table 1. Number of Images per Category in LAION-SP Dataset.

Image from LAION Object of Interest Result Image

C
u

s
h

io
n

L
a

p
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 P
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t

Figure 3. Qualitative Examples of Generated Images. We

present three examples of Cushion, Laptop, and Potted Plants,

which include raw images queried from LAION (left), identified

objects of interest and their segmentation masks obtained from

SAM (middle), and the result images after Inpainting, Flitering, and

Quality Enhancement steps (right). For clarity, we have magnified

the inpainted regions, highlighted in green dotted boxes.

3.2. Synthentic Images

For finetuning, we collect a small high-quality image dataset

from synthetic HSSD [13] scenes, a synthetic indoor en-

vironment dataset comprising 211 high-quality 3D scenes,

containing 18,656 models of real-world objects. To generate

the dataset using HSSD scenes inpainting is unnecessary as

the objects can be removed programatically from underly-

ing 3D scenes and the image can be re-rendered from the

same viewpoint using Habitat [16, 17] simulator. Using 135
training scenes we generate ∼80k training images across

8 object categories. Similarly, using 33 unseen evaluation

scenes we generate a dataset of ∼18k images for evaluation
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Skip Connections

7 × 7 × 2048

Target Query: Cushion
1024

CLIP-ResNet50 
(Frozen)

CLIP-TextEncoder 
(Frozen) FC Downsample

Tile

Element-wise product

1024
Frozen 
ResNet

Frozen 
TextEncoder

512

256

Input Image I

f

e

e(ℓ=1) e(ℓ=2) e(ℓ=3)

Mask Prediction M

f (ℓ=1) f (ℓ=2) f (ℓ=3)

Figure 4. CLIP-UNet for the SP task. Inspired by CLIPort [12], we first encode the input image I into a feature sensor f , and encode the

target object category q into an embedding e. Further downsampling and tiling ensure that the target embedding matches the dimension of

the feature tensors f (ℓ) at the first three decoder layers. We then use an element-wise product to combine the target embedding e(ℓ) and the

feature tensor f (ℓ) to achieve semantic conditioning. Similar to LingUNet [11], we add skip-connections for these three layers. Finally,

CLIPort outputs a mask prediction on the image, indicating the optimal region to place the given target object.

with the same 8 object categories. Additional details on

image generation and viewpoint sampling is in App. A.2.

3.3. Learning Object Placement Affordance

To learn an SP mask prediction model, we use the dataset

generated from Sec. 3.1. The inputs to the SP model in-

clude an RGB image I in H×W×3 size and a target ob-

ject category q in text. The model outputs an affordance

mask M , size H×W×1, conditioned on the target ob-

ject. Fig. 4 shows the architecture of our proposed CLIP-

UNet model. Inspired by CLIPort [12], we use a frozen

ResNet50 [60], pre-trained by CLIP [2], to encode the input

image I into a feature tensor f up until the penulitmate layer

R
7×7×2048. The decoder then upsamples the feature tensor

f to f (ℓ) ∈ R
Hℓ×Wℓ×Cℓ at each layer ℓ and, at the end,

produces a mask M ∈ R
H×W×1, where 0 ≤ M [i, j] ≤ 1.

To encode the target object category q, we use CLIP pre-

trained transformer based sentence encoder to construct a

target embedding e ∈ R
1024. To condition the decoding

process with the target embedding, we first downsample it to

ē ∈ R
Cℓ and then tile it to match the dimension of feature ten-

sor f (ℓ) at layer ℓ in the decoder: ē → ē(ℓ) ∈ R
Hℓ×Wℓ×Cℓ ,

where Cℓ = {1024, 512, 256} and ℓ ∈ {1, 2, 3}. Then, we

use the tiled target embedding to condition the visual de-

coder layers through an element-wise product. As CLIP

utilizes contrastive loss on the dot-product aligned features

from pooled image features and language embeddings, the

element-wise product allows us to leverage this learned align-

ment while the tile operation preserves the original dimen-

sions of visual features. Inspired by LingUNet [11], we apply

this language conditioned operation to the first three upsam-

pling layers right after the feature tensor f produced by the

frozen ResNet. Moreover, following UNet [10], we add skip

connections to decoder layers from the corresponding layers

in ResNet encoder. In this way, the model preserves different

levels of semantic information from input image.

Training Details. We train our CLIP-UNet model in two

stages. First, we pretrain our model using the LAION-SP

dataset generated in Sec. 3.1, containing 1.3M images across

IoU( , )<0.5

IoU( , )<0.5

IoP( , )= 1

IoP( , )= 1

Figure 5. IOU v.s. IOP. Top left: a hypothetical ground-truth

(GT) SP region for objects of type “book”. Top right & bottom

left: two possible SP predictions. Both predicted regions are high-

quality and should be considered true-positives. The IoU for these

predictions is, however, < 0.5 as the IOU normalizes by the large

GT region. The IOP, however, only normalizes by the predicted

mask’s size and thus is equal to 1 for both predicted regions.

9 categories for 10 epochs using dice loss [61]. During pre-

training, in addition to diffusion model augmented images,

we also use common data augmentations, such as gaussian

blurring, additive gaussian noise, horizontal flipping, and

color jitter to mitigate inpainting artifacts. Next, we finetune

the LAION-SP pretrained model using a small, high-quality,

dataset generated using synthetic HSSD scenes [13, 16, 17]

mentioned in Sec. 3.2. As the HSSD image dataset is gener-

ated using a simulator we can manipulate the scene to render

images with/without object images without introducing any

artifacts that models can latch on to. This two-stage training

improves performance of our CLIP-UNet model and enables

better generalization to both real and synthetic images as

shown in Sec. 5.

4. Evaluation Metrics

In this section, we propose metrics for evaluating SP predic-

tion performance. Before defining these metrics, we will be-

gin by defining what we mean by true/false positive (TP/FP)

and true/false negative (TN/FN) SP predictions.
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Preliminaries. Consider an image I , an object type query q,

and an (exhaustive) set of {0, 1}-valued ground-truth dis-

joint regions r1, ..., rK ∈ {0, 1}H×W describing the lo-

cations where objects of type q can be placed in the im-

age I . Let the model produced region predictions be de-

noted by r̂1, ..., r̂L ∈ {0, 1}H×W . Intuitively, we would

like a predicted region r̂j to be considered a true posi-

tive (TP), if it “overlaps sufficiently” with some GT region

ri. Measuring region overlap is commonly achieved, e.g.

in the semantic segmentation and object detection litera-

ture [62–64], using the intersection-over-union (IOU) metric,

IOU(r, r′) = r ·r′/(r ·r+r′ ·r′−r ·r′) where · denotes the

usual dot product. The IOU works well when one wishes to

enforce that two regions overlap exactly; for SP prediction,

however, requiring exact overlap is too restrictive as it nor-

malizes by too large of a region, see Fig. 5. Instead we use

the intersection-over-prediction IOP(r, r′) = r · r′/(r′ · r′)
which normalizes only by the size of the predicted region r′.

That is, we say that r̂j is a TP if there exists some ri such that

IOP(r̂j , ri) ≥ T where T ∈ [0, 1] is some threshold value

(for us, T = 0.5). We say that r̂j is a FP if there is no ri with

IOP(r̂j , ri) ≥ T . Importantly: TPs are counted with respect

to the ground truth region ri while FPs are counted with

respect to the predicted region r̂j . This means that that if the

model predicts multiple regions r̂j which all correspond to a

single ri, then these multiple regions will be counted as only

a single TP. Additionally, number of FN equal to number of

GT regions ri not covered by any predicted region r̂j .

Precision and recall. Given the above, we can now define

the usual recall and precision metrics for an image I as

Precision(I) = #TP
#TP+#FP

and Recall(I) = #TP
#TP+#FN

.

When reporting metrics on our evaluation sets, we report the

average precision and recall over all images. If an image I
has no GT masks, then Recall(I) is not well-defined and so

we do not include such images when computing the average.

We compute these metrics only on HSSD dataset as these

require access to accurate GT region annotations.

Receptacle priors. One important facet of SP prediction

is an understanding of the relationship between receptacle

types and the objects that are typically placed upon them.

For instance, you will almost always find a plunger on the

floor and not on a dining table. Indeed, it is exactly these

types of receptacle relationships that some previous work,

e.g. [25–27], have focused upon. In order to measure the

model’s ability to encode such priors, we introduce the recep-

tacle surface precision (RSP) and receptacle surface recall

(RSR) metrics. To compute these metrics, we first, for each

object type query q, curate a collection of receptacle types

that such an object is commonly found upon (see Sec Ap-

pendix B for more details). We then, for each image I and

object type query q, assume we have access to segmentation

masks s1, ..., sK of receptacles upon which q is commonly

found. Moreover, as large parts of each receptacle mask will

correspond to unplaceable areas (e.g. the legs of a couch)

we further assume that each si corresponds only to the areas

of the receptacle that are “placeable”, i.e. have a surface

normal that is pointing (approximately) upward. In practice,

computing the receptacle masks can often be done automati-

cally by leveraging simulated environments in which object

categories and geometry are known (e.g. HSSD), or by using

open-vocabulary object detectors and depth maps for real

world images. As the results from open-vocabulary detec-

tors and depth maps are noisy we only report these metrics

on HSSD image dataset where we have access to ground

truth. We can then compute the RSR and RSP just as above

by replacing the GT regions ri with the surface grounded

receptacle segmentation masks si.

Target Precision (TrP). To quantify precision of SP models

at localizing possible ground truth placements we compute

the Target Precision (TrP) metric. To compute TrP, we pro-

gramatically compute the GT placement masks for an object

category from HSSD scenes and use these as GT regions for

computing the precision metrics.

Human preference (HP). To understand how humans judge

our baselines outputs, we require human annotators to rank

each model’s SP predictions from most preferred to least

preferred when shown predictions from 5 models described

in Sec. 5. We then report the % of time that these annotators

rank each model’s predictions as the best, i.e. ranked above

all others, among 5 SP predictions. Further details in App. B.

5. Experiments

5.1. Semantic Placement Evaluation

Here we present evaluation results on two image datasets: 1.)

LAION-SP Val: 400 real images collected from LAION [9],

2.) HSSD Val: 18k images from unseen HSSD scenes [13].

First, we describe baselines used for evaluation:

LLM + Detector. In this baseline we leverage common-

sense priors from LLMs to find target receptacles for a par-

ticular object and use a open-vocabulary detector, Detic [19],

to localize the receptacle in the image. First, for each of

the 9 object categories in the dataset we prompt an LLM for

common receptacle categories on which each object is found

in indoor environment. Next, during evaluation we use Detic

to localize the segmentation mask of all valid receptacles for

a object category in an image.

LLaVA. VLMs like LLaVa [14] connect vision encoders to

LLMs which exhibits general purpose vision-and-language

understanding. To evaluate LLaVA on SP, given the input

image we prompt it to output normalized bounding box co-

ordinates to localize a placement area. Next, we convert the

predicted normalized bounding box to a binary segmentation

mask to use as the SP mask for downstream applications.

Refer Appendix C for the prompt and sample predictions.

GPT4V [65]. Similar to LLaVA [14], GPT4V is a mul-
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Figure 6. Qualitative examples of SP masks predicted by our CLIP-UNet model pretrained on LAION-SP dataset and finetuned on HSSD

images. (a) shows evaluation results on real image dataset from LAION [9], (b) shows results on images from HSSD dataset [13], and (c)

shows results of placement predicted while evaluating tidying robot on Embodied Semantic Placement (eSP) task.

timodal LLM with remarkable vision-and-language under-

standing. To evaluate GPT4V, we pass the input image and

prompt it to output normalized bounding box coordinates to

localize a placement area which is then converted to a binary

segmentation mask to use as the SP mask. Refer Appendix C

for the GPT4V prompt and sample predictions.

Ours (HSSD). Variant of our CLIP-UNet model described

in Sec. 3.3 trained only on data collected from HSSD scenes

i.e. no pretraining on the LAION-SP dataset from Sec. 3.1.

Ours (LAION-SP→HSSD). Our CLIP-UNet model

from Sec. 3.3: first pretrained on the LAION-SP dataset

and then finetuned on a synthetic image dataset from HSSD.

LAION-SP VAL HSSD VAL

Method HP (↑) HP (↑) TrP (↑) RSP (↑) RSR (↑)

1) LLM + Detector 21.5 29.8 10.1 41.0 38.2
2) LLaVA 4.9 6.8 0.0 26.3 43.4
3) GPT4V 9.4 8.3 − − −

4) Ours (HSSD) 20.1 23.0 16.2 26.6 36.5
5) Ours (SP → HSSD) 43.7 31.3 18.5 24.9 35.3

Table 2. SP evaluation on LAION-SP and HSSD valida-

tion splits. HP denotes Human Preference, TrP denotes Target

Precision, RSP denotes Receptacle Surface Precision, and RSR

denotes Receptacle Surface Recall. We use ↑ to indicate that larger

values are preferred.

Results. Tab. 2 reports results of evaluating methods on the

LAION-SP and HSSD evaluation datasets. In our human

preference study, our method (row 5) is favored the most

by a large margin on real world images, and modestly in

simulated images, when asked to rank predictions from all 5
baselines from Tab. 2. This demonstrates the effectiveness

of using web data for pretraining our CLIP-UNet model. In

addition to human preferences, we also conduct quantitative

evaluation using metrics from Sec. 4. Our method outper-

forms a strong baseline that uses an LLM prior and object

detector Detic (row 1) on target precision (TrP) by 8.4%, is

comparable in the RSR metric, and performs worse on RSP

metrics. This shows that the CLIP-UNet has higher preci-

sion at localizing high-quality target placements available

in the HSSD dataset, but has poor precision, compared to

the Prior+Detector baseline, when localizing all possible

visible receptacles in the image. We hypothesize that this

low precision is caused by false positive predictions in the

vicinity of receptacles not grounded to appropriate surfaces.

Our method (row 5) also outperforms both VLM baselines,

i.e. LLaVA (row 2), significantly on TrP and achieves com-

parable performance on the RSP metric. In addition, our

method also outperforms GPT4V on human preference eval-

uation by 34.3% on real images and 23.0% on HSSD images.

Due to current GPT4V API limits, quantitative evaluation

on 18k images from HSSD val split would’ve taken 180

days so we could not show quantitative results in row 3. Af-

ter some preliminary analysis of results of the VLMs we

find that, when tasked to output the placement location as

language in addition to bounding box coordinates, these

VLMs do a good job at giving reasonable responses but fail

to precisely localize the output in the image space. More

details in App. D. These results demonstrate the difficulty

of SP prediction and highlight that there’s still scope for

improvements in general-purpose VLMs. Finally, we com-

pare our method (row 5) against a CLIP-UNet trained only

on the HSSD dataset (row 4), and we find that LAION-SP

pretraining helps significantly in improving generalization

performance of CLIP-UNet baseline.

HSSD VAL

Method TrP (↑) RSP (↑) RSR (↑)

1) Ours (LAION-SP) 10.1 23.7 26.3
2) Ours (HSSD) 16.2 26.6 36.5

3) Ours (LAION-SP → HSSD) 18.5 24.9 35.3

Table 3. LAION-SP pretraining ablations. We show the evalua-

tion results by training our CLIP-UNet on different datasets.

Effectiveness of Pretraining on the SP Dataset. Tab. 3

shows results varying the CLIP-UNet training dataset. First,

evaluating the model trained on the LAION-SP dataset zero-

shot on HSSD (row 1) results in 10.1% TrP, 23.7% RSP, and

26.3% RSR. This suggests the LAION-SP pretrained model
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Baseline Success (↑)

1) LLM + Detector 10.5%
2) LLaVA 9.0%

3) Ours (LAION-SP → HSSD) 12.5%

Table 4. Embodied Semantic Place (eSP) evaluation perfor-

mance on HSSD VAL split. We evaluate each SP model from

Sec. 5.1 using a modular eSP policy with same hyperparameters.

is, in general, good at identifying correct receptacle surfaces

in HSSD but does not, as shown by low TrP numbers, per-

form very well in precisely localizing one of the ground truth

object placements. In contrast to training on the LAION-SP

dataset, if we just train from scratch on HSSD images (row

2 vs 1) we achieve a +6.1 absolute improvement on TrP,

+2.9% on RSP, and +10.2% on RSR. However, with small

amounts of finetuning of the LAION-SP pretrained model

on HSSD dataset (row 3 vs 2), we obtain our best perform-

ing model which obtains a further absolute improvement of

+2.3% on TrP with comparable performance on RSP and

RSR. In addition, as shown in human preference numbers

in Tab. 2 (row 4 vs 5), pretraining on LAION-SP and finetun-

ing on HSSD leads to overall better generalization to both

sim and real images.These results effectively demonstrate

that pretraining on the LAION-SP dataset enables better

generalization. See Fig. 6 for qualitative examples of our

HSSD-finetuned model’s predictions.

Open-Vocab Object Detector Ablation. We present ab-

lations of open vocabulary object detectors used in our

LLM+Detector baseline in Appendix C.1.

5.2. Embodied Evaluation

In this section, we present the results of using our CLIP-

UNet (LAION-SP → HSSD) model for the downstream

application of building a tidying robot. Specifically, in this

task, an agent is spawned at a random location in an in-

door environment and is tasked with placing an instance

of a target object category at a semantically meaningful lo-

cation. We call this task Embodied Semantic Placement

(eSP). For our experiments, we use Hello Robot’s Stretch

robot [1] with the full action space as defined in [66]. Specif-

ically, the observation space, shown in the Fig. 7, includes

RGB+Depth images from the robot’s head camera, camera

pose, arm joint and gripper states, and robot’s pose relative

to the starting pose of an episode. The robot’s action space

comprises discrete navigation actions: MOVE_FORWARD

(0.25m), TURN_LEFT (30◦), TURN_RIGHT (30◦), LOOK_UP

(30◦), and LOOK_DOWN (30◦). For manipulation, we use

a continuous action space for fine-grained control of the

gripper, arm extension and arm lift.

Evaluation Dataset. For eSP evaluation, we create a dataset

consiting of 106 episodes using HSSD scenes [13], each

specified by an agent’s starting pose and a target object

category. These episodes span 8 object categories across 10

indoor environments. An episode is successful if the agent

successfully places the object on one of the semantically

valid receptacle (e.g. cushion on a bed or couch).

Embodied Semantic Placement Policy. To perform the task

with only robot observations and SP mask predictions from

the CLIP-UNet at each frame, we use a two-stage modular

policy consisting of “navigation” and “place” policies. The

navigation policy employs frontier exploration [67], building

a top-down semantic map using Active-Neural SLAM [68].

At each timestep, using the camera pose and depth we project

the predicted SP masks onto a top-down placement affor-

dance map and explore the environment for 150 steps. Fol-

lowing exploration, we utilize the placement affordance map

to navigate within 0.2m of a placement area. We then rerun

the CLIP-UNet while the agent performs a panoramic turn,

allowing for the identification of a precise placement predic-

tion in the 2D image space. This prediction is then projected

to 3D to sample a placement location. Once a placement

location is identified, an inverse-kinematics-based planner is

used to place the object at the predicted location. The policy

is illustrated in Fig. 7, refer App. E for more details.

Results.Tab. 4 presents the results of evaluating the eSP

policy using SP mask predictions LLM+Detector, LLaVa

and our CLIP-UNet (LAION-SP→HSSD) model on HSSD

val split. We do not evaluate GPT4V on eSP task due to API

limitations, eSP policy evaluation requires running inference

using GPT4V after each robot action which amounts to a

total of ∼53k frames for full evaluation. We find our CLIP-

UNet eSP policy achieves a 12.5% success on the eSP task

across 10 indoor environments, outperforming LLaVa and

LLM+Detector eSP baselines by 2− 3.5% on task success.

We observe that our CLIP-UNet eSP agent can effectively

reason about appropriate object placements in these settings.

For example, in a living room scenario near a couch, the

agent determines that a book should be placed on the coffee

table, as shown in Fig. 1(c). For qualitative videos and

additional examples, please refer the supplementary.

Failure Modes. We present a detailed analysis of failure

modes of CLIP-UNet eSP policy in Appendix F.2.

6. Conclusion

We propose Semantic Placement (SP), a novel task where,

given an image and object type, a vision system must predict

a binary mask highlighting semantically-meaningful regions

in an image where that object could be placed. Learning to

predict the invisible is hard. We address this challenge by

making visible objects invisible: we start with an image of

an object in context and remove that object from the image

via inpainting. This automated data curation pipeline, lever-

aging inpainting and object detection models, enables us to

supervise an end-to-end SP prediction model, CLIP-UNet,

using real-world data. Our CLIP-UNet produces SP predic-

tions which generalize well to the real-world, are favored

more by humans, and enable downstream robot execution.
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