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Abstract

3D object detection and pose estimation from a single-
view image is challenging due to the high uncertainty
caused by the absence of 3D perception. As a solution,
recent monocular 3D detection methods leverage addi-
tional modalities, such as stereo image pairs and LiDAR
point clouds, to enhance image features at the expense
of additional annotation costs. We propose using diffu-
sion models to learn effective representations for monoc-
ular 3D detection without additional modalities or training
data. We present MonoDiff, a novel framework that em-
ploys the reverse diffusion process to estimate 3D bound-
ing box and orientation. But, considering the variability
in bounding box sizes along different dimensions, it is inef-
fective to sample noise from a standard Gaussian distribu-
tion. Hence, we adopt a Gaussian mixture model to sam-
ple noise during the forward diffusion process and initial-
ize the reverse diffusion process. Furthermore, since the
diffusion model generates the 3D parameters for a given
object image, we leverage 2D detection information to pro-
vide additional supervision by maintaining the correspon-
dence between 3D/2D projection. Finally, depending on
the signal-to-noise ratio, we incorporate a dynamic weight-
ing scheme to account for the level of uncertainty in the
supervision by projection at different timesteps. MonoDiff
outperforms current state-of-the-art monocular 3D detec-
tion methods on the KITTI and Waymo benchmarks without
additional depth priors. MonoDiff project is available at:
https://dylran.github.io/monodiff.github.io.

1. Introduction
Research on monocular 3D object detection is currently a
focal point in various fields, such as autonomous driving
[8, 36], robotic navigation [29, 44], and beyond [32]. The
objective is to generate 3D bounding box parameters based
on the identification of objects in 2D images [8, 43, 64, 72].

Previous studies have extracted 3D information for ob-

Figure 1. Comparison between existing architectures for effective
representation learners for monocular 3D object detection. CMKD
[28] uses LiDAR data, and MonoNeRD [74] estimates the stereo
and depth image during training. MonoDiff uses monocular im-
ages with diffusion models as effective representation learners.

ject poses using 2D/3D constraints and geometric priors.
These constraints typically necessitate additional annota-
tions [8, 24] or the employment of Computer-Aided Design
models [5, 47]. Alternatively, some earlier approaches use
pseudo-LiDAR from depth estimates [50, 65, 71] or inte-
grate image features with depth maps as a precursor for the
3D detection model. Lately, the monocular 3D detection
research has focused on generating corresponding bird’s-
eye-view (BEV) representations [11, 53, 77, 78] from 2D
images to work with pre-trained 3D detectors.

Following the improvement from generating meaningful
representations, recent methods have demonstrated the ef-
fectiveness of leveraging additional training data or modal-
ities, as illustrated in Fig. 1, for inferring 3D information
[25, 38, 64]. While these additional modalities help learn
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effective representations, their inclusion burdens the cost of
data acquisition and annotation. Notably, recently proposed
denoising diffusion probabilistic models [26, 66], known as
diffusion models, have emerged as proficient representation
learners for discriminative tasks [18, 60]. The forward dif-
fusion process in these models is conceptualized as an aug-
mentation technique, contributing to more effective repre-
sentation learning than a conventional single forward pass
network.

Up until recently, diffusion models [26, 66] have ex-
hibited superior performance in learning data distributions
for generative tasks, outperforming GANs and achieving
state-of-the-art results [2, 15]. Capitalizing on their suc-
cess in generative tasks, diffusion models have found ap-
plication in various image-to-image applications, includ-
ing super-resolution [62], inpainting [45], image segmen-
tation [1, 2, 22], and image deblurring [59]. Building on
the demonstrated effectiveness of diffusion models as rep-
resentation learners for various computer vision challenges
[2], several contemporary approaches have adopted diffu-
sion models for other perception tasks like 2D object de-
tection [6], crowd analysis [57], and human pose estima-
tion [18]. Consequently, we investigate the role of diffusion
models in monocular 3D object detection and pose estima-
tion, focusing on their ability to elevate 2D detections to 3D
parameters.

MonoDiff conceptualizes the 3D detection and pose es-
timation of an object through a reverse diffusion process,
wherein a distribution characterized by high variance un-
dergoes a progressive transformation towards one marked
by low variance. Due to the high variation in bounding box
dimension, the uncertainty along different axes will differ.
Thus, the estimates will not necessarily converge to the nor-
mal distribution (i.e., zero mean and unit variance Gaussian)
after completing the forward process. The standard diffu-
sion process is thus not the most appropriate to model the
uncertainty or initialize the starting bounding box distribu-
tion for 3D localization and pose estimation tasks.

To address this, we model the latent distributions of the
reverse process using Gaussian Mixture Models (GMM) to
account for different uncertainty levels along different di-
mensions. Furthermore, we use 2D bounding box informa-
tion to supervise the localization and orientation estimates
from the reverse diffusion process using the corresponding
constraints of 3D-2D projection. Lastly, we use a signal-to-
noise ratio-based weighting scheme on 2D/3D projection
supervision to account for the uncertainty levels at different
timesteps.

The contributions of the paper are:
• We present MonoDiff, a novel detection framework that

leverages the distribution learning ability of diffusion
models to enable accurate 3D perception from a single
image.

• We present a GMM-based initialization for the reverse
diffusion process instead of a normal distribution to re-
solve the uncertainty variation along different 3D local-
ization and orientation parameters.

• We experiment on both the KITTI-3D detection bench-
mark [20] and the Waymo Open Dataset [68]. Our exper-
imental results showcase the effectiveness of MonoDiff,
surpassing the state-of-the-art methodologies without ad-
ditional modalities.

2. Related work
Monocular 3D object detection is designed to establish a
transformation between the camera sensor input and 3D at-
tributes, as outlined by Fang et al. [17]. In contrast to stereo
methodologies [10, 39, 40, 75] that rely on dual RGB cam-
eras, monocular systems operate with a sole single-view in-
put. Initially, Mousavian et al. [48] proposed a technique
involving the regression of relatively stable 3D parameters
based on 2D detections. More recently, MonoJSG [42] in-
troduces a method that utilizes a joint semantic and geo-
metric cost volume to mitigate the inherent challenges of
ill-posedness in monocular 3D object detection. Further-
more, MonoGround [55] suggests incorporating a ground
plane as an additional depth estimation source without ne-
cessitating extra data or modalities. Recent advancements
in monocular 3D detection also integrate geometric proper-
ties [13, 43, 80] to effectively address the challenges asso-
ciated with the ill-posed nature of the task.

Pose estimation within 3D object detection systems is
concerned with accurately determining the orientation of in-
stances. Various solutions, both closed-form and iterative,
assume correspondences between 2D keypoints in the im-
age and a 3D object model, as discussed in [4, 35]. Alter-
natively, some approaches involve constructing 3D models
for object instances and then identifying the 3D pose in the
image that best aligns with the model [19, 61]. Addressing
images with multiple instances, architectures akin to Fast-
RCNN were utilized in [3, 7, 9, 30, 31], where the region-
of-interest features captured instance appearance, and a
classification head provided pose predictions.

Pseudo-auxiliary feature-based methods utilize addi-
tional data sources or modalities such as LiDAR, BEV, and
stereo information during training to establish priors for
the detection model. Pseudo-LiDAR-based 3D detectors
[11, 46, 54, 71] derive benefits from both emulating the
representation of LiDAR data during inference and lever-
aging the accurate 3D information provided by LiDAR dur-
ing training. Typically, these methods involve transform-
ing 2D images into intermediate 3D representations, such
as pseudo-point clouds through depth estimators [70, 71].
Subsequently, LiDAR-based methods are applied to these
representations. Simultaneously, MonoNeRD [74] incorpo-
rates stereo images during training and builds a pipeline to
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Figure 2. (1) We train a 2D detector to localize objects on the images. (2) We estimate the parameters of the Gaussian Mixture Model
(ΦGMM ) to generate supervisory signals (ϕ1, ϕ2, · · · , ϕT ) from the ground truths for the denoising network (f ). The localized object
features (ψ) are generated using a feature encoder (Ψ) and provided to f as the conditioning. The estimates (ϕ̂t) of f are saved at each
time step to learn the reverse diffusion process. (3) Loss propagation to train the pipeline. Ldiff is computed between ϕ̂t and ϕt for
{T − 1, · · · , 0}. At each time step, an estimate ϕ̂t

0 for ϕ0 is produced using ϕ̂t according to the equation to compute the loss (Lt
2D)

between 2D bounding box information and the projection of estimated 3D bounding box. Then Lt
2D is scaled using λt at each time step

and accumulated to compute Lreproj . (4) During the inference process, objects are first localized and then passed through Ψ and f to
estimate the 3D bounding box.

recover the depth map and the right RGB image in addition
to the 3D bounding boxes. For that, Xu et al. [74] intro-
duce scene modeling to generate 3D representations akin to
Neural Radiance Fields. Across all these approaches, the
overarching goal is to produce complementary features us-
ing monocular images to enhance 3D object detection and
pose estimation. In this study, we leverage diffusion mod-
els to extract features at different timesteps, reducing the
need for additional training data while augmenting the size
of features learned through noise augmentation.

2.1. Diffusion models for perception
Diffusion models have proven to be a potent methodol-
ogy for learning a data distribution suitable for sampling.
Originally introduced DDPMs [66] to generate images or
for image-to-image translation, have undergone recent ad-
vancements, particularly in terms of improved inference
speed [26, 49, 67]. Previous research has delved into apply-
ing diffusion models across diverse generative tasks, rang-
ing from image inpainting [45] to text generation [41].

Pioneering the integration of diffusion models into ob-
ject detection, DiffusionDet [6] addresses the 2D object

detection problem by denoising random boxes into object
bounding boxes through the diffusion process. Building
on this concept, DiffRef3D [33] extends the application
of diffusion models to 3D perception tasks, employing Li-
DAR point clouds instead of images. Additionally, diffu-
sion models have found diverse real-time applications, in-
cluding human pose estimation [21, 27, 76], crowd analysis
[14, 57], and segmentation [56, 73]. In this context, we in-
vestigate the utilization of diffusion models to address the
challenges of 3D detection and pose estimation within the
framework of our MonoDiff.

3. MonoDiff
We aim to generate accurate 3D coordinates and poses with
diffusion models. We condition the denoising process on
the image features of objects localized by a fixed 2D detec-
tor, and the diffusion process is formulated as the iterative
noising of a vector with the 3D coordinates and angles into
a Gaussian distribution. The components of our proposed
MonoDiff pipeline along with loss propagation and infer-
ence are illustrated in Fig. 2.
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3.1. Background
The diffusion model has two processes: the forward and the
reverse process.
The forward process is the approximate posterior
q(x1:T |x0) modeled by a Markov chain that gradually trans-
forms the original data distribution to a normal distribu-
tion N (0, I) by adding Gaussian noise to the original data.
At each degradation step, the noise is sampled from a
predefined parametrized noise schedule depending on the
timestep t. At each step t, the noise is incrementally added
to the signal according to

q(xt|xt−1) := N (xt;
√
1− βtxt−1, βtI).

This formulation allows for the sampling of degraded sam-
ples at any given timestep in closed form by

q(xt|x0) := N
(
xt;

√
ᾱtx0, (1− ᾱt)I

)
,

where αt := 1− βt and ᾱt :=
∏t

s=1 αs.
The reverse process in the standard diffusion models, first,
a realization is sampled from a normal Gaussian distribu-
tion. It is then iterated through the denoising network to
transverse to the data distribution. We refer the readers to
[26] for more details.

3.2. MonoDiff forward diffusion process
The uncertainty along different dimensions differs in simi-
lar object categories, and the geometric structure and ori-
entation of bounding boxes are different across classes.
Hence, the target distribution of the forward diffusion pro-
cess does not have to converge to a normal distribution, i.e.,
a Gaussian distribution with a zero mean and a unit vari-
ance, as the means and variances of different dimensions
will differ. If we initialize from a N (0, I), this overlooks
the difference in variance between the dimensions. Hence,
we don’t enforce the distribution to converge to N (0, I) in
the forward diffusion process. Further, using a normal dis-
tribution to initialize the inference process is not the most
suitable, as a single distribution does not account for these
variations. Also, N (0, I) initialization represents random
boxes without any regard for the object. This is similar to
DiffusionDet [6] and DiffBev [79], which trains a separate
decoder to predict the box parameters from the image fea-
tures instead of the denoising network.

In MonoDiff, we use a mixture of Gaussians (GMM)
[37] to define the initial bounding boxes’ parameters’ (di-
mensions and orientations) distribution, ensuring the com-
patibility with the Gaussian assumption inherent in the for-
mulation of DDPMs. Utilizing a GMM for initialization
offers the advantage of enhancing the inference speed of
the network. This is achieved by sampling the starting
latent variable from a distribution containing information
about bounding boxes instead of a random initialization.
Moreover, initializing and noise sampling from the GMM
contribute to a more efficient implementation of DDPMs
by constraining the range of latent variable values at each

timestep. Then, the set of parameters (ΦGMM ) is optimized
as follows using the Expectation-Maximization algorithm:

argmax
ΦGMM

∏N

n=1

∑K

k=1
πkN (ϕn0 |µk,Σk),

where ϕn0 s are ground truth bounding box parameters, and
πk, µk, and Σk are the prior, mean, and covariance of the
individual Gaussian component.

Subsequently, we degrade the ground truth bounding
boxes by adding noise from the GMM-based initialization
provided by ΦGMM . To approximate ΦGMM at the end of
the forward diffusion process, we modify the forward orig-
inal DDPM diffusion equation following [23] as follows:

ϕt = µ+
√
αt(ϕ0 − µ) +

√
(1− αt) · ϵ. (1)

where ϕt is a sample from the latent distribution Φt at the tth

timestep. Then, µ is the mean of the selected Gaussian com-
ponent, and noise (ϵ) is sampled from a zero mean Gaussian
distribution but with covariance equivalent to that of the se-
lected Gaussian component.

Since we approximate the ΦGMM at the end of the for-
ward diffusion process, we denote it as ΦT . Then, we
choose a Gaussian component according to the πk distri-
bution. Note that, according to Eq. (1), at the end of the for-
ward diffusion process, the sampled point ϕT will be from
the selected Gaussian component as the effect of ϕ0 fades
away since αT goes to zero. During training, we can as-
sign the ground truth boxes to the components in the GMM.
These assignments are used as additional labels during the
training of the 2D detector to give the best cluster assign-
ment during testing.

3.3. MonoDiff reverse diffusion process
In the reverse process, the denoising network is employed to
estimate latent samples at each timestep, enabling the deter-
mination of 3D coordinates and orientation as a determinis-
tic distribution derived from the initial distribution ΦT . The
optimization of the denoising network involves leveraging
intermediate distributions to learn the reverse diffusion pro-
cess effectively. For a sampled ϕt from Φt, the denoising
network f , conditioned on image features and the diffusion
step, reconstructs ϕ̂t−1 from ϕt using the formulation:

ϕ̂t−1 = f(ϕt, ψ, t), t ∈ {1, ..., T}.
to learn the propagation of distributions.

3.4. 2D Reprojection Regulation
To enhance supervision in 3D localization and pose estima-
tion, we incorporate information from the 2D bounding box
of the object of interest. Since the estimated 3D bounding
box of the localized object can be projected onto the image
plane, the projection should fall within its 2D bounding box.
Though these two do not have to overlap, we can expect a
snug fit between the projected bounding box and the ground
truth bounding box.
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To project the 3D bounding box, we need the rotation
matrix R and the translation vector T . However, since the
diffusion pipeline operates on localized objects, we can as-
sume the T as the origin and shift the 2D ground truth in-
formation accordingly. Consequently, the coordinates of the
3D bounding box can be expressed using the dimensions of
the bounding box. Next, we estimate the 2D bounding box
using the projected 3D bounding box vertices and compare
it with the ground truth 2D box. The reprojection provides
additional supervision since the projected bounding box is
a function of R and D, estimated by the diffusion pipeline.

3.5. Choice of generative parameters
We generate the rotation matrix R and produce the dimen-
sion matrix D using the reverse process for parameter esti-
mation of the bounding boxes. To solve for T , we identify
the vector that gives the closest projection to the initial 2D
bounding box from the detector. More details are provided
in the supplementary on solving for translation. The range
of values probable for box dimensions is small compared
to the translation vector, as the 3D box size does not vary
depending on the position of the camera coordinate system.
This is desirable for learning the distribution with diffusion
models [26].

3.6. Loss function
To build the connections between 3D representations and
2D observations, we optimize the parameters of the denois-
ing network f discussed in Sec. 3.3. The overall objective
is expressed as a composite loss function consisting of dif-
fusion loss (Ldiff ) and reprojection loss (Lreproj).
Diffusion loss. The denoising network parameters are op-
timized to produce ϕ̂it−1 from ϕit in a single forward pass.
Unlike the usual objective where the network is trained to
estimate the amount of noise in the ϕ̂it−1, we formulate the
diffusion loss Ldiff as follows:

Ldiff =

T∑
t=1

N∑
i=1

∥f(ϕit, ψi, t)− ϕit−1∥22,

following preliminary work on DDPMs [26, 67].
Reprojection loss. The reprojection of the 3D bounding
box should tightly fit into the 2D detection window, and we
ensure this by using the bounding box and IoU losses from
the 2D detection network. We compute the loss across all
timesteps in the diffusion loss, and the reprojection loss is
written as:

Lreproj =

T∑
t=1

N∑
i=1

λbboxLti
bbox + λiouLti

iou,

where Lti
bbox and Lti

iou are the independent loss of each sam-
ple at each timestep. More on computing Lti

bbox and Lti
iou

are provided in the supplementary document.
Weighting factor. The 3D localization and orientation esti-
mates at the initial timesteps of the reverse process become
more uncertain as the signal-to-noise ratio increases as the

reverse process progresses. In order to account for the un-
certainty at different signal-to-noise ratio stages, we adopt
a weighting factor as follows:

λt =
(1 − βt)(1 − ᾱt)/βt

(p+ SNR(t))
γ ,

where SNR(t) = ᾱt

1−ᾱt
and p and γ are hyperparameters

following [12]. With the introduced weighting scheme, we
modify the reprojection loss as follows:

Lreproj =

T∑
t=1

λt

N∑
i=1

λbboxLti
bbox + λiouLti

iou.

Training. In the training stage, we take the monocular im-
ages and compute the distributions for D and R from the
training set. Subsequently, we compute ΦT as a GMM to
initialize the noise sampling procedure. Then, for each sam-
pled ground truth 3D bounding box ϕi0 we generate a set of
intermediary samples

{
ϕit; t ∈ {1, ..., T}

}
using Eq. (1).

Next, we pass the monocular image of the object corre-
sponding to the ground truth ϕi0 through the feature encoder
Ψ and extract the features ψi as the condition to the diffu-
sion process. Finally, the denoising network is optimized
using the composite loss function

Lf = Ldiff + λreprojLreproj,
where λreproj is a hyperparameter to scale Lreproj .
Inference. During testing, we first detect the 2D bounding
boxes or the objects of interest using a 2D detector. Then,
we initialize ϕT for each object of interest and extract the
features for the monocular image. We perform the reverse
process by recursively feeding to the denoising network to
estimate ϕ0. Once we generate the D and R matrices using
the reverse process, we follow the procedure explained in
Sec. 3.5 to compute the localization and orientation infor-
mation in the camera coordinate system.

4. Experiments
4.1. Benchmarks and metrics
KITTI. The KITTI-3D detection [20] benchmark has a
trainval set and a test set with 7,481 images and 7,518 im-
ages, respectively. To train MonoDiff for the KITTI dataset,
we employ the train-val split used in [9]. Accordingly, we
split the trainval set as 3,712 training images and 3,769 val-
idation images. To evaluate MonoDiff performance on the
KITTI dataset, we use the 3D detection criterion with a 0.7
threshold and report AP3D(R40) [74].
Waymo. The Waymo Open Dataset [68] provides 798 train
and 202 val sequences. We adopt the performance reporting
criterion of CaDDN [58] for a fair comparison with existing
methods. We train MonoDiff on 51,564 samples acquired
solely from the front camera. We report the numbers on
three ranges at 30m, 50m, and infinity, as well as on two
difficulty levels. Performance on the validation set is mea-
sured using the official evaluation with 3D IoU criterion at
0.5 threshold. The numbers are reported for mean average
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Table 1. AOS and AP3D performance on KITTI test set. The best and second-best figures are in color. The performance metrics for the
other methods are reported from the respective published results.

Methods Venue AOS AP3D
Average Easy Moderate Hard Average Easy Moderate Hard

Car
D4LCN [16] CVPR’20 78.66 90.01 82.08 63.90 12.63 16.65 11.72 9.51
CaDDN [58] CVPR’21 68.37 78.28 67.31 59.52 14.68 19.17 13.41 11.46
DDMP-3D [69] CVPR’21 77.58 90.73 80.20 61.82 14.10 19.71 12.78 9.80
MonoRCNN [63] ICCV’21 81.70 91.90 86.48 66.71 13.68 18.36 12.65 10.03
MonoJSG [42] CVPR’22 86.88 92.64 85.00 83.00 18.16 24.69 16.14 13.64
LPCG [51] ECCV’22 91.29 96.68 93.26 83.94 19.58 25.56 17.80 15.38
DID-M3D [52] ECCV’22 88.45 94.20 90.55 80.61 18.15 24.40 16.29 13.75
MonoNerd [74] ICCV’23 85.58 94.24 86.13 76.38 18.50 22.75 17.13 15.63
MonoDiff 91.54 97.16 93.72 83.75 23.12 30.18 21.02 18.16

Pedestrian
D4LCN [16] CVPR’20 36.35 46.73 33.62 28.71 3.60 4.55 3.42 2.83
CaDDN [58] CVPR’21 19.12 24.45 17.13 15.79 9.26 12.87 8.14 6.76
DDMP-3D [69] CVPR’21 35.97 46.12 33.35 28.45 3.83 4.93 3.55 3.01
MonoRCNN [63] ICCV’21 43.99 55.19 42.59 34.18 8.11 11.21 7.28 5.85
MonoJSG [42] CVPR’22 35.82 44.88 32.30 30.27 8.44 11.94 7.36 6.03
LPCG [51] ECCV’22 43.94 56.60 39.79 35.42 8.11 10.82 7.33 6.18
DID-M3D [52] ECCV’22 37.60 46.78 36.37 29.66 8.43 11.78 7.44 6.08
MonoNerd [74] ICCV’23 22.44 28.43 20.54 18.36 9.49 13.20 8.26 7.02
MonoDiff 46.00 58.25 43.14 36.62 9.91 13.51 8.94 7.28

Cyclist
D4LCN [16] CVPR’20 35.57 48.03 31.70 26.99 1.83 2.45 1.67 1.36
CaDDN [58] CVPR’21 22.56 30.35 19.96 17.38 4.57 7.00 3.41 3.30
DDMP-3D [69] CVPR’21 33.95 46.42 29.53 25.91 3.00 4.18 2.50 2.32
MonoRCNN [63] ICCV’21 42.43 54.93 39.89 32.48 2.03 2.89 1.67 1.54
MonoJSG [42] CVPR’22 38.71 49.31 33.36 33.46 5.08 8.03 3.87 3.33
LPCG [51] ECCV’22 49.20 63.07 45.24 39.28 4.97 6.98 4.38 3.56
DID-M3D [52] ECCV’22 40.63 51.38 38.15 32.35 5.05 7.82 3.95 3.37
MonoNerd [74] ICCV’23 22.99 30.64 20.13 18.19 3.14 4.79 2.48 2.16
MonoDiff 52.42 67.21 48.34 41.70 5.55 8.52 4.35 3.78

Table 2. 3D mAP and 3D mAPH pereformance on Waymo val set. The best and second-best figures are in color. The performance metrics
for the other methods are reported from the respective published results.

Methods Venue 3D mAP 3D mAPH
Overall 0 - 30m 30 - 50m 50m - ∞ Overall 0 - 30m 30 - 50m 50m - ∞

L
E

V
E

L
1

CaDDN [58] CVPR’21 17.54 45.00 9.24 0.64 17.31 44.46 9.11 0.62
MonoJSG [42] CVPR’22 5.65 20.86 3.91 0.97 5.47 20.26 3.79 0.92
LPCG [51] ECCV’22 6.23 18.39 3.44 0.19 6.09 18.03 3.33 0.17
CMKD [28] ECCV’22 14.69 38.67 6.26 0.40 14.59 38.44 6.20 0.38
DID-M3D [52] ECCV’22 20.66 40.92 15.63 5.35 20.47 40.60 15.48 5.24
MonoNerd [74] ICCV’23 31.18 61.11 26.08 6.60 30.70 60.28 25.71 6.47
MonoDiff 32.28 63.94 25.91 7.51 31.49 62.13 25.47 7.34

L
E

V
E

L
2

CaDDN [58] CVPR’21 16.51 44.87 8.99 0.58 16.28 44.33 8.86 0.55
MonoJSG [42] CVPR’22 5.34 20.79 3.79 0.85 5.17 20.19 3.67 0.82
LPCG [51] ECCV’22 5.84 18.33 3.34 0.17 5.70 17.97 3.23 0.15
CMKD [28] ECCV’22 12.99 38.17 5.77 0.38 12.90 37.95 5.71 0.35
DID-M3D [52] ECCV’22 19.37 40.77 15.18 4.69 19.19 40.46 15.04 4.59
MonoNerd [74] ICCV’23 29.29 60.91 25.36 5.77 28.84 60.08 25.00 5.66
MonoDiff 30.73 63.86 25.28 6.43 30.48 62.92 24.86 6.29

precision and mean average precision weighted by heading
annotated as mAP and mAPH, respectively.

4.2. Implementation details
Training details. We implemented MonoDiff using the Py-
Torch framework and performed the experiments with four

NVIDIA A6000 GPUs. We sample four ground truth points
per iteration and perform the forward diffusion process for
100 steps. We estimate GMM using five Gaussian compo-
nents and use DDIM [67] to improve inference speed. The
denoising network is trained for 100 epochs with 256×256
images. To produce image features, we use the ResNet-34
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Figure 3. Qualitative results corresponding to MonoDiff.

architecture (pre-trained on ImageNet) as the context en-
coder Ψ. We use an AdamW optimizer with a fixed learning
rate 1e-4 and a linear warm-up schedule over ten epochs.

The 2D detector is trained using AdamW [34] optimizer
with a batch size of four and momentum factors 0.9 and
0.999 for β1 and β2. On KITTI, we use a 2e-3 learning rate
for 75 epochs and then 15 epochs with a 5e-4 learning rate.
On Waymo, we train with a learning rate of 1e-3 for the first
20 epochs and a learning rate of 1e-4 for the last ten epochs.
In both experiments, we set the weight decay factor to 1e-4.
Hyperparameters. Hyperparameters for the loss function
are λbbox, λiou, λt, and λreproj . We set λreproj at 5e-2.
Then the parameters γ, and p in λt are fixed at 0.5 and 1,
respectively following [12]. We use 1 for λbbox and 0.02
for λiou for the reprojection loss. Hyperparameters are the
same for all experiments. More details are provided in the
supplementary document.

4.3. Main results
KITTI test set results are tabulated in Tab. 1 where with-
out additional modalities and training data MonoDiff out-
performs previous methods. We outperform the most recent
SOTA method MonoNeRD [74], which uses stereo images
during training. We boost the performance (AOS/AP3D)
from 86.13/17.13 to 93.72/21.02 under moderate setting
and from 76.38/15.63 to 83.75/18.13 under hard setting for
the Car object category, respectively.

Waymo val set results are tabulated in Tab. 2 for 3D ob-
jection detection from the official evaluation. MonoD-
iff achieves competitive results 32.28/31.49 compared to
MonoNeRD 31.18/30.70 on 3DmAP /3DmAPH without
using additional data.
Qualitative results are presented in Fig. 3 for 3D localiza-
tion and pose estimation generation with diffusion models.

4.4. Ablation studies
We conduct ablation experiments on KITTI val set to vali-
date the impact of each design in our method.
Diffusion process impact. To demonstrate the impact of
performing the 3D detection as a generative process, we
consider two baselines: (1) Baseline 1, which mirrors the
architecture of MonoDiff but a single step inference. (2)
Baseline 2, where the model architecture from Baseline 1
matches the computational complexity of MonoDiff by it-
erating. The baselines and MonoDiff results are presented
in Tab. 3, and the former is inferior to the latter.

Table 3. Ablation study for diffusion pipeline.

Method AOS AP3D

Easy / Moderate / Hard
Baseline 1 92.90 / 88.75 / 76.76 27.74 / 18.25 / 15.88
Baseline 2 93.11 / 88.23 / 77.96 27.86 / 18.47 / 15.53
MonoDiff 98.46 / 94.72 / 85.75 32.18 / 22.02 / 19.84

MonoDiff component analysis. As tabulated in Tab. 4, we
begin with the standard diffusion model and sample noise
from the normal distribution. G, F, R, and W in Tab. 4
represent GMM initialization, including feature encoder for
conditioning, 2D projection supervision, and scaling with
the weighting factor, respectively. The standard diffusion
model performs better than Baselines 1 and 2, promot-
ing diffusion models (generative models) for discriminative
tasks in addition to Tab. 3. According to Tab. 4, initializing
with the GMM model of ΦT improves orientation perfor-
mance by 3%, while detection performance has improved
by ∼ 2%. Then, using 2D bounding box information dur-

Table 4. Ablation study for different components.

G F R W
AOS AP3D

Easy / Moderate / Hard
✗ ✗ ✗ ✗ 94.32 / 89.12 / 78.58 28.44 / 19.99 / 16.52
✓ ✗ ✗ ✗ 97.27 / 93.11 / 83.69 31.10 / 21.44 / 18.89
✓ ✗ ✓ ✗ 97.64 / 93.61 / 84.33 31.44 / 21.62 / 19.18
✓ ✓ ✓ ✗ 98.05 / 94.17 / 85.04 31.81 / 21.82 / 19.51
✓ ✓ ✓ ✓ 98.46 / 94.72 / 85.75 32.18 / 22.02 / 19.84

ing training has improved the performance of our MonoDiff
even though using a 2D detector prohibits end-to-end train-
ing. Likewise, using monocular image features instead of
the image is conducive to performing the reverse diffusion
process even though the feature encoder introduces an extra
computational cost. However, since there is only a single
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pass through the feature encoder, the additional computa-
tion head is negligible compared to the computational cost
of the entire reverse process. Finally, adopting the weight-
ing scheme has gained marginal improvements at no ex-
pense.
Mixture model ablation. We vary the size
of ΦGMM to test the improvement from the
GMM and report the numbers in Tab. 5.

Table 5. Ablation study for ΦGMM size

# AOS AP3D

Easy / Moderate / Hard
3 95.61 / 90.86 / 80.81 29.60 / 20.62 / 17.56
5 97.27 / 93.11 / 83.69 31.10 / 21.44 / 18.89
8 97.46 / 93.37 / 84.02 31.27 / 21.53 / 19.04

Furthermore,
we discarded
the remaining
components of
our MonoDiff
to compare
fairly with
the standard
diffusion forward process. While increasing the number of
components improves the performance, it burdens memory
and time during training. Moreover, as the size of the
GMM increases, the performance tends to saturate at an
unnecessary expense. Hence, we chose five Gaussian
components to be optimal compute ΦGMM . We do not
consider the single Gaussian case as it is equivalent to the
standard diffusion model implementation.
Generalization with backbones and detectors. In this
part, we conduct experiments on the generalization ability
of our MonoDiff using different 2D detectors and feature
encoders. For the 2D detectors, we use off-the-shelf detec-
tors, and for feature encoders, we use the popular backbones
in object detection for comparison. The running speed and

Table 6. Ablation study for different detectors and backbones.
Speed FLOPS AOS AP3D

(fps) (G) Easy / Moderate / Hard

D
et

ec
to

r YOLOv7 14.1 54.7 98.75 / 94.33 / 85.51 32.06 / 22.12 / 19.67
FasterRCNN 3.8 35.2 98.26 / 95.18 / 85.94 32.44 / 22.08 / 19.28
CenterNet 11.7 8.7 98.46 / 94.72 / 85.75 32.18 / 22.02 / 19.84
RetinaNet 7.3 17.3 97.59 / 95.29 / 85.79 32.35 / 21.95 / 19.73

B
ac

kb
on

e

EfficientNet-b3 5.9 9.5 98.07 / 94.67 / 84.40 32.44 / 21.87 / 18.67
EfficientNet-b5 3.6 23.5 98.14 / 94.75 / 84.32 32.35 / 21.94 / 18.59
ResNet-34 11.7 3.5 98.46 / 94.72 / 85.75 32.18 / 22.02 / 19.84
ResNet-50 8.2 4.5 98.15 / 94.97 / 85.88 31.94 / 22.16 / 19.14
MobileNet 16.2 0.4 96.59 / 94.65 / 84.46 30.73 / 21.85 / 18.72

memory are tested on a single NVIDIA RTX A6000 GPU
on KITTI val. We compare the performance of our MonoD-
iff, including running speed, operation, AOS, and AP3D.

The results are shown in Tab. 6. According to Tab. 6, the
difference in performance for various 2D detectors and fea-
ture encoders is not very significant, though the inference
speed could vary significantly. Furthermore, in some cases,
light models outperform heavy models, especially for the
‘Easy’ class, while heavy models marginally perform bet-
ter for the ‘Moderate’ and ‘Hard’ classes. Nonetheless, the
proposed diffusion pipeline can be adapted to different ar-
chitectures depending on the practical requirements.
Inference Speed and performance. We tabulate the in-

Table 7. Ablation study for inference speed and performance.
Speed FLOPS AOS AP3D

(fps) (G) Easy / Moderate / Hard
LPCG 33.4 16.7 96.68 / 93.26 / 83.94 25.56 / 17.80 / 15.38
CMKD 10.1 9.8 95.07 / 89.81 / 83.24 28.55 / 18.69 / 16.77
MonoNeRD 12.5 7.2 94.24 / 86.13 / 76.38 22.75 / 17.13 / 15.63
MonoRCNN 14.3 8.5 91.90 / 86.48 / 66.71 18.36 / 12.65 / 10.03
MonoDiff 11.7 14.1 97.16 / 93.72 / 83.75 30.18 / 21.02 / 18.16

Figure 4. Infernce speed vs AOS performance. Corresponding
diffusion steps are shown near the data point.

ference speed (FPS) of state-of-the-art monocular 3D de-
tection methods against the performance on KITTI test in
Tab. 7 along with MonoDiff results. Moreover, the FPS
of our model satisfies most real-time requirements consid-
ering other state-of-the-art monocular 3D detection meth-
ods. Additionally, we considered the effect of reverse dif-
fusion timesteps and the trade-off between inference speed
and performance. The results are illustrated in Fig. 4 for
the orientation task. The final number of reverse diffusion
steps was selected where the FPS gain is significant with a
negligible drop in performance (elbow method).

5. Conclusion
We proposed a novel framework that handles monocular 3D
detection and pose estimation as a generative task. MonoD-
iff allows learning effective representations using diffu-
sion models without additional modalities and training data.
Also, by introducing a GMM-based initialization, MonoD-
iff improved the inference speed and performance of diffu-
sion models for object detection and pose estimation. Fur-
thermore, the MonoDiff pipeline generalizes well to dif-
ferent detectors and backbones while meeting the real-time
performance of other state-of-the-art methods.
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