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Figure 1. PCA feature visualization of different models. Our proposed RADIO model can process any resolution and aspect ratio, and
produces semantically rich dense encodings. Not only is the model capable of producing state-of-the-art feature representations at arbitrary
resolutions, but the adaptor heads may be used to simulate other models at resolutions they donOt support, such as SAM at larger than
1024px.

Abstract our multi-teacher distillation pipeline using the same train-

A handful of visual foundation models (VFMs) have re- ing recipe. This led to the development of a novellarchitec—
cently emerged as the backbones for numerous downstrearff'® (E-RADIO) that exceeds the performance of its prede-
tasks. VFMs like CLIP, DINOvV2, SAM are trained with dis- C€SSOrs and is at least 6x faster than the teacher models at
tinct objectives, exhibiting unique characteristics for vari- Matched resolution. Our comprehensive benchmarking pro-
ous downstream tasks. We bnd that despite their conceptuaf€SS covers downstream tasks including ImageNet classib-
differences, these models can be effectively merged into £ation, semantic segmentation linear probing, COCO ob-
unibed model through multi-teacher distillation. We name €€t dete.ctlon ‘_"md_ integration into LLaVa-1.5.
this approach AM-RADIO (Agglomerative Model B Reduce ~ C0de:htips://github.com/NViabs/RADIO
All Domains Into One). This integrative approach not only 1. Introduction
surpasses the performance of individual teacher models o
but also amalgamates their distinctive features, such asKnowledge Distillation p4] has been a very successful
zero-shot vision-language comprehension, detailed pixel-a\mOI popular technique for transferring the knowledge of a
level understanding, and open vocabulary segmentation ca-Ot€acherO model (or ensemble of models) into a typically
pabilities. Additionally, in pursuit of the most hardware- smaller OstudentO model. In the original formulation, both

efbcient backbone, we evaluated numerous architectures i€ student and the teacher operate on the same in-domain
dataset, and the student simultaneously matches the logits

*Equal contribution of the teacher, and the ground truth labels. Instead of us-




Params Resol- ImageNet1K Segmentation (linear) | Vision-Language (LLaVa-1.5 [36]) | SAM [32]

Model (M)  ution TOUGNPUT | o chot k-NN| ADE20k  VOC | GQA POPE TextVQA VQAv2| COCO
OpenCLIP-H/14 1] 632 224 503 7719 8110 40.04 68.03 57.94 8361 5048  72.24
MetaCLIP-H/14 B(] 632 224 486 8051 8212  35.39 62.62 6057 8476 5365 7571
SigLIP-M/14 [69] 428 384 241 8261 8516 4053 7031 57.70 84.85 56.65  71.94
Intern-ViT-6B [9] 5902 224 63 83.20 7843  47.20 7685  60.18 84.02 5245  76.75

5537 448 14 : 68.64  42.78 7443  61.1987.23  60.36  78.83
*DFN CLIP-H/14 [17] 633 378 170 83.90 8527  39.00 7029 6173 8591 5678  78.78
*OpenAl CLIP-L/14[47] 305 336 414 7554  79.80 3651 67.04 6220 86.09 57.92  78.49
*DINOV2-g/ldreg 13 1,137 224 294 - 8341  48.68 8278  61.88 8562 47.18  76.23
*SAM-H/16 [32] 637 1024 12 - 2212 2808 3434 4992 8176 4391  57.65 77.18
E-RADIO-L (Ours) 391 512 468 80.73 8380 4822 81.64 6170 8507 5147 7673  76.31
RADIO-VIT-H/16 (Ours) 653 432 158 82.93 86.06 51.34 8471 63018620 5632 79.28  76.23

Table 1. Comparison of vision foundation and RADIO models. OZero-ShotO and k-NN are computed on ImageNet-1K. AD)BRAK |

VOC (PascalvVOC2012) refer to linear probe semantic segmentation mlOU. GQA, POPE (popular), TextVQA, and VQAv2 are obtained

via LLaVa 1.5 B€] by replacing the vision encoder. COCO is the instance segmentation metric introducdddgyaluate SAM 32]

distillation. RADIO attains the best metrics on most benchmarks, and is competitive with the rest, while E-RADIO enables high quality
results in resource constrained settings. Note that Zero-Shot and COCO use teacherOs decoder head that is not bnetuned. Throughput
computed using NVIDIA A100 GPU, stated resolution, and TensorRT v8aDé&nvtes teachers used to train our Pnal RADI®ke failed

to export DINOv2-g-reg to TensorRT, so we report DINOv2-g here, which should be fairly cld¢ewere unable to get zero shot working

using their model code.

ing labeled images, an alternative approach is to train thefeatures, such as ADE20KZ] and Pascal VOCI6]. Sep-
student model to match the features of the teacher modehrately, SAM (Segment AnythingBg] is gaining popular-
[1, 23, 26, 49, 52, 57, 67]. ity for its excellent open-vocabulary instance segmentation
Instead of using a smaller student modé&i9[employ abilities, whose vision encoder we hypothesize has strong
an iterative learning procedure with a high-capacity model dense feature representations.
where a student of equal or greater capacity than the teacher We introduce AM-RADIO with the goal of learning from
is trained with heavy augmentation applied to the student. multiple foundational models simultaneously. We observe
Once trained, they expand the dataset by pseudo-labelinghat, when given a student model of sufpcient capacity,
new data using the trained student. They then make the stuit is often able to exceed any of its teachers on impor-
dent become the teacher, and repeat the process. An imtant axes. In addition to performing well on representative
portant bnding in this work is that the student is capable of foundational benchmarks, by virtue of the training frame-
surpassing the performance of the teacher. work, our student models are able to mimic their teacher
The authors of74] explore the concept of ensemble dis- models, and thus are able to perform downstream tasks
tillation, where there are multiple teachers, each of which that are otherwise performed by the teachers. Examples
having restricted domain knowledge.73 provides an  of this include CLIP-ZeroShot applications, since the lan-
overview of multi-teacher distillation, and proposes that in- guage model trained by CLIP is compatible with our stu-
stead of matching the summary of an ensemble of teachersgent, and also Segment-Anything tasks, as the student is
the student can match the features of each individual teachegable to replace the vision encoder and interface with the
via some learned non-shared mapping from the representaalready-trained mask decoders.
tion space of the student to each teacher. Of interest in their We also study the effect of using a more hardware-
approach is that the student and teacher donOt need to shagécient model architecture. Most works on efbciency
the same architecture, and also that treating teachers indiare not directly comparable as they use different training
vidually yields improved performance. recipes, even when evaluated on the same dataset such as
Recently, the concept of Foundation Models (FM3) [ ImageNet-1k, and may be over-tuned. To this end, we eval-
has emerged, with the general understanding that theseiate more than 10 promising architectures under the same
models are large, general, and expensive to train. Throughraining recipe for a direct comparison. We reveal that
training on very large datasets they are broadly applicableCNN-like architectures are faster but struggle to distill ViT
to numerous downstream tasks. A seminal example of suchvFMs. This led us to the development of a novel hybrid
models is CLIP 47], which trains on web-scale weakly su- architecture, E-RADIO, that exceeds the performance of its
pervised (image, caption) pairs, and results in exceptionalpredecessors and is at least 6x faster than teacher models at
zero-shot performances on a wide array of computer visionmatched resolution.
benchmarks. While CLIP is brmly a FM, another model, Our main contributions are as follows:
DINOv2 [44] has emerged with broad capabilities, often ¥ We describe a general methodology for distilling multi-
surpassing CLIP on dense tasks that require strong spatial ple distinct foundation models into one, including models
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Figure 2. AM-RADIO - is a multi-teacher distillation framework

VQAV2

2. Related Work

Knowledge Distillation The underpinning of our work is
based on the method of Knowledge Distillatich b, 24,

31, 43] which aims to train a OstudentO model using soft
targets produced by an already-trained OteacherO model, us-
ing the the teacherOs output logits as OsoftO labels. Alterna-
tively, distillation can be performed using intermediate net-
work activations {, 23, 26, 49, 52, 57, 67]. In general, due

to the heterogeneous nature of the different teacher founda-
tion models that we employ, we ignore any potential labels
coming from the data, and we ignore the logits of teachers,
and simply opt to match the feature representations of the
teachers before any task-specibc processing stages.
Multi-Teacher Distillation There is also a body of work
that studies distilling a student model jointly from multi-
ple teacher models simultaneousB; [L8, 24, 33, 38, 46,

62, 64, 66, 70, 73]. Because of the heterogeneous domains
that our teacher models cover, we donOt apply approaches
that marginalize teachers into a unibed label, and instead
map students to each teacher independently using teacher-
specibc projection heads from the unibed student represen-
tation. Although the reason behind this method 78] [is
different, we bnd the same overall strategy to be effective.
While [57] doesnOt study matching the features of multi-
ple teachers simultaneously, we are able to extend their
paradigm via the different projection heads. To preserve
drop-in compatibility with teacher frameworks, we elimi-
nate the feature normalization in the loss function.

Distilling Foundation Models Foundation Modelsd] are
meant to be generalist models that are trained on massive
amounts of data, and are typically resource intensive to train
from scratch. In the vein of single-teacher distillatiof][
employ self-distillation to train their smaller variants from
the larger teacher. 5[] distills their model from a CLIP

[47] teacher. Instead of focusing our energy on one teacher
in particular, we instead grab high-quality versions of CLIP

that efbciently trains new vision foundation models of arbitrary ar- [47] (using OpenCLIP28]), DINOv2 [44], and SAM 3.
chitecture. It unibes unique attributes (like zero-shot text ground- Concurrently with our work, 56] describe a methodology

ing, dense correspondence) of each teacher into a single model th

even outperforms them on a majority of the tasks.

with incompatible input resolutions.

For merging a CLIP model into a pretrained SAM model via
distillation, which is, in spirit, quite similar to our approach.
In contrast to theirs, we include DINOv2 and also simplify
the objective to straightforward feature matching. Since we
donGt rely on the student model to be pre-trained, it also
gives us the Rexibility to have the student be an architecture

¥ We show that these student models are able to outperfornyistinct from any teacher.

their teachers on representative benchmarks.

¥ We demonstrate that these student models can eithe
drop-in replace their teachers, or their features can be

3. Knowledge Agglomeration

used directly in downstream applications such as provid- we propose a framework to train a vision foundation model

ing visual encoding for LLaVA 36, 37].

from scratch via multi-teacher distillation as shown in Fig-

¥ We benchmark a nu_mber of efpcient architectures andyre . We demonstrate that each teacher brings unique prop-
propose a new architecture (E-RADIO) that allows for erties to the foundational vision model, and the resulting

similar model quality at signibcant speedups.

trained model will agglomerate these attributes.



3.1. Overview Dataset k-NN  Zero Shot ADE20K
ImageNet 1K 84.79  80.44 48.11

As an initial assumption, we expect that the teacher mod-

. . ImageNet 21K 84.61  80.10 48.65
els are capable of representing a broad swath of images LAION-400M  83.77 77.46 186
found on the internet, coming from datasets such as Ima- DataComp-1B  83.91 7851  49.01

geNet (1k or 21k) 14], LAION-400M [50] or DataComp-
1B [19]. With this in mind, we choose to study 3 seminal Table 2. Ablation study on the choice of training dataset. We use
teacher model families: CLIR[], DINOv2 [44], and SAM MetaCLIP ViT-H/14 [15] and DINOV2 ViT-g/14 teachers, and a
[37] as they have demonstrated outstanding performanceViT-L/14 student model with CPE3[]. Both Ok-NNO and OZero
over a broad range of tasks (as in CLIP), or specibcally ShotO are for ImageNet-1k. ADE20k refers to mlOU linear probe
strong performance on downstream dense tasks, such as s&" ADE20k.

mantic segmentation under linear probe (as in DINOv2), or

open-vocabulary segmentation (as in SAM). Because thesqu argue that it doesnOt fairly measure Ozero shotO perfor-

teacher models come from such diverse domains, we Omltmance as the student directly learns the teacher features
any form of supplemental ground truth guidance and t€ali, the evaluation domain. For this reason, we opt for the
the aforementioned datasets simply as sources of 'mageSDataComp 1B dataset

To assess the quality of our models, we adopt a set of repre-

sentative metrics across a few broad domains. 3.4. Loss Formulation

¥ Image level reasoning: (i) k-NN Top-1 accuracy on
ImageNet-1K, and (ii) Zero-Shot accuracy using the
CLIP teacherOs language mod&i]| k-NN [8, 44, 58]
embeds the modelOs summary feature vector for every im-
age in the training set, and then for each validation image,
it uses a weighted sum of thenearest training vectors to
elect a label.

¥ Pixel-level visual tasks: segmentation mIOU on (i) ~
ADE20K and (ii) Pascal VOC - under the linear probe vector, and we donOt match asummary for SA.M'
setting, details in Section . Letf px|! 0q\be the student vision encoder with parame-

¥ Large Vision-Language Models: we plug our frozen  ters! o, andy? O h*px’j! *gbe the learned student head
vision encoder model into LLaVA-1.53f] and evaluate ~ matching teacher summary featuss' O t™px|" j qwith
it on a wide set of tasks including GQART], TextVQA student adaptor parametér§? and teacher parameters.
[5]], ScienceQA #2] and VQAV2 [21]. Details in Sec-

Because we donOt have ground truth data for each teacher
for each image, we instead opt to match the features coming
from each teacherOs vision encoder. In particular, we distin-
guish between the summary feature vector and the spatial
feature vectors for each teacher. The summary feature is
computed differently based on the model. For CLIP and
DINOvV2, we use the Oclass tokenO as the summary feature

tion . « /]

¥ SAM-COCO instance segmentation: From [7], we xPOf x|! oq; YO NP X B9
adopt their COCO instance segmentation methodology to 050 A 4pST . 1 @)
evaluate our ability to replicate SAM visual features. z Ot X|"iq

Results on these tasks, both for teacher models and our AM- %)

RADIO variants, are summarized in Table LsummanXq O 1iLcogy™?, 2™ 2)

1

3.2. Adaptor Heads We found empirically that cosine distance loss produced
We opt for simplicity in design of the adaptor heads, and better models compared to L1, MSE, Smooth-Raj][ Ad-
leave alternative architectures as future work. To this end,ditionally, supervising the spatial features of the model by
we employ a simple 2-layer MLP, with a LayerNorm and matching the teacher was not only important for down-
GELU in between. The input dimension is the student em- stream dense tasks, but also improved the holistic quality
bedding dimension, the intermediate dimension is the max-of our model.
imum embedding dimension of all teachers, and the output For matching the spatial features, we employ a combi-
dimension matches the specibc teacher. For each teachenation of cosine similarity and smooth L1. Similar to equa-
we employ two heads, one for the summary vector, and onetion ( ) where we found that cosine similarity produced the
for the spatial features. best results, we found the same to be true for the spatial

T . features. However, we want to allow our student model to
3.3. Distillation Dataset Choice be a drop-in replacement in the teacher frameworks, thus
Intable we study the effect of different datasets on down- itOs important that we match the magnitude of the teacher
stream metrics. While the highest image classibcation met-vectors, and so we include smooth L1. ) ve show the
rics are achieved using ImageNet-1K as the training datasetformulation of this loss. Lehi‘”qp<1|! ipqu be the learned



Teachers | Zero Shot k-NN  ADE20K 4. Implementation Details

(NZEInF? ;ggz 8822'5690 4214'1482 Performing heterogeneous multi-teacher distillation is not
DINOV2 7468 8302 47.05 tr|V|§\I due to a mismatch in feature @mensmns, input res-
Both 74.85 82.96 48.13 olutions, concepts for loss computation, and downsampling

ratios, as well as challenges in btting multiple teachers into
Table 3. Ablation over which teachers we supervise the spatial fea-a single GPU.

tures. We use a ViT-L/14 student model and train on the LAION- General. We train all student models using the AdamwW
400M dataset. Adding this loss term is always benebcial. DINOv2 [41] optimizer, batch size 1024, cosine annealing learning
appears to provide better spatial features than CLIP, but trainingrate schedule and base learning rat®.601 We train for

the student to match both teachers produces the best results. Wgok steps, resulting in 614M total examples seen. For our
donOt ablate SAM as we solely want it for its spatial features. best student model, we train using DFN CLIP ViT-H/14
378px, OpenAl CLIP ViT-L/14 336px, DINOv2 ViT-g/14

Method | Zero Shot  k-NN  ADE20K 224px, and SAM ViTDet-H 1024px. We apply random

Naive 70.63 7950 4471 scale + cropping to both student and teacher inputs. We
Uncertainty [L1] 70.92 79.37 4457 chose the DataComp-1B dataset due to it having the highest
Adaloss 5] 7131 79.77 4436 quality results of the web-scale datasets we had access to.

We train in two stages, Pbrst with CLIP+DINOv2 for 300k
Table 4. Loss term balancing methods comparison. We use asteps at 256px, and second with CLIP+DINOV2 at 432px
ViT-B/14 student, and CLIP+DINOv2 teachers. We found that plus SAM at 1024px for 300k steps.
Adaloss produces the best results on the ImageNet tasks, but th%tudent architecture. We study two settings for student
worst on ADE20K. model architecture:
¥ Standard ViT [L5] architecture to match the architecture
student head for matching teacher feature vectors, and cor- of teachers. Our best model is a ViT-H/16.
responding! ‘mx|" Y% be the teacher feature vectors, with ¥ Efbcient architecture variants prioritizing high through-
x1O f x|! g then the spatial feature loss is: put on GPUs. See Section .
Multi-scale Teachers. We choose ViT-H/16 architecture
. for our student model. To match resolution of SAM fea-
L matciX, Y0 0%— cosp<,YQ(; #L smooth-11%, YO s tures, we feed the expected resolutiorl624. Given that
N o VO SV PV our CLIP and DINOv2 teachers are patch-14 models, we
LteaturetXq O $iLmacn i pcit gt %px|" g opt to feed the studed32 inputs, as that is the same ef-
' ©) fective resolution a87& for patch-14. We found that in-
We choosé' O 0.9 and# O 0.1 to mostly rely on the terpolating DINOv2 features doesnOt degrade results, so the
empirically better cosine distance, but to also match vectort€acher operates at 224px and we upsample the outputs to
magnitudes. match the student. o
Rank/Teacher Partitioning. We group teacher models
by (batchsize, studentesolution), and then distribute the
3.4.1 Loss Balancing groups to different GPUs, such that each GPU processes a
consistent batch size and input resolution. We also sample
Due to the number of possible combinations of loss weights groups at different rates. For our training setups that in-
between the different teachers, and even which teachersclude SAM, we train with 64 GPUs, half of which get the
and possible formulations of loss functions, we mostly CLIP+DINOv2 group with batch size 32 per GPU and in-
opted toward naive loss balancing with all teachers equally put resolution 432, and the other half get SAM with batch
weighted for spatial feature$i(O 1). For summary fea-  size 2 per GPU and input resolution 1024. This results in an
tures, we havécyp O!pino O land!sam OO. effective batch size of 1,152. For CLIP+DINOV2 training,
We did experiment with automatic loss balancing using we use 32 GPUs, resulting in batch size 1024.
predicted uncertaintyl[l], AdaLoss R5] (momentum 0.99)  Multi-Resolution ViTs. Many of our student models use
and separately with AMTML-KD38], as ways to learn the ~ ViT [ 15] as the base vision architecture. Traditionally, ViTs
balance of ; and$;. In the case of AMTML-KD, the model  use a learned position embedding for each input patch in an
would always collapse its entire weight around the CLIP image, which in turn enforces that the model always oper-
teacher and would yield worse results than naive manualates at a constant resolution. We employ the Cropped Posi-
balancing. Based on the results in tabl¢here is very little tion Embedding (CPE)J0] augmentation with the number
advantage to the more exotic balancing schemes, so we opof positions being equal th28. The position embeddings
for the ONaiveO method throughout the rest of the paper. are then randomly cropped and interpolated to match the



Method k-NN ADE20K Backbone Param. Through- Zero k-NN ADE20k FD loss

Count put Shot
Non-CPE 82.96  47.30 -
CPE 82.84 4852 eachers
DINOv2 G/14 1.14B 313 N/A  83.41 47.53
OpenCLIP H/14 632M 556 7719 81.10 40.04

Table 5. Comparing identical ViT-L/14 student models, with and
without CPE B(Q] formulation. While the student only ever trains
at 2242 resolution, CPE allows us to generalize5b8 resolu-

Existing Efpcient Models
EfbcientNetV2-S 21M 9017 65.37 70.72 27.75 0.415

ResNetv2-101 44M 7283  69.58 7532 29.61  0.405
tion, not only improving over non-CPE, but even outperforming  RegNetY-064 30M 6573  69.84 7459 289 0.394
DINOv2-g itself. EfpcientViT-L1 38M 6048 7173 79.90 3312  0.376
ConvNext-B 88M 1805 7543 8173 3895  0.358

Zero Shot k-NN ADE20K VOC VQAv2 NFNet-F3 254M 1777 76.93 80.50 38.31 0.340

Swinv2-S 49M 1497 7470 8112 3557  0.364

CLS token 7855 8391  49.01 83.51 77.66 MaxViT-B 119M 1486  77.49 79.34 3846  0.340
Avgpool  80.12 83.83 38.36 77.04 78.28 Poolformerv2-M36 ~ 56M 1194 7446 8049 3505  0.377
MViTV2-B 51M 975 7592 8139 4139  0.345

Table 6. Comparing identical ViT models, with CLS token and Proposed architecture

; ot E-RADIO-B 118M 6422 7519 8221 4403  0.319
average pooling summarization. * wioupsample ~ 113M 7040 7545 82.05 4126  0.353
E-RADIO-L 265M 3472  77.87 8373 455 0.265

number of input patches for the student model. Even when
training with CLIP+DINOV2 at 224 resolution, we found Table 7. Comparison of backbones. Throughput is measured using
that this technique results in a negligible drop (Taijlén TensorRT 9.0.1 on A100 in mixed FP16/FP32 precision at batch
summary metrics, bumprovedsemantic segmentation lin-  size 128 on224*px resolution. Sorted by descending through-
ear probing mlOU. For heterogeneous-resolution studentsput order. FD loss is the Feature Distillation training loss against
this is a seamless technique that allows ViT to operate atthe DINOv2 teacher, it exhibits high correlation with the ADE20k
arbitrary resolutions within some envelope. mloU. Bolded models form the speed/quality Pareto front.
High-Resolution VIiT Student. In SAM, they employ the
ViTDet [34] architecture as a way to reduce the computa-
tional and memory burden of ViT models at high-resolution.
We reformulate this arch instead into a training augmenta-5 Resylts

tion, where we sample a window size from a set of possible

window sizes. This allows us to reduce the computational In this section, we analyze models obtained with the pro-
burden of training the student model with the SAM teacher, posed AM-RADIO framework. First, we touch upon back-
and, as we make the window size RRexible, it provides anbone efbciency, then compare with the original teachers
additional throughput scaling mechanism during inference. (CLIP, DINOv2, SAM), and benchmark models under vi-
Table demonstrates our ability to replace SAMOs encodersion question answering in the LLaVa framework. We will
Separately, we found that high resolution training was un- see that the proposed models outperform the original teach-
stable, so we apply spectral reparametrizatio® pnd a ers in multiple metrics, including throughput. Results are
weight decay 0D.02to prevent attention entropy collapse. shown in Figure and Table .

Student/Teacher Resolution MismatchWhen the student .

and teacher downsample images through their processingS'l' Efbcient Students

stack at different rates, it results in the output feature vec-We aim to bnd an efbcient model architecture to speed up
tors having different resolutions. For example, if the teach- the inference of VFM. There are a number of architectural
ers use a ViT-H/14 architecture and student a ViT-H/16, it designs aimed at high throughput on GPU devices. We
means that the student outputd4¢ feature map, and the use our distillation framework to evaluate several backbones

separate CLS tokens.

teachers d 6 feature map. FOL feauresWe bilinearly in- with no change in training hyperparameters.
terpolate the outputs to match the larger resolution between  Upon reviewing the literature on efbcient vision back-
the student and teacher features. bones focused for high GPU throughput, we pick the fol-

Feature Summarization.In  we explained how teacher lowing list of architectures: EfbcientNetV24], ResNetv2
summary features are extracted using the Oclass tokenO (3], RegNetY §8], FasterViT R2], EfbcientViT [7], Con-
their respective ViT models. We now turn our attention to vNext [40], NFNet [6], SwinV2 [39], MaxViT [55], Pool-

the summarization of student features. ViTs have 2 options:formerV2 [65] and MViTV2 [35. We train all the back-

(i) a separate summarization OCLSO token or (ii) averagéones via distillation on the ImageNet-21k dataset, using
pooling patch tokens. We evaluate both options in Table OpenCLIP ViT-H/14 (laion2B-s32B-b79K) and DINOv2
We observe that average pooling improves summary loss,g/14 as teachers. Results are compiled in Table

but has a more signibcant detrimental effect on the feature We observe that many models lag behind teachers. Addi-
loss. Given the importance of the latter we choose to usetionally, CNN-like models are signibcantly faster than ViTs,
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Figure 3. All models followed the same training protocol. The results from three benchmarks show that RADIO and E-RADIO models
outperform others in efbciency. This under-performance in other models might be due to overbtting architectures on supervised ImageNet-
1K training. E-RADIO notably delivers results 10 times faster and with a 20% improvement over teacher models. We study E-RADIO at
224px resolution, with a window size of 7.

while the latter are more accurate. The relatively low perfor- 5.2. Comparison with teachers

mance of existing efbcient backbones on the dense ADE20k

segmentation task is not unexpected since all of them applyA comprehensive set of results is presented in Tabl/e

a spatial dimension reduction factor of 32 for Pnal feature notice that MetaCLIP is better than OpenCLIP, and DFN

maps of siz&? for input resolution oR24px, thus hardly ~ CLIP better than MetaCLIP. DINOv2 provides important

capable of capturing Pne-grain spatial information. properties for dense tasks: ADE20k and VOC. Our E-
RADIO-L model is signipcantly faster than all ViT mod-
els. At the same time, it strongly outperforms MetaCLIP
on most metrics at matched throughput, while also enabling

E-RADIO: To overcome this issue, we propose a novel Zero-shot capability that is absent in DINOv2 and SAM.

hybrid architecture, named E-RADIO (Efpcient RADIO). Our full model, ViT-H/186, is as fast as the teachers but out-

This design borrows ideas from existing literature and in- performs them on 6 out of 9 tasks, demonstrating the efp-

cludes an input stem with strided convolutions to downsam- ciency of the proposed distillation framework.

ple the input image by 4x. It then proceeds with 2 stages ) )

of YOLOV8 C2f convolution blocks and 2 stages of trans- P7OP-IN SAM Replacement. Following [7], we use their

former. For the transformer variant we pick windowed at- €valuation hamess to compute the miOU for instance seg-

tention (like in SWIN B9]), and interleave local windowed mentation using pretrained SAM with vision encoder re-

attention with Oglobal® windowed attention as donadh [ Placed by our model. Tabl= shows the results of the

and ViTDet B4]. To perform Oglobal® attention we brst COCO Instance Segmentation task using the baseline SAM

downsample the feature map by 2x, apply windowed atten-mOdeIS and RADIO.

tion, and then upsample the feature maps back to the origi-

nal resolution. Up-/down-sampling is performed by strided

convolution with a kernel size 3x3 and a stride of 2. The 5.3. Semantic Segmentation Linear Probing

last idea is borrowed from EdgeVi®§], which uses local-

global-local attention. See Appendix for details. Finally, We train a linear head on top of the frozen features of the

E-RADIO upsamples bnal feature maps by 2x via a decon-teachers and students alike and evaluate performance in the

volutional layer and adds them to feature maps from the MMSeg [12] framework using the mloU metric on ADE20k

third stage, resulting in only a 16x spatial resolution re- and PascalvVOC2012 datasets. We use a training and eval-

duction. Such upsampling gives an improvement in denseuation crop size of 512 for RADIO, 518 for DINOv2, and

task while being only 10% slower. Results of E-RADIO in the native resolution for the others. We use the OslideO eval-

Table demonstrate that the proposed architecture signib-uation mode with a stride c% the crop size. We train the

cantly outperforms the competition, and can be seen as arinear head for 160k steps using a total batch size of 16, a

efbcient replacement for the much slower full ViT. base learning rate dfo ® and the AdamW optimizer.



COCO 2017 drop-in SAM replacement at 1024x1024

Family Arch mIiOU  Throughput
Base 75.78 50.94
SAM Large 77.02 20.62
Huge 77.18 11.83
E-RADIO (ours) Large 76.31 121.74
ViTDet-H/16-W8  76.09 29.09

RADIO (0Urs)  \irperHii6- w16 76.23 27.91

Table 8. We substitute SAMOs vision encoder with our RADIO
model. RADIO aligns with SAMOs features just before the en-
coderOs neck layer. We also examine the impact of varying ViT-
Det window sizes. Differences in throughput owe to the fact that
RADIO doesnOt use relative positional embeddings and we re-
duced shufRing with our patch reordering algorithm (in appendix).
Throughput is computed on an NVIDIA A100 GPU using Ten-
sorRT and batch size 16.This is the same model, just with a
different window size setting.

5.4. Visual Question Answering

We replace the vision encoder in a LLaVA 139] setup

with our own encoder. A 2-layer MLP is used to project
frozen visual features into the language token space. Under
the default LLaVA 1.5 settings, we pretrain a multimodal

projection MLP and then run instruction tuning to bnetune Figure 4. RADIO Omode switchesO when resolution is increased.

a \/_|cur_1a 7B-1.5 modeffl]. We evaluate models using the In the plot, we show the MSE error between the RADIO features
validation sets of GQAZ7], TextVQA [51], POPE B3] coming from its DINOv2 head at different resolutions, versus the
(popular), and we score the model on the Test-Dev set Ofteatyres actually produced by DINOv2 at 518px. We bilinearly
VQAV2 [21] using EvalAl[61]. We use the vision encoderOs interpolate the RADIO features to match the DINOv2 feature res-
native input resolution, resizing the long edge and paddingolution. At 720px, there is a sudden jump in the error, which cor-
the short edge. Experimental results are compiled in Ta-responds with a complete change in color space in the image.
ble . Owing to the increased input resolution Rexibility of
RADIO, we resize the long edge of the image to 432px as-

pect preserving, only padding to the nearest multiple of the ter with the latter, and the ImageNetlk k-NN metric is 4x

patch size. This results iM62 tokens on average, versus _ : .
the 576tokens required by the 336px patch-14 encoders abetter. SAM excels in detecting edges and segmenting ob-
20% reduction " “jects but performs poorly in high-level object description

and combining the semantics of multiple objects (Figite

6. Conclusion and Key Insights Dense featuresAs seen in Pgure, RADIO is capable of
producing high resolution and low-noise features. Given the
adaptor heads, itis able to reasonably reproduce the features
. : . “generated by the teachers, and the backbone features them-
detailed segmentation (SAM), but also large holes in capa selves are highly coherent. Anissue we identibed, however,

bility. Distillation allows uniting all these properties in a . )
single model that often outperforms any of the teachers. Weghown in bgure_is that RADIO appears to have a latent

have also observed that better teachers yield better studentOIOW resolutionO and Ohigh resolutionO mode, likely due to

which allows RADIO to absorb and challenge the current ?he partitioned training between CLIP+DINO and SAM ob-

SOTA foundation models at a given point in time. jectives, which we intend to bx in future work.

Feature distillation loss. We observe the crucial impor-  Efbcient backbone.Based on our analysis of distilling ef-
tance of full feature distillation to boost the performance of bcient backbones, we conclude that most model designs are
the teacher in dense image understanding tasks, such as awerly tailored towards supervised training on ImageNet1K,
18% relative improvement on ADE20K. and as a result, do not scale well to VFM settings. We
SAM vs DINOv2. We bnd that, out of the box, SAM is not designed a new vision backbone, E-RADIO, with a hy-
well-suited for downstream tasks, whereas DINOv2 signif- brid CNN-Transformer architecture that improves upon the
icantly outperforms in zero- and few-shot tasks. For exam- Pareto frontier.

ple, ADE20K segmentation via linear probing is 1.7x bet-

Most VFMs have unique properties such as language
grounding (CLIP), dense correspondences (DINOv2), and












