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Abstract

Large Multimodal Models (LMMs) extend Large Lan-
guage Models to the vision domain. Initial LMMs used
holistic images and text prompts to generate ungrounded
textual responses. Recently, region-level LMMs have been
used to generate visually grounded responses. However,
they are limited to only referring to a single object cate-
gory at a time, require users to specify the regions, or can-
not offer dense pixel-wise object grounding. In this work,
we present Grounding LMM (GLaMM), the first model that
can generate natural language responses seamlessly in-
tertwined with corresponding object segmentation masks.
GLaMM not only grounds objects appearing in the con-
versations but is flexible enough to accept both textual and
optional visual prompts (region of interest) as input. This
empowers users to interact with the model at various lev-
els of granularity, both in textual and visual domains. Due
to the lack of standard benchmarks for the novel setting of
visually Grounded Conversation Generation (GCG), we in-
troduce a comprehensive evaluation protocol with our cu-
rated grounded conversations. Our proposed GCG task
requires densely grounded concepts in natural scenes at
a large-scale. To this end, we propose a densely an-
notated Grounding-anything Dataset (GranD) using our
proposed automated annotation pipeline that encompasses
7.5M unique concepts grounded in a total of 810M regions
available with segmentation masks. Besides GCG, GLaMM
also performs effectively on several downstream tasks, e.g.,
referring expression segmentation, image and region-level
captioning and vision-language conversations.

1. Introduction

Fueled by the generative Al wave, Large Multimodal Mod-
els (LMMs) have emerged as a pivotal advancement, bridg-
ing the gap between vision and language tasks [2]. Initial ef-

*Equally contributing first authors.

Describe the image in detail. Please output &
@ interleaved segmentation mask ey

The image showcases a large, white building with a red
B88f., surrounded by a well-manicured lawn and palm Erees.
The sky is visible over the building, the pavement, and the
grass. The grass is also seen extending to the pavement.

Figure 1. Grounded Conversation Generation with GLaMM.
Our multimodal conversational model can provide natural lan-
guage responses grounded at the pixel-level in the input image.
Different levels of granularity are depicted in the output ground-
ings, e.g., things (building, tree), stuff (grass, sky, pavement), and
object parts (roof as a subpart of the building) alongside the ob-
ject attributes (white house, red roof, well-manicured lawn) and
object relationships (grass extending to the pavement, sky over the
building). Existing LMMs, open-source (e.g., LLaVa, miniGPT4,
Shikra, Kosmos-2) and closed-source (e.g., GPT4-V, Bard), do not
offer pixel-level grounded conversational capability.

forts like [5, 6, 17, 22, 41, 48] demonstrate effective textual
responses based on input images. Although these models
are sophisticated, they cannot still ground their responses in
the visual context. Such grounding is crucial for advanced
applications like detailed visual understanding, interactive
embodied agents, and localized content manipulation. Re-
cent efforts have started to address this limitation by en-
abling models to process user-defined regions specified via
bounding boxes [4, 24, 27, 28, 46].
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A few recent works have explored grounded text re-
sponse generation [4, 16, 27, 47] but do not provide de-
tailed pixel-level groundings. Parallel to these, efforts have
been made in the referring segmentation literature to ground
textual descriptions in natural images [16]. However, they
are limited to grounding a single object and cannot en-
gage in natural, coherent conversations, thereby restricting
their practical applicability in interactive tasks that demand
a deep understanding of both visual and textual content. To
address these limitations of existing works, we introduce
Grounding LMM (GLaMM), that simultaneously provides
in-depth region understanding, pixel-level groundings, and
conversational abilities through an end-to-end training ap-
proach (see Fig. 1 and Tab. 1).

To address the lack of benchmarks for visually grounded
conversations, we introduce the novel task of Grounded
Conversation Generation (GCG). The GCG task aims to
produce natural language responses interleaved with ob-
ject segmentation masks. This challenging task unifies
several existing tasks in computer vision that are typi-
cally treated in isolation, i.e., referring expression segmen-
tation, image and region-level captioning, phrase ground-
ing, and vision-language conversations. Thereby, our uni-
fied model and proposed pretraining dataset can effectively
transfer to several downstream tasks (referring expression
segmentation, region-level captioning, image captioning,
and conversational-style QA). We present GLaMM as the
first model specifically designed for this challenging task.
Unlike prior works, GLaMM can work with both textual
and visual prompts and can generate visually grounded out-
puts, thus offering a versatile user experience.

Detailed region-level understanding requires the labo-
rious process of collecting large-scale annotations for im-
age regions. We propose an automated pipeline to anno-
tate the large-scale Grounding-anything Dataset (GranD)
to alleviate the manual labeling effort. Leveraging the au-
tomated pipeline with dedicated verification steps, GranD
comprises 7.5M unique concepts anchored in 810M re-
gions, each with a segmentation mask. Using state-of-
the-art vision and language models, the dataset annotates
SAM [13] images through a multi-level hierarchical scheme
that enhances annotation quality. With 11M images, 84M
referring expressions, and 33M grounded captions, GranD
sets a new benchmark in comprehensiveness. In addition to
the automatically generated dataset for the GCG, we pro-
vide the first high-quality dataset for grounded conversa-
tions obtained by revamping the existing manually anno-
tated datasets [11, 29, 38] for GCG using GPT-4 [26] in-
context learning. We refer to the high-quality dataset as
GranD, denoting its suitability for fine-tuning.

Our work has three main contributions:

* We present GLaMM, the first model capable of gener-
ating natural language responses seamlessly integrated

with object segmentation masks. Unlike existing mod-
els, GLaMM accommodates textual and visual prompts,
facilitating enhanced multimodal user interaction.

* Recognizing the lack of standardized benchmarks for
visually grounded conversations, we propose the new
Grounded Conversation Generation (GCG) task. We also
introduce a comprehensive evaluation protocol to mea-
sure the efficacy of models for GCG that unifies multiple
isolated tasks, filling a significant gap in the literature.

* To facilitate model training and evaluation, we cre-
ate Grounding-anything Dataset (GranD), a large-scale
densely annotated dataset. Developed using an automatic
annotation pipeline and verification criteria, it encom-
passes 7.5M unique concepts grounded in 810M regions.
Additionally, we propose GranD, a high-quality dataset
explicitly designed for the GCG task finetuning, by re-
purposing existing open-source datasets.

2. Related Work

LMMs provide a versatile interface for a diverse array of
tasks, encompassing language and vision. Prominent mod-
els such as BLIP-2 [19], LLaVA [22], InstructBLIP [5]
and MiniGPT-4 [48] first conduct image-text feature align-
ment followed by instruction tuning. Other representa-
tive works include Otter [17], mPLUG-Owl [41], LLaMa-
Adapter [45], Video-ChatGPT [25], InternGPT [24]. How-
ever, these approaches lack region-specific understanding.

Recent works like Kosmos-2 [27], Shikra [4], GPT4Rol
[46], VisionLLM [33], Ferret [42] and All-Seeing [34] aim
to allow region-specific conversation. Some methods [4, 27,
34, 42] input location bins and bounding boxes with image
data for region-level understanding, relying on the LLM ex-
clusively for interpreting these regions. GPT4Rol advances
this by using spatial boxes and Rol-aligned features for in-
put and training on region-text pairs. BuboGPT [47] uti-
lizes an off-the-shelf grounding model [23] and matches the
groundings with the language response. In contrast, LISA
[16] utilizes embeddings from the vision language model
and the SAM [13] decoder to generate output segmentation
masks. However, LISA cannot comprehend specific image
regions or handle multiple instances.

To classify the LMM landscape, methods can be parti-
tioned into four distinct categories (see Tab. 1 - separated
via dotted lines). The first encompasses models effective
in textual responses but lacking in region-specific capabil-
ities [5, 6, 17, 22, 40, 41, 48]. In contrast, among models
that handle region inputs or offer visual grounding, three
more categories emerge. The first of these incorporates ex-
ternal vision modules [24, 47], and the next relies exclu-
sively on LMMs for region understanding [4, 27, 28, 33].
The last category combines specialized vision modules with
LMMs, trained end-to-end for a comprehensive understand-
ing of regions [16, 34, 46]. Our approach belongs to the
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Input / Output

Method Image Region Pixel-Wise =~ Multi-turn ~ End-End
Region Multi-Region Enc./Dec. Grounding Conversation  Model

MM-REACT (arXiv-23) [40] v X/ X X/ x X/x X 4 X
LLaVA (NeurIPS-23) [22] v X/ X X/ X X/ X X v v
miniGPT4 (arXiv-23) [48] v/ X/ X XX XX X v/ v/
mPLUG-OWL (arXiv-23) [41] v/ X/ X XX XX X v/ v
LLaMA-Adapter v2 (arXiv-23) [6] v X/ X X/ X X/X X 4 v
Otter (arXiv-23) [17] v/ X/ X X/ X XX X X v/
Instruct-BLIP (arXiv-23) [5] v X/ X X/ X XX X v/ v

InternGPT (arXiv-23) [24] | ) S XXXk x 7 X
Bubo-GPT (arXiv-23) [47] v X X X/X X v X

~ Vision-LLM (arXiv-23) [33] | o Xy X/ o Xix X . S A
Det-GPT (arXiv-23) [28] v I I X/ x X v 4
Shikra (arXiv-23) [4] v I X/ X XX X X v
Kosmos-2 (arXiv-23) [27] v I/ I XX X X v

- GPT4Rol (arXiv-23) [46] | v o Jix ik ik ) S oo
ASM (arXiv-23) [34] v IX X/ X X X X v
LISA (arXiv-23) [16] v/ XIv XX X/ v/ X 4
GLaMM (ours) v/ I I/ IV v/ v/ v/

Table 1. Comparison of recent Large Multimodal Models (LMMs) emphasizing their capabilities for region-level understanding. The
Input denotes models that can process regions defined by users via bounding boxes, with Multi-Region indicating models that can handle
multiple such regions. The Output represents models capable of delivering grounded responses. While some methods employ external
vision modules for region understanding, others rely solely on the LMM, which may result in imprecise localization. However, a few
integrate specialized vision modules and LMMs, as indicated by the Region Enc./Dec.. The End-End Model distinction separates models
that leverage LMMs for region understanding from those employing external modules. Pixel-wise Grounding highlights models that can
respond with segmentation masks, and Multi-turn Conversation represents models that can hold an interactive dialogue with the user.
Among these, our proposed GLaMM stands out by offering comprehensive region understanding, pixel-wise grounding in its responses,

conversational capabilities, and an end-to-end training approach.

last category and distinctly offers pixel-level grounding to-
gether with multi-turn conversations and the flexibility to
operate on both input images and specific regions. Further,
we provide large-scale instance-level grounded visual un-
derstanding dataset that allows generalizability of GLaMM
to multiple vision-language tasks.

3. Method

Existing Large Multimodal Models (LMMs) either gener-
ate ungrounded text or are restricted by limitations such as
single-object grounding, user-specified region inputs, or the
lack of dense pixel-level object grounding (see Tab. 1). Our
Grounding LMM (GLaMM) aims to overcome these limita-
tions by generating natural language responses seamlessly
integrated with object segmentation masks. This enables a
visually grounded human-machine conversation.

3.1. GLaMM Architecture

GLaMM consists of five core components: i) Global Im-
age Encoder, ii) Region Encoder, iii) LLM, iv) Grounding
Image Encoder, and v) Pixel Decoder. These components
are cohesively designed to handle both textual and optional
visual prompts (image level and region), allowing for in-
teraction at multiple levels of granularity and generating
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grounded text responses (Fig. 2). These blocks together en-
able scene-level, region-level, and pixel-level grounding, as
explained next. Refer Appendix A.2 for training details.

Scene-Level Understanding: To achieve a holistic under-
standing of the scene, we employ ViT-H/14 CLIP [30] as
our global image encoder (T), in conjunction with a vicuna-
based LLM (£) and a vision-to-language (V-L) projection
layer (f). Specifically, given an image zime and a text in-
struction x;, the image is first encoded into a feature vec-
tor I, = Z(%img) € RP* and projected to language space
f(I,) € RPt, The LLM then integrates both the projected
image features and the text instruction to generate output ¥;:

ve :[Z(f(lx),:ct).

This maps image features to language space, enabling
GLaMM to offer holistic scene understanding, achieved
through specific prompts like, “The <image> provides an
overview of the image. Could you please give me
a detailed description of the image?” The <image>
token is replaced with 256 tokens from the CLIP global im-
age encoder.

Region-Level Understanding: Building on the shortcom-
ings of existing models that can handle only image-level vi-
sual inputs, and in alignment with recent work [46], the re-
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segmentation is visible in the background.

1
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5,_ A large hot air
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Output prompts

A large, colorful hot air balloon is flying over the river.
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Region Level Captioning Phrase Grounding

Could you tell me more||Can you segment phrases in, “A <hot air
about this region? balloon> over the <river>”

A yellow, red and Y

" A <hot air balloon> {8
blue hot air balloon g

over the <river>

Figure 2. GLaMM’s architecture. The figure illustrates our model architecture, showcasing its ability to offer scene-level understanding,
region-level interpretation, and pixel-level grounding. Top: The core components of GLaMM, including the global image encoder, region
encoder, LLM, grounding image encoder, and pixel decoder, are cohesively tailored for vision-language tasks across different granularities.
The vision-to-language (V-L) projection layer efficiently maps image features into the language domain, and the pixel decoder utilizes the
language-to-prompt (L-P) projection layer, transforming text embeddings related to segmentation into the decoder space. A major feature
of GLaMM is its ability to perform our newly introduced Grounded Conversation Generation (GCG) task. This highlights the model’s
capability to anchor specific phrases to corresponding segmentation masks in the image. Bottom: The diverse downstream applications of
GLaMM, including referring expression segmentation, region-level captioning, image-level captioning, and phrase grounding.

gion encoder (R) extends the model’s capability to interpret
and interact with user-specified regions in an image. This
component constructs a hierarchical feature pyramid from
four selected CLIP global image encoder layers, followed
by RolAlign [8] to generate a 14x14 feature map. Combin-
ing these features yields a unified region-of-interest (Rol)
representation. To facilitate region-targeted responses from
GLaMM, we augment the existing vocabulary with a spe-
cialized token <bbox>. This is integrated into a prompt like,
“The <image> provides an overview of the image.
Can you provide a detailed description of the
region <bbox>?". Here the <bbox> token is replaced with
the Rol extracted features.

For the region-level understanding, alongside the global
image features I, we also take user-specified regions r as
inputs, encoded as R, = R(I,,r), followed by projection
to language space through the same V-L projection layer f
employed in scene-level understanding. We augment the
text instruction x; by replacing <bbox> tokens with the cor-
responding region features to obtain x}, = [z; + f(R:)].
The LLM then generates the output y; as,

Yt = L:(f(lx)vx:f)

Pixel-Level Grounding: Utilizing the grounding image en-
coder denoted as V and the pixel decoder represented as P,
GLaMM facilitates fine-grained pixel-level object ground-
ing, allowing it to ground its responses visually. We instan-
tiate 1 with a pretrained SAM encoder [13] and design P
based on a SAM decoder-like architecture. To activate the
pixel-level grounding, our model’s vocabulary is augmented

with a specialized token, <SEG>. Prompts, such as “Please
segment the ‘man in red’ in the given image,"
trigger the model to generate responses with corresponding
<SEG> tokens. A language-to-prompt (L-P) projection layer
(g) transforms the last-layer embeddings corresponding to
<SEG> tokens (Is¢4) into the decoder’s feature space. Sub-
sequently, P produces binary segmentation masks M,

M= P(g(lseg),wximg)), s.t., M; € {0,1}.

Using an end-to-end training approach, GLaMM excels in
region understanding, pixel-level grounding, and conver-
sational capabilities. However, due to the lack of stan-
dard benchmarks for the novel setting of generating visually
grounded detailed conversations, we introduce a novel task,
Grounded Conversation Generation (GCG), and a compre-
hensive evaluation protocol as explained next.

3.2. Grounded Conversation Generation (GCG)

The objective of the GCG task is to construct image-level
captions with specific phrases directly tied to corresponding
segmentation masks in the image. For example, “<A man>
and <a boy> sit on <a bench> next to <an old white
car>.”, shown in Fig. 3 (left), features how each bracketed
phrase (highlighted in the image) is anchored to a unique
image segmentation mask. This creates a densely annotated
caption that aligns textual descriptions with visual regions,
enriching the image’s contextual interpretation.

GCG Output Representation: A sample prompt for
querying the model in this task is: “Could you please
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, — =
Alifign and ENBGY sit on ENBEREH next
an old white car.

to

A woman in a navy blue jacket and
hat with a hair ribbon in her haif.

A in a EEANURIESER is about
to kick the ball while a player in a white
uniform is trying to block the shot.

Figure 3. Qualitative results of GLaMM on grounded conversation generation (GCG). Given user queries, the LMM generates textual
responses and grounds objects, object parts, attributes, and phrases using pixel-level masks, showing its detailed understanding.

give me a detailed description of the image?
Please respond with interleaved segmentation
masks for the corresponding parts of the
answer.” The model generates a detailed caption along
with interleaved segmentation masks, employing the for-
mat “<p>A man</p><SEG> and <p>a boy</p><SEG> sit
on <p>a bench</p><SEG> next to <p>an old white
car</p><SEG>.” We use special tokens, namely <p>,
</p> and <SEG>, to delineate the start and end of each
phrase and its corresponding region mask, respectively.

Our GranD dataset is meticulously constructed using a
stage-wise annotation pipeline, capturing annotations that
range from fine-grained specifics to high-level context. This
enables the automatic generation of densely annotated cap-
tions well-suited for the GCG task, thereby significantly fa-
cilitating GLaMM’s training for this task. Some qualitative
results of our model on the GCG task are shown in Fig. 3.
Evaluation Criteria: We introduce a benchmarking suite
for GCG, with a validation set of 2.5K images and a test set
of 5K images. Four key aspects are evaluated: i) generated
dense caption quality, ii) mask-to-phrase correspondence
accuracy, iii) generated mask quality, and iv) region-specific
grounding ability. Metrics include METEOR and CIDEr
for captions, class-agnostic mask AP for grounding, mask
IoU for segmentation, and mask recall for region-specific
grounding (refer to Appendix A.1 for details).

Having delineated the architecture of GLaMM and the
intricacies of the GCG task, it becomes imperative to ad-
dress the scarcity of large-scale annotated data for region-
level understanding. We next focus on devising a new,
densely annotated dataset to optimize the model’s perfor-
mance and overcome this data limitation.

4. Data Annotation Pipeline

We introduce our automated annotation pipeline used to cre-
ate the Grounding-anything Dataset (GranD). GranD is a
comprehensive, multi-purpose image-text dataset offering a
range of contextual information, from fine-grained to high-

level details. It aims to overcome challenges in image un-
derstanding and dense pixel-level grounding, thereby ex-
panding capabilities of visual instruction tuning in LMMs.

The pipeline contains four distinct levels (see Fig. 4).

i) Level-1 focuses on object localization and provides se-
mantic labels, segmentation masks, attributes, and depth
information. ii) Level-2 defines relationships between de-
tected objects. iii) Level-3 organizes information from the
first two levels into a hierarchical scene graph, used to
generate dense captions using LLM with in-context exam-
ples. iv) Level-4 offers enriched contextual information for
a deeper understanding of the scene, going beyond what’s
observed (e.g., historical information of a landmark). Please
refer to Appendix A.4 for pipeline implementation details.

4.1. Object Localization and Attributes (Level-1)

In level-1, the focus is on detailed object identification
within images. First, object-bounding boxes are identi-
fied using multiple SoTA object detection models. Class-
agnostic NMS is applied to each model to filter out false
positives. After this step, bounding boxes from different
models are compared using IoU, with a bounding box re-
tained as an object only if detected by at least two other de-
tection models. We also generate attributes for each filtered
object using region-based vision-language models and in-
corporate depth information to contextualize each object’s
relative position within the scene.

4.2. Relationships and Landmarks (Level-2)

In level-2, multiple short textual descriptions of the overall
scene are generated. Phrases extracted from these descrip-
tions are grounded to specific objects in level-1 to form re-
lationships. These relationships articulate connections be-
tween multiple objects or define an object’s role within the
scene. Further, each scene is assigned a landmark category
that includes a primary and a more specific sub-category
(see Tab. 7 in Appendix A.4.1).
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Objects and Attributes

dog, pub dog, a brown and white dog
dog collar, black color, chain collar
bell, cowbell

steps, stairs, the steps of a building

U B WwN R

sack, a large white bag with black writing

Relationships and Landmarks
A dog sitting on the steps
A large brown dog wearing a chain collar
Cowbell attached to dog collar
Landmarks: Outdoor - Urban Landscape

Extra Context

Scene Graph
Objects pubdog 1 dogcollar 2 cowbell 3 steps 4 sack 5
Foreground Midground Background
Groups pubdog 1 dogcollar 2 cowbell 3 steps 4 sack 5

A dog 1 sitting on the steps 4 Cowbell 3 attached to dog collar 2

A large brown dog 1 with a chain collar 2

Relations

A brown and white dog sitting on the steps.
Alarge brown dog with a chain collar is sitting on the steps of a building.

Urban Landscape

Relations.

Landmark Outdoor Scene

Dense Grounded Caption
A large brown dog is sitting on the steps of a building. It
is wearing a black chain dog collar. The collar has a
cowbell attached to it. There is a bag in the background
with black writings on it.

Dogs, especially pugs and bulldogs, have been a part of human families for thousands of years, serving as loyal companions. They have been bred for specific traits,
making them popular pets. Dogs have been trained for various tasks, including assisting people with disabilities and serving as search and rescue animals. Dog collars,
often bearing identification tags, are essential for keeping pets safe and ensuring they can be returned home if lost. Cowbells, once used to signal the arrival of a cow,
have been repurposed as dog collars, providing a distinct sound to help locate a dog if it wanders off. In outdoor urban landscape, dogs are often found sitting on

steps, as they may choose to rest in spots that offer a good view of their surroundings.

Level-1

Object locatlization and attributes
= Image Tagging and Object Detection
= Open Vocabulary Detection

= Region Attribute Detection

Level-2
Relationships

= Grounding expression
= Landmarks

= Short Captions and Phrase extraction

Level-4

Extra Contextual Insights
= Lanmark Details
= History and Background
* Precautionary Measures

Level-3
Scene Graph & Dense Captioning

= Hierarchical Scene Graph
= In-contex Learning with LLM
= Verification Pipeline

Figure 4. Automatic Annotation Pipeline of the Grounding-anything Dataset (GranD). Comprising four levels, this pipeline plays a
pivotal role in generating GranD’s 7.5M unique concepts grounded in 810M regions. level-1 details objects and attributes, level-2 includes
short captions and relational markers, level-3 builds a scene graph, hierarchically organizing information from earlier levels to facilitate
LLM for grounded dense captions, level-4 provides additional historical and societal context for a richer visual understanding.

4.3. Scene Graph and Dense Captioning (Level-3)

In level-3, object attributes and labels from level-1 are
combined with the relationships and phrases obtained from
level-2 to form a hierarchical scene graph. This structured
data serves as a query for LLM to generate dense image
captions. To provide additional context, depth values and
bounding box coordinates are used to assign each object to
specific spatial layers within the scene, such as immediate
foreground, foreground, midground, or background. Addi-
tionally, short scene-level captions are incorporated into the
scene graph to enhance LLMs’ contextual understanding.
Dense Captioning Verification: To enhance the fidelity of
the LLM-generated dense captions, we implement an auto-
matic verification pipeline using chain-of-thoughts prompt-
ing. This pipeline produces a checklist of objects derived
from the generated dense caption expected to be present in
the image. The associated caption is flagged as inaccurate
if any object specified in the checklist is absent from the
scene graph. Such captions are then regenerated, incorpo-
rating feedback from the initial assessment.

4.4. Extra Contextual Insights (Level-4)

Level-4 builds on the scene graph from level-3 to obtain a
more detailed visual understanding. we query LLM to ex-
tract extended contextual insights beyond basic object iden-
tification and relationships, including details about the land-
marks, historical context, guidelines for interacting with the
scene, and even predictive elements about future events. To
facilitate this, we prompt LLM with in-context examples.

Dataset Images Regions Concepts Tokens Captions’
COCO [20] 0.1M 0.9M 80 - -
LVIS [7] 0.1M 1.5M 1,203 - -
Objects365 [31] 0.6M 10.1M 365 - -
Open Images [15] 1.5M 14.8M 600 - -
BigDetection [3] 3.5M 36.0M 600 - -
V3Det [32] 0.2M 1.5M 13,029 - -
VG [14] 0.1IM 0.3M 18,136 51.2M -
SA-1B [13] 11IM 1.1B - - -
AS-1B [34] 11M 1.2B 3.5M 132.2B -
GranD (Ours) 11M 810M 7.5M 5.0B 33M

Table 2. GranD versus existing datasets. GranD uniquely
provides three fgrounded captions per image with segmentation
masks for every region. AS-1B is shaded to denote its concurrent,
non-public status at the time of this publication.

Utilizing our automated annotation pipeline, we annotate
a corpus of 11M SAM images [13], which are inherently di-
verse, high-resolution, and privacy-compliant. The result-
ing dataset comprises 810M regions, each associated with
a segmentation mask, and includes 7.5M unique concepts.
Further, the dataset features 84M referring expressions,
22M grounded short captions, and 11M densely grounded
captions. To our knowledge, this is the first dataset of this
scale generated entirely through an automated annotation
pipeline (see Tab. 2 for details and Fig. 15 in Appendix for
dataset sample visualizations).

4.5. Building GranD for GCG

Motivated by the need for higher-quality data in fine-tuning
stage, we introduce GranDy. It contains 214K image-
grounded text pairs with 2.5K validation and 5K test sam-
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Table 3. Performance on GCG

Model Validation Set Test Set ' 0
M C AP50 mloU Recall| M C AP50 mloU Recall  Yask: Metrics include METEOR
(M), CIDEr (C), AP50, mloU,
BuboGPT [47] 172 3.6 191 540 294 [171 35 173 541 270 and Mask Recall. LISA* de-
Kosmos-2 [27] 16.1 276 17.1 556 283 | 158 272 172 568  29.0 notes LISA adapted for GCG.
LISA* [16] 13.0 339 252 620 363 |129 322 248 617 355 GLaMM+ denotes training ex-
GLaMMt 152 431 289 658 39.6 | 146 379 272 646 380 cluding 1K human annotated im-
GLaMM 162 472 308 663 41.8 | 158 435 292 656 408 ages. GLaMM shows better per-

formance.

Method refCOCO refCOCO+ refCOCOg Table 4. Qualitative Assess-
ment of GLaMM in Referring-
val  testA  testB val  testA testB val(U) test(U) Expression Segmentation: Per-
CRIS [36] 705 732 66.1 653 68.1 537 59.9 60.4 formance across refCOCO, re-
LAVT [39] 727 758 688 62.1 684 55.1 61.2 62.1 fCOCO+, and refCOCOg in
GRES [21] 738 765 702 660 710 577 65.0 66.0 generating accurate segmenta-
X-Decoder [49] - - - _ - R 64.6 _ tion masks based on text-based
SEEM [50] - _ _ _ _ _ 65.7 _ referring expressions surpasses
LISA-7B [16] 749 791 723 65.1 70.8 58.1 67.9 70.6 that of closely related work, in-
GLaMM 795 832 769 726 1787 64.6 74.2 74.9 cluding LISA which is specifi-

ples. GranD; comprises two primary components: one sub-
set is manually annotated, and the other subset is derived by
re-purposing existing open-source datasets.

We extend open-source datasets—namely Flickr-
30K [29], RefCOCOg [11], and PSG [38] by generating
compatible GCG annotations. For RefCOCOg, we use the
dataset’s referring expressions and their connected masks.
These expressions offer concise descriptions of distinct
objects in the image. With the aid of GPT-4, we seam-
lessly blend these referring expressions with contextual
information from COCO captions, crafting detailed yet
accurate grounded captions while preserving the original
referring expressions. This ensures zero error in matching
phrases with their corresponding segmentation masks.
This technique yields approximately 24K GCG samples.
For PSG, we leverage the dataset’s triplet structures,
which describe relations between two objects in a scene.
These triplets are integrated with COCO captions using
GPT-4, resulting in densely annotated captions that can
be mapped to segmentation masks. This gives us around
31K additional GCG samples. For Flickr-30K, we use
the 158K Flickr captions and their referring expressions
alongside associated bounding boxes. These boxes are then
accurately segmented using HQ-SAM [12].

In addition, we contribute a minor, high-quality manual
annotation set to benchmark the GCG task. Using GranD’s
automatic annotations as a base, annotators refine referring
expressions to match SAM GT masks, yielding around 1000
focused samples for training and 1000 for evaluation (re-
fer to Appendix D and Fig. 14 in Appendix for designed
prompts and dataset visualizations).

cally designed for this task.

5. Experiments

We perform quantitative evaluations of GLaMM on six
benchmarks: i) Grounded Conversation Generation (GCG),
ii) referring-expression segmentation, iii) region-level cap-
tioning, iv) image-level captioning, v) conversational-style
question answering and vi) phrase grounding. We present
the first four benchmarks next, and the remaining are dis-
cussed in Appendix B. Grounded Conversation Gener-
ation (GCG). We pretrain GLaMM on GranD dataset fol-
lowed by fine-tuning on the GranD; dataset. The results
are presented in Tab. 3 on both validation and test splits
of the GranD; dataset (refer to Sec. 3.2 and Sec. 4.5 for
details). GLaMM shows improved performance compared
to baseline methods. Pretrained models for BuboGPT and
Kosmos-2 are sourced from official releases, and LISA is
adapted and trained on the GranDy dataset for the GCG
task. GLaMM7{ denotes the variant trained on GranDj
dataset excluding the 1000 human-annotated images. Qual-
itative results are shown in Fig. 3 and supplementary Fig. 7.
Referring Expression Segmentation. In this task, the
model processes an image and a text-based referring expres-
sion to output a segmentation mask. The prompt used is,
“Please segment the <referring expression> in the
image." The model responds with “Sure, it is <SEG>.",
where the <SEG> token is decoded to obtain the mask. We
achieve better results over recent works like LISA on the
refCOCO, refCOCO+, and refCOCOg validation and test
sets in Tab. 4. This demonstrates the efficacy of our GranD
dataset, offering the model extensive concept vocabulary
during pre-training (refer to Fig. 5 (middle) and supplemen-
tary Fig. 8 for qualitative results).

Region Level Captioning. In this task, models generate
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Can you segment the McDonald's
cup in this image?

¢0

Can you please describe this region?

Could you give a comprehensive explanation 2
of what can be found within this picture?

4o

@ A Yellow Volkswagen Beetle
Two girls in costume stand in front of
a black curtain with a smiling face
and skeleton head on it. They are next
to a poster of a man in a tuxedo.

Is this car a new model ?

[ 3]

@ No, it is an old model

Figure 5. Qualitative results of GLaMM’s performance across downstream tasks. The figure showcases examples from three tasks:
region-level understanding (left), referring-expression segmentation (center), and image-level captioning (right), demonstrating its capabili-
ties in offering in-depth region understanding, pixel-level groundings, and conversational abilities through an end-to-end training approach.

Model refCOCOg Visual Genome sual Genome and refCOCOg, using METEOR and CIDEr
METEOR CIDEr METEOR CIDEr metrics with results presented in Tab. 5. GLaMM shows
improved results over GRiT and GPT4Rol after fine-tuning

GRIT [37] 15.2 71.6 17.1 142 dd b h f hichlich
Kosmos-2 [27] 141 623 i i and demonstrates robust zero-shot performance, highlight-
GPT4Rol [46] ) _ 17.4 1452 ing the significance of GranD’s region-text pairs (refer to
GLaMM (ZS) 157 104.0 17.0 127.0 Fig.5 (left) and supplementary Fig. 9 for qualitative results).
GLaMM (FT) 16.2 106.0 19.7 180.5 Image Level Captioning. For this task, GLaMM responds

Table 5. Performance of GLaMM in Region-Level Captioning:
Metrics include METEOR and CIDEr scores, assessed on Visual
Genome and refCOCOg Datasets, exhibiting competitive results.

Model NoCap Flickr30k
CIDEr SPICE CIDEr SPICE
VinVLM [44] 95.5 13.5 - -
LEMON [9] 106.8 14.1 - -
SimVLM [35] 110.3 14.5 - -
CoCa [43] 120.6 15.5 - -
BLIP [18] 113.2 14.7 - -
BLIP-2 [19] 121.6 15.8 - -
InstructBLIP [5] 123.1 - 82.8 -
Shikra-13B [4] - - 73.9 -
Kosmos-1 [10] - - 67.1 14.5
Kosmos-2 [27] - - 66.7 -
GLaMM 106.8 15.8 95.3 18.8

Table 6. Performance of GLaMM in Zero-Shot Image Cap-
tioning: Assessed on Flickr30k and NoCap datasets, showing fa-
vorable results compared to recent models in the field.

region-specific captions given an image, a user-specified
region via a bounding box and related text. We utilize a
prompt like, “Can you provide a detailed description
of the region <bbox>?”, to instruct the model for this
task, where the special token <bbox> is replaced with the
actual region representations. We evaluate GLaMM on Vi-

to queries like, “Could you please give me a detailed
description of the image?" with a textual descrip-
tion. We evaluate GLaMM’s zero-shot performance on
Flickr30k [29] and NoCap [1] datasets, with Tab. 6 showing
its favorable performance against recent image captioning
models and other LMMs (refer to Fig. 5 (right) and supple-
mentary Fig. 10 for qualitative results).

6. Conclusion

We introduce GLaMM, the first model capable of gener-
ating natural language responses intertwined with object
segmentation masks, allowing for enhanced multimodal
user interactions. Recognizing the lack of standard-
ized benchmarks for visually grounded conversations,
we introduce the novel task of Grounded Conversation
Generation and establish a comprehensive evaluation
protocol. To facilitate research and model development,
we create the Grounding-anything Dataset (GranD), a
large-scale, densely annotated dataset with 7.5 million
unique concepts grounded in 810 million regions. Our
automated annotation pipeline ensures the reliability and
scalability of this dataset used for our model. In addition
to these contributions, we curated a dataset specifically
tailored for the GCG task (GranDy) by leveraging ex-
isting open-source datasets, establishing a high-quality
fine-tuning dataset to develop visually grounded conver-
sations. Our model performs well on downstream tasks
besides GCG, including region and image captioning,
referring segmentation, and vision-language conversations.
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