
Neural Fields as Distributions: Signal Processing Beyond Euclidean Space

Daniel Rebain1, Soroosh Yazdani2, Kwang Moo Yi1, Andrea Tagliasacchi3, 4, 5

1 University of British Columbia, 2 Google Research, 3 Google DeepMind,

4 Simon Fraser University, 5 University of Toronto

Abstract

Neural fields have emerged as a powerful and broadly
applicable method for representing signals. However, in
contrast to classical discrete digital signal processing, the
portfolio of tools to process such representations is still
severely limited and restricted to Euclidean domains. In
this paper, we address this problem by showing how a prob-
abilistic re-interpretation of neural fields can enable their
training and inference processes to become “filter-aware”.
The formulation we propose not only merges training and
filtering in an efficient way, but also generalizes beyond the
familiar Euclidean coordinate spaces to the more general
set of smooth manifolds and convolutions induced by the
actions of Lie groups. We demonstrate how this framework
can enable novel integrations of signal processing tech-
niques for neural field applications on both Euclidean do-
mains, such as images and audio, as well as non-Euclidean
domains, such as rotations and rays. A noteworthy benefit
of our method is its applicability. Our method can be sum-
marized as primarily a modification of the loss function, and
in most cases does not require changes to the network ar-
chitecture or the inference process.

1. Introduction
In the field of signal processing, there are few operations
more fundamental than applying a filter to a signal, and
the specific way we represent signals has a significant im-
pact on what filtering methods are available. For example,
neural fields are growing in popularity as a way of rep-
resenting complex signals [17, 27, 29], but few efficient
and general-purpose methods exist for applying filters to
them [14, 20, 35]. Our goal in this work is to address
this shortcoming, and provide a more general mathematical
treatment of neural fields which will unlock better filtering
methods for them.

The simplest approach to incorporating signal process-
ing operations in neural field pipelines is to apply classical
discrete operations to the data at a stage when it is repre-
sented discretely. For example, some filtering operations

f̂ ˚ k « fθ

Figure 1. Our method enables a variety of neural field-based
methods to be reinterpreted within a common framework of non-
Euclidean signal processing. For example, we show how the sim-
ulation of lens effects, such as depth of field (top), can be im-
plemented without extra inference cost as a linear filter applied at
training time. This filtering operation is realized as a group con-
volution via the action of SEp3q between the light field of the
scene f̂ and distribution of rays k. Our training process results in
the observed light field being directly approximated by the learned
network fθ « f̂ ˚ k. In the case where a typical pinhole camera
model is desired, our method reduces to convolving with a Dirac
delta distribution over the ray manifold (bottom). See our project
page at https://ubc-vision.github.io/nfd for more
qualitative results.

may be applicable to discrete training data like images or
audio before the neural field is constructed. In other cases,
it may be possible to apply the desired filter to a discrete
sampling of the neural field’s outputs, e.g., rendered images.
While an effective strategy may exist in the cases where it is
applicable, there are many possible applications for which
this is not a good option due to the dimensionality and/or

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

4274

topology of the signal’s domain. An example of such an
application, which we explore in this paper, is the task of
modelling lens effects in novel view synthesis. Typically,
a neural field model used for such applications operates on
a four or five-dimensional non-Euclidean manifold of rays,
and is supervised by sparse training data. As such, filter-
ing before training is not feasible for most filter types, and
filtering at inference increases cost significantly due to the
extra network evaluations required. We aim to demonstrate
that there are better options for this kind of filtering task that
require neither.

Another approach would be to modify the field represen-
tation to allow some kinds of filters to be applied. This is
a powerful approach, and has seen substantial success in
some areas [1, 3, 14], but is limited in the kinds of filters
it can support. Specifically, these methods typically focus
on frequency decomposition, i.e., band-limiting filters, and
often require the filtered signal as supervision rather than
constructing it from the input signal and filter kernel. These
methods are useful for separating low and high-frequency
components and tasks such as anti-aliasing, but are not suit-
able for more general tasks.

The approach we champion is to extend the training pro-
cess for neural fields, in a way that is agnostic to both the
neural architecture and the filter itself, to incorporate the
computation of the filtered signal. This is ideal in many
cases as it does not require any “extra” steps in the typical
case of pipelines which already include neural field training
as a required step.

To achieve this, we propose a novel formulation that
combines training and filtering as a maximum likelihood
estimation problem, where the signal itself is viewed as a
probability distribution. We allow this by leveraging the
theoretical link between the convolution of probability dis-
tributions and the transformation of random variables by
group actions, which enables an efficient combined loss
function.

To summarize, we make the following contributions:
• we derive a novel probability-based training objective for

neural fields which produces filtered versions of the train-
ing signal without requiring filtered ground truth,

• we show how this formulation generalizes beyond fields
on Euclidean spaces to convolutions of functions on the
homogeneous spaces of arbitrary Lie groups, thereby ex-
panding the set of available filtering operations,

• we demonstrate several potential applications for this
method, including image filtering, environment lighting,
and simulation of lens effects for novel view synthesis.

2. Related Works
Since their introduction [7, 16, 22], and mass popularization
in the wake of the successes of Neural Radiance Fields [17],

neural fields have been applied to many different problems
across a number of fields [34]. Of particular interest to us
are applications which are traditionally associated with, or
adjacent to, signal processing. Notable examples are com-
puter vision and graphics, where neural fields were first
deployed, and have been used to model images [19], ob-
jects [11, 16, 22], environment maps [4, 39], light fields
[25, 27, 28], and more. Similar applications have also ap-
peared in adjacent fields like medical imaging [26, 37] and
acoustics [10]. The intersections of our contributions with
the entire literature on neural fields are far too numerous
to list exhaustively, but broadly speaking, any applications
which incorporate signal processing operations could have
the potential to be made simpler, more efficient, or more
general, through integration with our method.

Neural networks and group convolution. A central
component of our contribution is the extension of neural
field convolution to signals on non-Euclidan domains using
group convolution. While our application of group theory
to this particular problem is novel, we are far from the first
to investigate the applications of group convolution in the
context of neural networks. In particular, there is a line of
research focused on extending the well-known translation-
equivariance of Convolutional Neural Networks (CNNs) to
other forms of equivariance [6, 9, 13]. A concrete exam-
ple would be a CNN which learns to perform a rotation-
equivariant transformation of a signal on the surface of a
sphere. Similarly, our method could be used to train a neu-
ral field to represent the result of applying a rotationally-
invariant filter kernel (or family thereof), to a signal defined
on the surface of a sphere. The most important difference
is that because we construct our method in terms of neural
fields, we need not worry about the specifics of discretiza-
tion or signal representation on such challenging domains.

Band-limited neural fields. While signal processing meth-
ods for neural fields remain under-explored, there has been
work towards addressing this. Perhaps the most successful
has been Mip-NeRF [1] and its many descendants and alter-
natives [2, 3, 14, 36]. These works modify the field network
architecture, or the methods used to sample from it, with the
goal of providing some control over the frequency content
of the represented signal. The archetypal use case for this is
anti-aliasing, which requires the application of a low-pass
filter. Usually, this is achieved by decomposing or biasing
the network to output different frequency components of the
represented signal depending on the input provided.

Differential operators for filtering neural fields. While
frequency-decomposition methods are useful for address-
ing aliasing, they do not support more general filters, and
in some cases only provide rough approximations of the fil-
tered signal. A few works have gone beyond this paradigm
and attempted to support performing arbitrary convolutions

4275

on neural fields. INSP [35] is a method which takes already-
trained neural fields as inputs, and composes them with a
function that applies some filter to their output. This is
achieved by leveraging the differentiability of neural net-
works to predict not only the output of the input field at a
point, but also the gradient and higher-order derivatives of
the field. These can be mapped to the filtered output by
an auxillary network which takes advantage of the informa-
tion that spatial derivatives encode about the local neigh-
bourhood. This approach has the distinct advantage of not
depending on the original neural field architecture and the
ability to operate on an already trained network. However,
it is constrained in practice by the fidelity of the approxi-
mation provided by the finite number of derivatives used,
which limits it to the use of simple kernels. By contrast, our
method places no restrictions on the complexity or size of
the filter kernel.

Neural field filtering by repeated differentiation. The
most relevant to us is the recent work of Nsampi et al.
[20], that propose a combined method of training and fil-
tering a neural field representation. Differently from our
method, they leverage the property that convolving a signal
with a filter is equivalent to convolving the signal’s anti-
derivative and the filter’s derivative. If the filter is approx-
imated as a piecewise polynomial which will reduce to a
sum of Dirac deltas under repeated differentiation, then the
convolved signal may be computed in terms of repeated in-
tegrations of the signal. This is effective for filters which
can be well approximated as low-order piecewise polyno-
mials, but adds extra complexity by requiring construction
of both the repeated integral field and approximated filter.
We avoid this complexity, as our method requires only a
way to draw samples from the desired filter kernel.

3. Neural fields as distributions
The literature on neural fields has largely converged to
nomenclature in which “field” refers to some function over
a coordinate space, similar to the usage of the term in
physics, and distinct from the notion of a field in mathe-
matics [34]. While some works have restricted their con-
sideration to spatio-temporal domains [34, Def. 1], we will
adopt a broader definition that considers functions defined
over smooth manifolds. In particular, let M be an infinitely
differentiable manifold, and f̂pxq : M Ñ Rd be a contin-
uous mapping. We will define a neural field as an approxi-
mation f̂pxq«fθpxq parameterized as a neural network with
weights θ.

Coordinate encoder. It is important to note at this point
that typical neural networks, as a consequence of their struc-
ture, require their inputs to be elements of Rm. Rather
than bake this restriction into our definition, we will assume
the existence of a coordinate encoder, which continuously

maps elements of M into Rm. This generalization simpli-
fies the mathematical treatment of neural field methods that
operate on domains other than Rm, such as rotations or rays.
From now on, we will assume the coordinate encoder to ex-
ist as an internal module of fθ.

Euclidean and non-Euclidean spaces. For the sake of
accessibility, we will present a derivation of our training
formulation in this section that considers only Euclidean
spaces, i.e., M“Rm. We will detail how our method ex-
tends to other smooth manifolds using a group-theoretic
definition of convolution in Sec. 5.

3.1. Regression and maximum likelihood

Broadly speaking, training a neural field can be defined as
the problem of finding network weights θ which achieve the
approximation f̂pxq«fθpxq over some distribution of co-
ordinate values x„Q that represents the subdomain where
ground truth values are known, and that may be continuous
or discrete. This is frequently treated as a regression prob-
lem, where the error between ground truth observations and
the predictions of the model are directly minimized. A very
common implementation of this is least-squares regression,
which yields an optimization objective of the form:

L “ Ex„Q r||f̂pxq ´ fθpxq||22s. (1)

Equation (1) can equivalently be interpreted as a maximum
likelihood estimation problem where we assume that errors
in predicted field values are normally distributed [12, Sec.
9.6]. Such an approach is ideal when the goal is to fit the
exact signal represented by the ground-truth data. For our
case, however, fitting a filtered signal f̂ ˚k«fθ with access
only to the unfiltered signal f̂ would require expanding the
convolution inside the loss:

L “ Ex„Q

«

›

›

›

›

ˆ
ż

Rm

kpvqf̂px ´ vqdv

˙

´ fθpxq

›

›

›

›

2

2

ff

. (2)

For filters which can be interpreted as probability distribu-
tions, such as Gaussians, the integral can be expressed as an
expectation over samples drawn from k:

L “ Ex„Qr||Ev„krf̂px ´ vqs ´ fθpxq||22s. (3)

However, this approach requires that the ground truth sig-
nal value be known for any possible value of x ´ v within
the support of Q ˚ k. For applications which are trained
from real-world measurements, the data is typically sparse
and/or incomplete, and thus incompatible with this require-
ment. The other major drawback is the Opnq complexity
of the loss for each network evaluation, which requires n
additional samples to approximate the application of the fil-
ter [8]. This Monte Carlo approach will be effective in any
case where the sample mean of the expectation converges

4276

quickly enough that only a small number of samples is re-
quired to achieve the desired accuracy. In practice, this lim-
its consideration to kernels which are small relative to the
Nyquist rate of the signal [20].

Conversely, our goal in this work is to achieve Op1q

complexity, where each evaluation of the network is su-
pervised with one sample from potentially discrete ground
truth data, which may not be amenable to continuous sam-
pling. Achieving this goal will unlock signal processing
applications in more challenging domains where the model
is trained without direct access to the underlying signal,
such as the construction of light and radiance fields from
images (see Sec. 5.2).

To this end, we re-formulate our problem differently
from standard regression. Rather than treating the field val-
ues as random variables and estimating their distribution,
we instead model the sample coordinates as random vari-
ables, with field values interpreted as densities of the sample
distribution. This transformation enables us to take advan-
tage of the correspondence between convolution and ran-
dom variable addition, and avoid the limitations of directly
regressing the filtered field values by Monte Carlo estimate.
We will show in the remainder of this section how this re-
sults in an efficient loss function for learning filtered signals.

3.2. Signals as sample distributions

To begin, we will make simplifying assumptions that
we will later partially relax. First, we consider only
distribution-like signals that map to a single non-negative
real number and integrate to one over the coordinate mani-
fold. This enables re-writing integrals as expectations over
this distribution. We can construct a distribution-like field p̂
from a non-negative ground truth field f̂ :

p̂pxq “
f̂pxqQpxq

ş

Rm f̂px1qQpx1q dx1
. (4)

We will also consider filters k that are distribution-like:

kpxq ě 0 for all x P Rm,

ż

Rm

kpxqdx “ 1. (5)

With these properties in place, we can construct our
maximum likelihood estimation problem. Specifically, we
wish to find parameters θ for our probability density func-
tion pθpxq, such that the likelihood given samples from the
target distribution is maximized. We also wish to incorpo-
rate filtering, so our target distribution will be the convolu-
tion of the signal and the filter p̂˚k. The resulting optimiza-
tion is the maximization of the expected log-likelihood:

ℓpθ|p̂ ˚ kq “ Ex„p̂˚k rlogppθpxqqs. (6)

We can presumably neither draw samples from p̂˚k, nor
directly evaluate its PDF, so we will start by rewriting the

expectation in a more friendly form. First, we will expand
the expectation and convolution as integrals:

ℓpθ|p̂ ˚ kq “

ż

Rm

pp̂ ˚ kqpxq logppθpxqqdx, (7)

“

ż

Rm

ż

Rm

p̂px ´ vqkpvq logppθpxqqdvdx.

Then we execute a change of variables x1 “ x ´ v:

ℓpθ|p̂ ˚ kq “

ż

Rm

ż

Rm

p̂px1qkpvq logppθpx1 ` vqqdvdx1,

so to re-write the double integral as nested expectations:

ℓpθ|p̂ ˚ kq “ Ev„k,x„p̂ rlogppθpx ` vqs. (8)

This result is a direct consequence of the well-known equiv-
alence between sums of random variables and convolution
of distributions [12, Eq. 2.2.1].

At this point, we have reached a form for the optimiza-
tion objective that can be evaluated. It is reasonable to as-
sume that for both the kernel and the signal we can either
draw samples or directly evaluate the PDF, either of which
yield straightforward strategies for computing the expected
value of the log-likelihood.

Our only remaining problem is that we still assume the
learned pθpxq to behave like a PDF, i.e., to be normalized.
Because most neural field architectures do not satisfy this
property by construction, we will further rewrite this in
terms of an un-normalized field fθpxq. In the case where
the distribution Q of known ground truth values is continu-
ous, this can be done straightforwardly by integrating over
the support of Q. Unfortunately, this distribution is often
not continuous, as we frequently wish to supervise with
discretized representations such as 2D pixel grids. While
there may be interpolation strategies to interpret such data
as continuous functions, we will keep our derivation general
and consider the case where Q is non-zero only at discrete
points, i.e., a mixture of Dirac delta distributions.

As illustrated in Fig. 2, we apply a normalization strat-
egy that handles both discrete and continuous supervision
distributions. This is achieved by choosing to define pθpxq

as proportional to the un-normalized field fθpxq, weighted
by the (potentially discrete) PDF pQ ˚ kqpxq:

pθpxq “
pQ ˚ kqpxqfθpxq

ş

RmpQ ˚ kqpx1qfθpx1qdx1
. (9)

We use the convolution of Q and k here, as this will weight
the normalization proportionally to the distribution of the
random variable x ` v, thereby maintaining balance be-
tween the probability and normalization terms. Using (9)
in the MLE objective will ensure that the learned field is
only constrained in areas where the supervision signal ex-
ists, thereby allowing the network outputs to vary freely

4277

f̂pxq Qpxq

kpxq pQ ˚ kqpxq

pf̂ ˚ kqpxq

´

f̂˚k
Q˚k

¯

pxq

Figure 2. Traditional neural field training objectives which are
supervised by a discretely sampled signal f̂pxq can be written as
an expectation over the support distribution Qpxq of the data, thus
allowing the natural interpolating property of the network to deter-
mine the value in unsupervised areas. Our method, however, must
handle the case where a continuous kernel kpxq, of any shape or
size, is applied to discrete data. If we normalize the predicted field
uniformly over the coordinate space, the unsupervised areas are
effectively interpreted as having ground truth value zero, resulting
in the network learning the function pf̂ ˚ kqpxq. Conversely, if
the normalization constant is weighted by pQ ˚ kqpxq, this issue
is avoided, and a reasonble interpolation can be achieved.

elsewhere, as is typical in neural field training. The result-
ing expression for the expected log-likelihood is:

ℓpθ|p̂ ˚ kq “

Ev„k,x„p̂

„

log

ˆ

pQ ˚ kqpx ` vqfθpx ` vq
ş

RmpQ ˚ kqpx1qfθpx1qdx1

˙ȷ

. (10)

Again, we need to eliminate the convolution operations
which we cannot directly evaluate. First, we split the factors
inside the log to separate terms:

ℓpθ|p̂ ˚ kq “ Ev„k,x„p̂rlogppQ ˚ kqpx ` vqqs

` Ev„k,x„p̂rlogpfθpx ` vqqs

´ log

ˆ
ż

Rm

pQ ˚ kqpxqfθpxqdx

˙

. (11)

The first term does not depend on θ, and so will be irrelevant
to the training optimization. The integral in the third term is
of the same form as the one in (7), and can be transformed
to an expectation in the same way:

ℓpθ|p̂ ˚ kq “ Ev„k,x„p̂rlogppQ ˚ kqpx ` vqqs

` Ev„k,x„p̂rlogpfθpx ` vqqs

´ logpEv„k,x„Qrfθpx ` vqsq. (12)

Finally, we can write the maximum-likelihood estima-
tion objective as a loss function which can be minimized by
typical gradient-based optimizers:

LMLE “ Ev„k,x„p̂r´ logpfθpx ` vqqs

` logpEv„k,x„Qrfθpx ` vqsq. (13)

This objective is similar to that used in training Energy-
Based Models [30], with the difference that the normaliza-
tion term is evaluated over the data support Q, rather than
the modeled probability.

3.3. Practical considerations

Scale ambiguity of the solution. The loss function in (13)
is sufficient only to constrain the value of fθpxq up to a
global scale. Because the derivation incorporates the nor-
malization constant term explicitly, the resulting objective
has a null space corresponding to scalar multiplication of
the network output. Multiple options exist for addressing
this. If reconstructing the signal up to an arbitrary scale is
sufficient, then only a simple regularizer of the mean out-
put is needed. Alternatively, if the goal is to exactly match
the scale of the input signal, including the gain of the fil-
ter k if it is not one, an additional loss term of the form
||Ex„Qrf̂pxqs ´ Ex„Qrfθpxqs||22 can be used to match the
expected value of the predicted and ground truth signals.

Choice of sampling distributions. While directly approx-
imating the expectations in (13) using the sample mean is a
viable option, we found empirically that this is not the op-
timal strategy. In particular, this direct approach has two
shortcomings: first, it requires two sets of samples at which
the network must be evaluated, doubling the computational
cost, and second, the disjoint locations of positive and neg-
ative supervision results in sub-optimal convergence for a
given batch size. To address this, we simply rewrite the first
term as an expectation over Q:

LBalanced “ Ev„k,x„Q

„

´ logpfθpx ` vqq
p̂pxq

Qpxq

ȷ

` logpEv„k,x„Qrfθpx ` vqsq,

“ Ev„k,x„Q

«

´ logpfθpx ` vqq
f̂pxq

a

ff

` logpEv„k,x„Qrfθpx ` vqsq, (14)

where a “
ş

Rm f̂pxqQpxqdx is the normalization constant
from (4). In this form, both terms can use the same set of
samples, thereby mitigating the issues mentioned above.

Relaxing the distribution-like constraint. Relaxing the
assumption of scalar-valued fields to fit vector-valued sig-
nals such as color can be achieved straightforwardly by ap-
plying the loss on each channel separately. Doing so with

4278

the naive form of the loss function in (13) would require
separate evaluations of the network for each channel, but
this too can be avoided by using the form in (14).

Signals that are not strictly positive, but which have a fi-
nite minimum value may also be reconstructed by adding
an offset to their values such that their range becomes posi-
tive. Thanks to the linearity of the convolution operator, this
offset can then simply be subtracted from the final result.

The final strategy we can apply is to allow non-positive
filter kernels. Because we require compact kernels which
integrate to a constant over the whole domain, we can not
apply the constant offset trick to this problem. Instead, we
can construct a second filter jpxq, such that kpxq`jpxq ě 0

for all x. Then, by learning both f̂ ˚ pk ` jq and f̂ ˚ j, we
can construct f̂ ˚ k as f̂ ˚ pk ` jq ´ f̂ ˚ j.

4. Experiments with Euclidean Signals
We evaluate the our proposed method in comparison
to Nsampi et al. [20], as well as the naive Monte Carlo base-
line described in Sec. 3, on neural field filtering for signals
defined over low dimensional, Euclidean spaces.

We experiment with filtering images, the results of which
are reported in Tab. 1, as well as videos, which can be found
in the Supplementary Material. We find that, as expected,
the Monte Carlo baseline performs very well for small filter
sizes, but becomes worse than our method at larger scales,
despite the fact that we scale up the sample count propor-
tional to the filter size. This problem only becomes worse
as the number of samples required grows exponentially with
the dimensionality of the signal.

Our method performs similarly to that of Nsampi et al.
[20] for small kernels, but outperforms it for large ones.
The multiple network invocations required for each pixel
for their method also causes its inference speed, which we
report in megapixels per second (MP/s), to be much lower,
depending on the complexity of the filter.

As Nsampi et al. [20] is a zero-shot method, in that it
is capable of inference on different filters without retrain-
ing, we also perform an experiment comparing this ability
to our method using a learned space of filters, i.e. a network
trained with randomly sampled filter scales and the network
modified to accept the desired scale as an input. As shown
in Tab. 2, our method gives high quality results in such a
case without extra training time or network capacity.

Because the authors’ code was not yet available at
the time we performed experiments, we re-implemented
the method described in [20] as part of the same JAX-
based [5] codebase as our method. All experiments are
performed with exactly the same network architecture (de-
tailed in the Supplementary Material), data pipeline, and
software+hardware environment, with only the minimum
changes between runs necessary to implement the various
loss functions. To ensure we do not unfairly bias the test

σ Method PSNR SSIM LPIPS Iterations Inference Speed

Monte Carlo 40.9 0.982 0.730 185373 639.5 MP/s
0.02 Nsampi et al. [20] 37.1 0.919 0.767 25972 100.7 MP/s

Ours 38 0.97 0.734 329720 674.5 MP/s

Monte Carlo 45.4 0.992 0.710 48904 676.1 MP/s
0.04 Nsampi et al. [20] 42.5 0.987 0.708 25983 103.6 MP/s

Ours 44.2 0.992 0.710 328550 700.0 MP/s

Monte Carlo 49.5 0.997 0.586 14994 658.1 MP/s
0.08 Nsampi et al. [20] 45.8 0.998 0.596 25995 103.9 MP/s

Ours 48 0.998 0.589 329270 684.6 MP/s

Monte Carlo 46.6 0.998 0.499 5561 680.9 MP/s
0.16 Nsampi et al. [20] 46.1 0.999 0.507 25992 106.5 MP/s

Ours 50.8 0.999 0.502 329060 663.5 MP/s

Table 1. Image filtering – Here we apply filters to images at var-
ious scales (σ). Several filters are used, with the reported metrics
averaged over all image/filter pairs (see the Supplementary Mate-
rial for a list), and reconstruction metrics only evaluated within the
valid region of the convolution to avoid artifacts due to different
handling of boundary conditions. Training for all jobs is limited to
five minutes, and evaluation is done at whatever iteration it reaches
in that time. Ground truth filtered images are computed via dis-
crete Fourier transform.

Method PSNR SSIM LPIPS Iterations Inference

Nsampi et al. [20] 43.5 0.982 0.647 51913 105.0 MP/s
Ours 42.6 0.984 0.634 628219 685.4 MP/s

Table 2. Filter spaces – A single network is trained to apply filters
with width varying from 2% to 16% of the image width, with the
reported metrics averaged over a log-uniform sampling of scales,
where reconstruction metrics are only evaluated within the valid
region of the convolution to avoid artifacts due to different han-
dling of boundary conditions. Training for all jobs is limited to ten
minutes, and evaluation is done at whatever iteration it reaches in
that time. Ground truth filtered images are computed via discrete
Fourier transform.

in favor of our method, we tune all hyperparameters using
the loss function from [20], and re-use these values for runs
with our method without further tuning.

5. Extending beyond Euclidean space
5.1. Filtering neural fields on smooth manifolds

In this section, we consider the more general case where
the input manifold M is not necessarily Euclidean, i.e.,
M‰Rm. To do this, we will need to identify the proper-
ties and requirements of, and requirements for, convolution
of functions on non-Euclidean domains. With these defi-
nitions in place, we can repeat the derivation of our loss
function without the Euclidean assumption.

Convolution on homogeneous spaces. In this more gen-
eral case, we must be careful with the coordinates x P M,
as they can not be assumed to admit familiar operations such
as addition or multiplication. At the minimum, we require a
notion of convolution between functions on M, so we will
begin by endowing M with a convolution operator.

We first start by assuming the existence of a Lie group G

4279

of which M is a homogeneous space. This means that G
acts transitively on M, or in other words, for any a,b P

M, there exists some g P G such that ga “ b, where ga
denotes the action of g on a. A concrete example would
be G “ SOp3q (3D rotations) and M “ S2 (a 3D sphere):
in this case, any point on the 2-sphere can be transformed
to any other by the application of a 3D rotation.

Given this structure, the convolution of two real-valued
functions f and k on M is a mapping X pMq ˆ X pMq Ñ

X pGq1 and is defined as:

pf ˚ kqpgq “

ż

M

fpgηpvq´1oqkpvqdµpvq, (15)

where o is an “origin” element2 in M, η : M Ñ G
is a lifting function such that ηpxqo “ x, and µ is the
Haar measure on M. This definition has the inconvenient
property that the function resulting from the convolution of
two signals on M is defined over G. As such, in cases
where M fl G we will need to either lift the domain of our
field to G, or restrict our consideration to functions whose
convolution will be interpretable as functions on M.

More specifically, let H be a subgroup of G such that
the quotient space G{H – M. We say that a function ϕ on
G is H-invariant if ϕpgq “ ϕpghq for all h P H and all G.
What we want is for the convolution f˚k to be H-invariant.
When this holds, the actions g P G which satisfy ga “ b
for any a,b P M will all have the same value of pf ˚

kqpgq. This can be achieved by restricting consideration to
functions k which are H-symmetric about o, i.e., k s.t.:

kpxq “ kpgxq @g P G where go “ o. (16)

To again use G “ SOp3q, M “ S2 as an example, spheri-
cal convolution requires rotationally symmetric kernels, be-
cause SOp3q{SOp2q – S2. For the case where M – G, H
will be the trivial group, and the H-symmetry of k will al-
ways be trivially satisfied. The resulting expression for H-
invariant convolution expressed as a function on M is:

pf ˚ kqpxq “

ż

M

fpηpxqηpvq´1oqkpvqdµpvq. (17)

We refer the reader to [24], [13], and [6], which provide
more in-depth introductions to this topic.

Loss function for non-Euclidean signals. When general-
ized to non-Euclidean manifolds, our loss function is:

LMLE “ Ev„k,x„p̂r´ logpfθpηpxqvqqs

` logpEv„k,x„Qrfθpηpxqvqsq. (18)

This form is equivalent to (13) in the case where M“Rm

and the group action is vector addition. The same
1X pAq here denotes a mapping A Ñ R.
2An arbitrary, but consistent, point of reference on the manifold.

O
bj

ec
tF

oc
us

L
en

s
Fo

cu
s

Pi
nh

ol
e

Figure 3. Light field network – We show how our filtering
method is able to train a depth of field-aware light field network
from pinhole ground truth images such that complex optical ef-
fects, such as refraction in this scene with an object behind a lens,
are correctly modelled. In this figure, all images are rendered from
the same network, with aperture and focus settings varied between
the rows to focus on the whole scene (pinhole), the object through
the lens, and the object observed directly.

re-weighting and generalization strategies described in
Sec. 3.3 are also applicable here. For the full derivation
of this form, please refer to the Supplementary Material.

5.2. Experiments on non-Euclidean signals

In this section, we demonstrate the application of our
method to non-Euclidean filtering problems.

Light field filtering. Despite the name, this section deals
with both Light Field Networks and Neural Radiance fields.
Light field networks are a direct neural parameterization of
the Plenoptic function – the function which defines the in-
tensity of observed light at every point, and in every direc-
tion in space. “Radiance fields”, by contrast, are a parame-
terization of the light leaving every point in space in every
direction, as well as a density value, which describes how
material at that point in space blocks light from passing
through it. Through the application of volume rendering,
this representation can also be interpreted as a light field, as
both are mappings from ray parameters to light or color.

The manifold over which a light field is defined can be
either be R3 ˆ S2 in the case of the full 5D Plenoptic func-
tion, or Grp2, 4q (lines in projective 3D space) in the 4D
case where the content of the scene is observed from out-
side its convex hull. In either case, this manifold of rays is
non-Euclidean, and any filtering operations performed on it
must be formulated accordingly.

To demonstrate the capability of our proposed method to
handle such non-trivial manifolds, we use it to implement

4280

Test Set Reconstruction (PSNR / SSIM / LPIPS)
Method Garden Bicycle Stump Counter Room Bonsai Kitchen Average

MipNeRF360 [2] 27.0 / 0.813 / 0.170 24.4 / 0.685 / 0.301 26.4 / 0.744 / 0.261 29.6 / 0.894 / 0.204 31.6 / 0.913 / 0.211 33.5 / 0.941 / 0.176 32.2 / 0.920 / 0.127 29.2 / 0.844 / 0.207
Ours 26.4 / 0.762 / 0.249 24.0 / 0.582 / 0.442 26.0 / 0.691 / 0.383 28.9 / 0.847 / 0.330 31.7 / 0.896 / 0.302 32.7 / 0.917 / 0.265 31.6 / 0.900 / 0.189 28.8 / 0.806 / 0.309

Table 3. Mip-NeRF 360 – We evaluate how well our models, trained for thin lens depth of field modelling, perform in reconstructing the
test images when evaluated with pinhole ray distributions. Aside from the loss function and learning rate, all settings are kept the same as
in Mip-NeRF 360. Despite our method learning to render from an entire distribution of lens models (see the Supplementary Material for
qualitative video), it only loses on average 0.4 dB in PSNR for pinhole rendering.

lens modelling for light fields. This works by defining the
filter kernel as distribution of rays contributing to a pixel in
an image formed by a thin lens. The group action which de-
fines this convolution is SEp3q (3D rigid transformations),
and the operation can be understood as an average of color
over individual rays being perturbed by rigid transforma-
tions of space. For lens models which are radially sym-
metric about the optical axis, this distribution satisfies the
H-invariance property described in Sec. 5.1. Other distri-
butions, such as those modelling non-symmetric lenses or
motion blur, fail this test and thus require the light field to
be lifted to SEp3q by adding an extra input to the network
which controls the “roll” axis of the camera, which is other-
wise ignored. We implement both the symmetric and lifted
versions; see the Supplementary Material for more details.

We build our implementation on two different architec-
tures: for NeRF, we use the “multinerf” [18] implementa-
tion of Mip-NeRF 360 [2], and for light fields, we use a sim-
ple Multilayer Perceptron conditioned on the Plücker coor-
dinates of input rays, based on that proposed by Sitzmann
et al. [27] (full details in the Supplementary Material).

In our NeRF experiments, we replace the standard pho-
tometric reconstruction loss with the formulation in (14),
where the kernels k are drawn from a distribution of thin
lens models with varying apertures and focal distances. We
leverage the network’s integrated positional encoding [1] to
condition the frequency bias of the field, and change the
standard conical model of ray shape to a converging Gaus-
sian beam model. This strategy makes it easy to supervise a
space of different filters ranging from pinhole to wide aper-
ture, as the ray distribution can be controlled in the same
way that Mip-NeRF provides controllable anti-aliasing. We
compare the test reconstruction accuracy of these models to
Mip-NeRF 360 in Tab. 3.

A few prior works have proposed to explicitly model
lens effects in NeRF, typically by some form of numeri-
cal or Monte Carlo approximation at inference [15, 23, 33].
The strategy of leveraging integrated positional encoding
for depth of field has also been explored [31]. We forego
comparison to these methods, as our goal is to establish a
more general framework for filtering that does not increase
inference cost, and is not specific to a particular model or
application.

To show that our method generalizes beyond just what
can be achieved with modifications of volume rendering, we

train a light field network on a scene containing a refractive
lens. Standard NeRF models are unable to faithfully rep-
resent such optical phenomena [21, 32, 38], but pure light
fields do not suffer this restriction. As we show in Fig. 3,
we are able to construct a light field from pinhole-rendered
ground truth images that not only allows controllable depth
of field rendering, but correctly models the ability of the vir-
tual lens to focus through the lens in the scene on an object
that would otherwise be out of focus.

6. Conclusions
We have presented a novel method for incorporating effi-
cient, non-Euclidean filtering operations into the training of
neural field models. The loss function we propose can be
applied to a number of problems across various areas where
neural fields are used, and can enable new filtering applica-
tions for non-Euclidean neural fields including NeRF, light
fields, and other ray-based methods. It also has the poten-
tial to provide fresh perspectives on problems where com-
plex manifolds like SEp3q are used as input to a network,
for example by making field evaluations uncertainty-aware
by convolving with the measurement error distribution.

Limitations and future work. While our proposed method
is applicable to a wide range of filtering applications, there
are cases for which it is not well-suited. In particular, appli-
cations which require arbitrary filters not known at training
to be applied at inference would be better suited to a zero-
shot approach like the method of Nsampi et al. [20]. The
ability of our method to learn spaces of filters in a single
model is also limited by the amenability of the network to
conditioning on the filter parameters, and more complex fil-
ter families will degrade reconstruction accuracy as more
network capacity is consumed by learning the more com-
plex space. The investigation of neural field architectures
which are less susceptible to this constraint would be a
promising avenue of future work.

Acknowledgements. This work was supported in part by
the Natural Sciences and Engineering Research Council of
Canada (NSERC) Discovery Grant [2023-05617], NSERC
Collaborative Research and Development Grant, the SFU
Visual Computing Research Chair, Google, Digital Re-
search Alliance of Canada, and Advanced Research Com-
puting at the University of British Columbia. We thank
Sneha Sambandam for her helpful comments and feedback.

4281

References
[1] Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Pe-

ter Hedman, Ricardo Martin-Brualla, and Pratul P. Srini-
vasan. Mip-NeRF: A multiscale representation for anti-
aliasing neural radiance fields. In ICCV, pages 5855–5864,
2021. 2, 8

[2] Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P.
Srinivasan, and Peter Hedman. Mip-NeRF 360: Unbounded
anti-aliased neural radiance fields. CVPR, 2022. 2, 8

[3] Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P
Srinivasan, and Peter Hedman. Zip-nerf: Anti-aliased grid-
based neural radiance fields. In ICCV, pages 19697–19705,
2023. 2

[4] Mark Boss, Raphael Braun, Varun Jampani, Jonathan T.
Barron, Ce Liu, and Hendrik Lensch. NeRD: Neural re-
flectance decomposition from image collections. In ICCV,
pages 12684–12694, 2021. 2

[5] James Bradbury, Roy Frostig, Peter Hawkins,
Matthew James Johnson, Chris Leary, Dougal Maclau-
rin, George Necula, Adam Paszke, Jake VanderPlas, Skye
Wanderman-Milne, and Qiao Zhang. JAX: composable
transformations of Python+NumPy programs, 2018. 6

[6] Michael Bronstein, Joan Bruna, Taco Cohen, and Petar
Veličković. Geometric deep learning. African Master in Ma-
chine Intelligence, 2022. 2, 7

[7] Zhiqin Chen and Hao Zhang. Learning implicit fields for
generative shape modeling. In CVPR, 2019. 2

[8] Boyang Deng, John P. Lewis, Timothy Jeruzalski, Gerard
Pons-Moll, Geoffrey Hinton, Mohammad Norouzi, and An-
drea Tagliasacchi. NASA: neural articulated shape approxi-
mation. In ECCV, pages 612–628. Springer, 2020. 3

[9] Marc Finzi, Samuel Stanton, Pavel Izmailov, and An-
drew Gordon Wilson. Generalizing convolutional neural net-
works for equivariance to lie groups on arbitrary continuous
data. In ICML, pages 3165–3176, 2020. 2

[10] Ruohan Gao, Yen-Yu Chang, Shivani Mall, Li Fei-Fei, and
Jiajun Wu. ObjectFolder: A dataset of objects with implicit
visual, auditory, and tactile representations. arXiv preprint
arXiv:2109.07991, 2021. 2

[11] Amos Gropp, Lior Yariv, Niv Haim, Matan Atzmon, and
Yaron Lipman. Implicit geometric regularization for learning
shapes. ICML, 2020. 2

[12] Robert V. Hogg, Joseph W. McKean, and Allen T. Craig. In-
troduction to Mathematical Statistics (6th Edition). Prentice
Hall, 2004. 3, 4

[13] Risi Kondor and Shubhendu Trivedi. On the generalization
of equivariance and convolution in neural networks to the
action of compact groups. In ICML, pages 2747–2755, 2018.
2, 7

[14] David B. Lindell, Dave Van Veen, Jeong Joon Park, and Gor-
don Wetzstein. BACON: Band-limited coordinate networks
for multiscale scene representation. In CVPR, pages 16252–
16262, 2022. 1, 2

[15] Li Ma, Xiaoyu Li, Jing Liao, Qi Zhang, Xuan Wang, Jue
Wang, and Pedro V Sander. Deblur-NeRF: Neural radiance
fields from blurry images. In CVPR, pages 12861–12870,
2022. 8

[16] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-
bastian Nowozin, and Andreas Geiger. Occupancy networks:
Learning 3d reconstruction in function space. In CVPR,
pages 4460–4470, 2019. 2

[17] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. NeRF:
Representing scenes as neural radiance fields for view syn-
thesis. Communications of the ACM, 65(1):99–106, 2021. 1,
2

[18] Ben Mildenhall, Dor Verbin, Pratul P. Srinivasan, Peter
Hedman, Ricardo Martin-Brualla, and Jonathan T. Barron.
MultiNeRF: A Code Release for Mip-NeRF 360, Ref-NeRF,
and RawNeRF, 2022. 8

[19] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a multires-
olution hash encoding. ACM TOG, 41(4):1–15, 2022. 2

[20] Ntumba Elie Nsampi, Adarsh Djeacoumar, Hans-Peter Sei-
del, Tobias Ritschel, and Thomas Leimkühler. Neural field
convolutions by repeated differentiation. ACM TOG, 2023.
1, 3, 4, 6, 8

[21] Jen-I Pan, Jheng-Wei Su, Kai-Wen Hsiao, Ting-Yu Yen, and
Hung-Kuo Chu. Sampling neural radiance fields for refrac-
tive objects. In SIGGRAPH Asia 2022 Technical Communi-
cations, pages 1–4, 2022. 8

[22] Jeong Joon Park, Peter Florence, Julian Straub, Richard
Newcombe, and Steven Lovegrove. DeepSDF: Learning
continuous signed distance functions for shape representa-
tion. In CVPR, pages 165–174, 2019. 2

[23] Stanislav Pidhorskyi, Timur Bagautdinov, Shugao Ma, Jason
Saragih, Gabriel Schwartz, Yaser Sheikh, and Tomas Simon.
Depth of field aware differentiable rendering. ACM TOG, 41
(6):1–18, 2022. 8

[24] François Rouvière et al. Symmetric spaces and the
Kashiwara-Vergne method. Springer, 2014. 7

[25] Mehdi S.M. Sajjadi, Henning Meyer, Etienne Pot, Urs
Bergmann, Klaus Greff, Noha Radwan, Suhani Vora, Mario
Lučić, Daniel Duckworth, Alexey Dosovitskiy, et al. Scene
representation transformer: Geometry-free novel view syn-
thesis through set-latent scene representations. In CVPR,
pages 6229–6238, 2022. 2

[26] Liyue Shen, John Pauly, and Lei Xing. NeRP: implicit neu-
ral representation learning with prior embedding for sparsely
sampled image reconstruction. IEEE Transactions on Neural
Networks and Learning Systems, 2022. 2

[27] Vincent Sitzmann, Semon Rezchikov, Bill Freeman, Josh
Tenenbaum, and Fredo Durand. Light field networks: Neu-
ral scene representations with single-evaluation rendering.
NeurIPS, 34:19313–19325, 2021. 1, 2, 8

[28] Mohammed Suhail, Carlos Esteves, Leonid Sigal, and
Ameesh Makadia. Light field neural rendering. In CVPR,
pages 8269–8279, 2022. 2

[29] Peder Bergebakken Sundt and Theoharis Theoharis. Marf:
The medial atom ray field object representation. Computers
& Graphics, 115:122–136, 2023. 1

[30] Yee Whye Teh, Max Welling, Simon Osindero, and Geof-
frey E. Hinton. Energy-based models for sparse overcom-
plete representations. Journal of Machine Learning Re-
search, 4(Dec):1235–1260, 2003. 5

4282

[31] Yinhuai Wang, Shuzhou Yang, Yujie Hu, and Jian Zhang.
NeRFocus: Neural radiance field for 3d synthetic defocus.
arXiv preprint arXiv:2203.05189, 2022. 8

[32] Ziyu Wang, Wei Yang, Junming Cao, Qiang Hu, Lan Xu,
Junqing Yu, and Jingyi Yu. NeReF: Neural refractive field
for fluid surface reconstruction and rendering. In 2023
IEEE International Conference on Computational Photog-
raphy (ICCP), pages 1–11. IEEE, 2023. 8

[33] Zijin Wu, Xingyi Li, Juewen Peng, Hao Lu, Zhiguo Cao,
and Weicai Zhong. DoF-NeRF: Depth-of-field meets neural
radiance fields. In ACM MM, pages 1718–1729, 2022. 8

[34] Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany,
Shiqin Yan, Numair Khan, Federico Tombari, James Tomp-
kin, Vincent Sitzmann, and Srinath Sridhar. Neural fields in
visual computing and beyond. In Comput. Graph. Forum,
pages 641–676. Wiley Online Library, 2022. 2, 3

[35] Dejia Xu, Peihao Wang, Yifan Jiang, Zhiwen Fan, and
Zhangyang Wang. Signal processing for implicit neural rep-
resentations. In NeurIPS, 2022. 1, 3

[36] Guandao Yang, Sagie Benaim, Varun Jampani, Kyle Genova,
Jonathan Barron, Thomas Funkhouser, Bharath Hariharan,
and Serge Belongie. Polynomial neural fields for subband
decomposition and manipulation. NeurIPS, 35:4401–4415,
2022. 2

[37] Guangming Zang, Ramzi Idoughi, Rui Li, Peter Wonka, and
Wolfgang Heidrich. IntraTomo: self-supervised learning-
based tomography via sinogram synthesis and prediction. In
ICCV, pages 1960–1970, 2021. 2

[38] Yifan Zhan, Shohei Nobuhara, Ko Nishino, and Yinqiang
Zheng. NeRFrac: Neural radiance fields through refractive
surface. In ICCV, pages 18402–18412, 2023. 8

[39] Kai Zhang, Fujun Luan, Qianqian Wang, Kavita Bala, and
Noah Snavely. PhySG: Inverse rendering with spherical
gaussians for physics-based material editing and relighting.
In CVPR, pages 5453–5462, 2021. 2

4283

