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Abstract

Event cameras exhibit remarkable attributes such as
high dynamic range, asynchronicity, and low latency, mak-
ing them highly suitable for vision tasks that involve high-
speed motion in challenging lighting conditions. These
cameras implicitly capture movement and depth informa-
tion in events, making them appealing sensors for Cam-
era Pose Relocalization (CPR) tasks. Nevertheless, exist-
ing CPR networks based on events neglect the pivotal fine-
grained temporal information in events, resulting in unsat-
isfactory performance. Moreover, the energy-efficient fea-
tures are further compromised by the use of excessively
complex models, hindering efficient deployment on edge de-
vices. In this paper, we introduce PEPNet, a simple and
effective point-based network designed to regress six de-
grees of freedom (6-DOFs) event camera poses. We re-
think the relationship between the event camera and CPR
tasks, leveraging the raw Point Cloud directly as network
input to harness the high-temporal resolution and inher-
ent sparsity of events. PEPNet is adept at abstracting the
spatial and implicit temporal features through hierarchi-
cal structure and explicit temporal features by Attentive Bi-
directional Long Short-Term Memory (A-Bi-LSTM). By em-
ploying a carefully crafted lightweight design, PEPNet de-
livers state-of-the-art (SOTA) performance on both indoor
and outdoor datasets with meager computational resources.
Specifically, PEPNet attains a significant 38% and 33%
performance improvement on the random split IJRR and
M3ED datasets, respectively. Moreover, the lightweight de-
sign version PEPNettiny accomplishes results comparable
to the SOTA while employing a mere 0.5% of the parame-
ters.

1. Introduction
Event camera is a type of bio-inspired vision sensor that
responds to local changes in illumination exceeding a pre-
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Figure 1. The average results using the random split method
benchmarked on the CPR dataset [23]. The vertical axis represents
the combined rotational and translational errors (m+rad). PEPNet
is the first point-based CPR network for event cameras.

defined threshold [17]. Differing from conventional frame-
based cameras, event cameras independently and asyn-
chronously produce pixel-level events. Notably, event cam-
eras boast an exceptional triad: high dynamic range, low la-
tency, and ultra-high temporal resolution. This unique com-
bination empowers superior performance under challenging
light conditions, adeptly capturing the swift scene and rapid
motion changes in near-microsecond precision [27]. Addi-
tionally, event cameras boast remarkably low power con-
sumption positioning them as a popular choice for many
power-constrained devices. Camera Pose Relocalization
(CPR) is an emerging application in power-constrained de-
vices and has gained significant attention. It aims to train
several scene-specific neural networks to accurately relocal-
ize the camera pose within the original scene used for train-
ing. It is extensively employed in numerous applications,
including Virtual Reality (VR), Augmented Reality (AR),
and robotics [35], all of which are deployed on battery-
powered devices and are power-constrained.

CPR tasks using event cameras significantly diverge
from their conventional CPR counterpart that employs
frame-based cameras, primarily due to the inherent dis-
similarity in data output mechanisms between these two
camera types. Furthermore, events inherently encompass
information regarding object motion and depth changes
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across precise temporal and spatial dimensions attributes
of paramount significance within the domain of CPR tasks
[8, 31]. Regrettably, existing event-based CPR networks of-
ten derive from the conventional camera network paradigms
and inadequately address the unique attributes of event data.
More specifically, events are transformed into various repre-
sentations such as event images [26], time surfaces [18], and
other representations[18], leading to the loss of their fine-
grained temporal information. Furthermore, most event-
based methods tend to overlook the computational load of
the network, only prioritizing elevated accuracy, which con-
tradicts the fundamental design principles of event cameras
[9].

A suitable and faithful data representation is crucial for
event cloud processing. Point Cloud is a collection of 3D
points (x, y, z) that represents the shape and surface of an
object or environment commonly used in lidar and depth
cameras [10]. The distance (z) is of great meaning to the
tasks. As for event camera, by treating each event’s tempo-
ral information as the third dimension, event inputs (x, y, t)
can be regarded as points and aggregated into a pseudo-
Point Cloud [28, 29, 32–34, 40]. However, given that the
t dimension of Event Cloud is not strictly equivalent to
the spatial dimensions (x, y, z), direct transplantation of the
Point Cloud network has not yet exhibited a satisfactory per-
formance advantage in processing event data [32, 40].

In this study, we introduce PEPNet, the first point-based
end-to-end CPR network designed to harness the attributes
of event cameras. A comparison of our performance and
method to other frame-based methods is illustrated Fig. 1
and Fig. 2, respectively. Moreover, diverging from other
point-based approaches in event data processing [32, 40],
PEPNet demonstrates careful attention to detail by system-
atically assessing the difference between Event Cloud and
Point Cloud in its design approach. This approach enables a
more precise extraction of spatio-temporal features and fa-
cilitates solutions for a spectrum of event-based tasks. Our
main contributions are as follows: First, in the preprocess-
ing stage, PEPNet directly processes the raw data obtained
from the event cameras, meticulously preserving the fine-
grained temporal coordinate and the order inherent in the
event data. Second, PEPNet proficiently captures spatial
features and implicit temporal features through its hierar-
chical structure with temporal aggregation. Subsequently,
the explicit temporal feature is processed by the A-Bi-
LSTM, thanks to the preservation of the input sequence in
previous stages. As such, this architecture is tailored to ac-
commodate the high temporal resolution and sparse charac-
teristics inherent in event cameras. Thirdly, by restricting
ourselves to minimal hardware resources and deliberately
avoiding heavy computational modules, PEPNet not only
attains SOTA results on IJRR [23] and M3ED [4] dataset
but also features a lightweight design that can be executed

Figure 2. Two different event-based processing methods, frame-
based and point-based.

in real-time. We hope such an approach could potentially
democratize computer vision technology by making it ac-
cessible to a wider range of devices and applications in the
community of edge computing.

2. Related Work

2.1. Frame-based CPR Learning Methods

Deep learning, crucial for vision tasks like classification
and object detection [16], has seen advancements such
as PoseNet’s innovative transfer learning [14]. Utilizing
VGG, ResNet [11, 36], LSTM, and customized loss func-
tions [25, 39, 41], researchers enhanced this approach.
Auxiliary Learning methods further improved performance
[19, 30, 38], although overfitting remains a challenge. Hy-
brid pose-based methods, combining learning with tradi-
tional pipelines [1, 15], offer promise. DSAC series, for
instance, achieve high pose estimation accuracy [2, 3], but
come with increased computational costs and latency, espe-
cially for edge devices.

2.2. Event-based CPR Learning Methods

Event-based CPR methods often derive from the frame-
based CPR network. SP-LSTM [26] employed the stacked
spatial LSTM networks to process event images, facilitating
a real-time pose estimator. To address the inherent noise in
event images, [12] proposed a network structure combin-
ing denoise networks, convolutional neural networks, and
LSTM, achieving good performance under complex work-
ing conditions. In contrast to the aforementioned methods,
a novel representation named Reversed Window Entropy
Image (RWEI) [18] is introduced, which is based on the
widely used event surface [22] and serves as the input to
an attention-based DSAC* pipeline [2] to achieve SOTA
results. However, the computationally demanding archi-
tecture involving representation transformation and hybrid
pipeline poses challenges for real-time execution. Addi-
tionally, all existing methods ignore the fine-grained tem-
poral feature of the event cameras, and accumulate events
into frames for processing, resulting in unsatisfactory per-
formance.
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2.3. Point Cloud Network

Point-based methodologies have transformed the direct pro-
cessing of Point Cloud, with PointNet [28] as a standout
example. Taking a step beyond, PointNet++ [29] intro-
duced a Set Abstraction module. While it initially em-
ployed a straightforward MLP in the feature extractor, re-
cent advancements have seen the development of more so-
phisticated feature extractors to enhance Point Cloud pro-
cessing [5, 21, 42, 44]. When extending these techniques to
Event Cloud, Wang et al. [40] addressed the temporal infor-
mation processing challenge while maintaining representa-
tion in both the x and y axes, enabling gesture recognition
using PointNet++. Further enhancements came with PAT
[43], which incorporated self-attention and Gumbel subset
sampling, leading to improved performance in recognition
tasks. However, existing point-based models still fall short
in performance compared to frame-based methods. This
phenomenon can be attributed to the distinctively differ-
ent characteristics of Point Cloud and Event Cloud. Event
Cloud contradicts the permutation and transformation in-
variance present in Point Cloud due to its temporal nature.
Additionally, the Point Cloud network is not equipped to
extract explicit temporal features.

3. PEPNet

PEPNet pipeline consists of four essential modules: (1) a
preprocessing module for the original Event Cloud, (2) a
hierarchical Point Cloud feature extraction structure, (3) an
Attentive Bi-directional LSTM, and (4) a 6-DOFs pose re-
gressor, as illustrated in Fig. 3. In the following sections,
we will provide detailed descriptions and formulations for
each module.

3.1. Event Cloud

To preserve the fine-grained temporal information and orig-
inal data distribution attributes from the Event Cloud,
the 2D-spatial and 1D-temporal event information is con-
structed into a three-dimensional representation to be pro-
cessed in Point Cloud. Event Cloud consists of time-
series data capturing spatial intensity changes of images in
chronological order, and an individual event is denoted as
ek = (xk, yk, tk, pk), where k is the index representing the
kth element in the sequence. Consequently, the set of events
within a single sequence (E) in the dataset can be expressed
as:

E = {ek = (xk, yk, tk, pk) | k = 1, . . . , n} (1)

For a given pose in the dataset, the ground truth resolu-
tion is limited to 5 ms, while the event resolution is 1 µs.
Therefore, it is necessary to acquire the events that transpire
within the time period we call it sliding window correspond-
ing to the poses, which will serve as the input for the model,

as depicted by the following equation:

Pi = {ej→l | tl − tj = R} i = 1, . . . ,M (2)

The symbol R represents the time interval of the sliding
window, where j and l denote the start and end event index
of the sequence, respectively. The variable M represents
the number of sliding windows into which the sequence of
events E is divided. Before being fed into the neural net-
work, Pi also needs to undergo sampling and normalization.
Sampling is to unify the number of points N as network in-
puts. We set N = 1024 in PEPNet. Additionally, as the
spatial coordinates are normalized by the camera’s resolu-
tion w and h. The normalization process is described by the
following equation:

PNi = (
Xi

w
,
Yi

h
,
Ti − tj
tl − tj

) (3)

Xi, Yi, Ti = {xj , . . . , xl}, {yj , . . . , yl}, {tj , . . . , tl} (4)

The X,Y is divided by the resolution of the event camera.
To normalize T , we subtract the smallest timestamp tj of
the window and divide it by the time difference tl − tj ,
where tl represents the largest timestamp within the win-
dow. After pre-processing, Event Cloud is converted into
the pseudo-Point Cloud, which comprises explicit spatial
information (x, y) and implicit temporal information t.

3.2. Hierarchy Structure

The hierarchy structure is the backbone for processing the
pseudo-3D Point Cloud and is composed of four primary
modules: grouping and sampling, standardization, feature
extractor, and aggregation, as described in the following
subsection. To efficiently extract deeper explicit spatial and
implicit temporal features, the hierarchical structure is tai-
lored and differs from conventional hierarchical structure in
a few ways: First, we no longer force permutation invari-
ance as usually done in mainstream point-based methods
[21, 28], as the motion information is inherently related to
the sequential order of events. Instead, we keep the se-
quence of all events strictly in the same order as they are
generated to preserve the temporal information to be used
in the next stage. Second, we replace MaxPooling in ag-
gregation and deploy temporal aggregation which leverages
the attention mechanism with softmax, which improves the
effective assimilation of temporal information into the re-
sultant feature vectors.

3.2.1 Grouping and Sampling

Aligned with the frame-based design concept, our focus is
to capture both local and global information. Local infor-
mation is acquired by leveraging Farthest Point Sampling
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Figure 3. PEPNet overall architecture (the time resolution of t1, t2, ...tn is 1µs). The input Event Cloud undergoes direct handling through
a sliding window, sampling, and normalization, eliminating the need for any format conversion. Sequentially, the input passes through
Snum hierarchy structures for spatial feature abstraction and extraction. It further traverses a bidirectional LSTM for temporal feature
extraction, culminating in a regressor responsible for 6-DOFs camera pose relocalization.

(FPS) and K-Nearest Neighbors (KNN), while global infor-
mation is obtained through a dedicated aggregation module.

PSi = FPS(PNi) PGi = KNN(PNi, PSi) (5)

The input dimension PNi is [N, 3+D], and the centroid di-
mension PSi is [N

′
, 3 +D] and the group dimension PGi

is [N
′
,K, 3 + 2 ∗ D]. K represents the nearest K points

of the center point (centroid), D is the feature dimension of
the points of the current stage, and 3 is the most original
(X,Y, T ) coordinate value. Importantly, it should be noted
that the ordering of all points in the grouping and sampling
process strictly adheres to the timestamp (T ), and the di-
mension 2 ∗ D of the points in the group is the result of
being concatenated to the centroid.

3.2.2 Standardization

Next, each group undergoes a standardization process to en-
sure consistent variability between points within the group,
as illustrated in this formula:

PGSi =
PGi − PSi

Std(PGi)
Std(PGi) =

√∑3n−1
j=0 (gj − ḡ)2

3n− 1
(6)

g = [x0, y0, t0, . . . , xn, yn, tn] (7)

Where PGi and PSi are the subsets of PG and PS, Std
is the standard deviation, the dimension of Std(PG) is M
which is consistent with the number of sliding windows,
and g is the set of coordinates of all points in the PGi.

3.2.3 Feature extractor

Following the standardization of PG by dividing the vari-
ance by the subtracted mean, the feature extraction is per-

formed using a Multi-Layer Perceptron (MLP) with a resid-
ual connection. This process encompasses two steps: local
feature extraction and global feature extraction. The fea-
ture extractor with a bottleneck can be mathematically rep-
resented as:

I(x) =f(BN(MLP1(x))) (8)
O(x) = BN(MLP2(x)) (9)

Ext(x) = f(x+O(I(x))) (10)

BN represents batch normalization layer, while f signifies
the nonlinear activation function. Both local feature ex-
traction and global feature extraction maintain identical in-
put and output dimensions. The dimension increase occurs
solely when combining the feature dimension D of the cur-
rent point with the feature dimension D of the centroid dur-
ing grouping, resulting in a final dimension of 2 ∗ D. The
feature extractor takes an input dimension of [B,N,K,D],
and following local feature extraction, the dimension re-
mains [B,N,K,D], B represents batch size. We adopt
the attention mechanism for aggregation, yielding an ag-
gregated feature dimension of [B,N,D]. Subsequently, the
aggregated feature map is then processed through the global
feature extractor, completing the feature extraction for the
current stage.

3.2.4 Temporal Aggregation

Conventional Point Cloud methods favor MaxPooling oper-
ations for feature aggregation because it is efficient in ex-
tracting the feature from one point among a group of points
and discarding the rest. However, MaxPooling involves
extracting only the maximum value along each dimension
of the temporal axis. It is robust to noise perturbation but
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also ignores the temporal nuances embedded within the fea-
tures. Conversely, the integration of attention mechanisms
enhances the preservation of those nuanced and useful tem-
poral attributes by aggregating features along the temporal
axis through the attention value. To provide a more compre-
hensive exposition, we employ a direct attention mechanism
within the K temporal dimensions to effectively aggregate
features as shown in Fig. 3. This mechanism enables the
explicit integration of temporal attributes, capitalizing on
the inherent strict ordering of the K points. The ensuing
formula succinctly elucidates the essence of this attention
mechanism:

Flocal = Ext(x) = (Ft1, Ft2, . . . , Ftk) (11)

A = SoftMax(MLP(Flocal)) = (at1, at2, . . . , atk) (12)

Faggre = A·Flocal = Ft1 ·at1+Ft2 ·at2+· · ·+Ftk ·atk (13)

Upon the application of the local feature extractor, the en-
suing features are denoted as Flocal, and Ftk mean the ex-
tracted feature of kth point in a group. The attention mecha-
nism comprises an MLP layer with an input layer dimension
of D and an output atk dimension of 1, along with soft-
max layers. Subsequently, the attention mechanism com-
putes attention values, represented as A. These attention
values are then multiplied with the original features through
batch matrix multiplication, resulting in the aggregated fea-
ture Faggre.

3.3. A-Bi-LSTM

The temporal features extracted through the hierarchi-
cal structure are independent and parallel, lacking recur-
rent mechanisms within the network. This distinctive at-
tribute, referred to as ’implicit’, contrasts with the con-
ventional treatment of temporal information as an indexed
process. Consequently, implicit temporal features inade-
quately capture the interrelations among events along
the timeline, whereas explicit temporal features assume
a pivotal role in facilitating the CPR task. To explicitly
capture temporal patterns, we introduce the LSTM net-
work, which has been proven effective in learning tempo-
ral dependencies. For optimal network performance, con-
trolled feature dimensionality, and comprehensive capture
of bidirectional relationships in pose context, we adopt a bi-
directional LSTM network with a lightweight design. The
regressor attentively focuses on the output of Bi-LSTM at
each timestep and is more inclined towards the start and
end features as demonstrated in Fig. 6. The integration of
bidirectional connections into the recurrent neural network
(RNN) is succinctly presented through the following equa-
tion:

ht = f(Wh · xt +Uh · ht−1 + bh) (14)
h′
t = f(W′

h · xt +U′
h · h′

t+1 + b′
h) (15)

yt = V · ht + by y′
t = V′ · h′

t + b′
y (16)

xt represents the feature vector at the t-th time step of the
input sequence, while ht−1 and h′

t+1 correspond to the hid-
den states of the forward and backward RNN units, respec-
tively, from the previous time step. The matrices Wh, Uh,
and bh denote the weight matrix and bias vector of the for-
ward RNN unit, while V and by represent the weight ma-
trix and bias vector of its output layer. Similarly, W′

h, U′
h,

and b′
h are associated with the weight matrix and bias vec-

tor of the backward RNN unit, and V′ and b′
y pertain to the

weight matrix and bias vector of its output layer. The activa-
tion function, denoted as f(·), can be chosen as sigmoid or
tanh or other functions. The final output Ya is aggregated at
each moment using the attention mechanism, and ⊕ means
concat operation.

Yt =yt ⊕ y′t (17)
A = SoftMax(MLP(Yt)) (18)

Ya =A · Yt (19)

3.4. Loss Function

A fully connected layer with a hidden layer is employed
to address the final 6-DOFs pose regression task. The dis-
placement vector of the regression is denoted as p̂ repre-
senting the magnitude and direction of movement, while
the rotational Euler angles are denoted as q̂ indicating the
rotational orientation in three-dimensional space.

Loss = α||p̂− p||2 + β||q̂ − q||2 + λ
∑n

i=0w
2
i (20)

p and q represent the ground truth obtained from the dataset,
while α, β, and λ serve as weight proportion coefficients. In
order to tackle the prominent concern of overfitting, espe-
cially in the end-to-end setting, we incorporate the L2 regu-
larization into the loss function. This regularization, imple-
mented as the second paradigm for the network weights w,
effectively mitigates overfitting.

3.5. Overall Architecture

Next, we will present the PEPNet pipeline in pseudo-code,
utilizing the previously defined variables and formulas as
described in Algorithm 1.

4. Experiment

In this section, we present an extensive and in-depth anal-
ysis of PEPNet’s performance on both indoor and outdoor
datasets, encompassing evaluations based on rotational and
translational mean squared error (MSE), model parame-
ters, floating-point operations (FLOPs), and inference time.
PEPNet’s training and testing are performed on a server fur-
nished with an AMD Ryzen 7950X CPU, an RTX GeForce
4090 GPU, and 32GB of memory.
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Figure 4. Event-based CPR Dataset visualization.

Algorithm 1 PEPNet pipeline
Input: Raw event stream E
Parameters: Np = 1024, R = 1e+ 3, Snum = 3,K = 24
Output: 6-DOFs pose (p̂, q̂)

1: Preprocessing
2: for j in len(E) do
3: Pi.append(ej→l) ; j = l; where tl − tj = R
4: if (len(Pi) > Np): i = i+ 1;
5: end for
6: PN = Normalize(Sampling(P ))
7: Hierarchy structure
8: for stage in range(Snum) do
9: Grouping and Sampling(PN )

10: Get PGS ∈ [B,Nstage,K, 2 ∗Dstage−1]
11: Local Extractor(PGS)
12: Get Flocal ∈ [B,Nstage,K,Dstage]
13: Attentive Aggregate(Flocal)
14: Get Faggre ∈ [B,Nstage, Dstage]
15: Global Extractor(Faggre)
16: Get PN = Fglobal ∈ [B,Nstage, Dstage]
17: end for
18: A-Bi-LSTM
19: Forward Get yt ∈ [B,N3, DSnum/2]
20: Reverse Get y′t ∈ [B,N3, DSnum/2]
21: Attention Get Ya ∈ [B,DSnum ]
22: Regressor
23: Get 6-DOFs pose (p̂, q̂)

4.1. Dataset

We employ the widely evaluated event-based CPR dataset
IJRR [23] and M3ED [4] , encompassing both indoor and
outdoor scenes. Two distinct methods to partition the CPR
dataset [26] have been benchmarked: random split and
novel split. In the random split approach, the dataset is
randomly selected 70% of all sequences for training and al-
located the remaining sequences for testing. On the other
hand, in the novel split, we divide the data chronologically,

using the initial 70% of sequences for training and the sub-
sequent 30% for testing.

4.2. Baseline

We perform a thorough evaluation of our proposed method
by comparing it with SOTA event-based approaches,
namely CNN-LSTM [37] and AECRN [18]. Moreover,
we present results derived from other well-established com-
puter vision methods, including PoseNet[14], Bayesian
PoseNet [13], Pairwise-CNN [15], LSTM-Pose [39], and
SP-LSTM[26].

4.3. IJRR Dataset Results

4.3.1 Random Split Results

Based on the findings presented in Tab. 1, it is apparent
that PEPNet surpasses other models concerning both rota-
tion and translation errors across all sequences. Notably,
PEPNet achieves these impressive results despite utilizing
significantly fewer model parameters and FLOPs compared
to the frame-based approach. Moreover, PEPNet not only
exhibits a remarkable 38% improvement in the average er-
ror compared to the SOTA CNN-LSTM method but also
attains superior results across nearly all sequences.In ad-
dressing the more intricate and challenging hdr poster se-
quences, while the frame-based approach relies on a de-
noising network to yield improved results [12], PEPNet ex-
cels by achieving remarkable performance without any ad-
ditional processing. This observation strongly implies that
PEPNet’s Point Cloud approach exhibits greater robustness
compared to the frame-based method, highlighting its in-
herent superiority in handling complex scenarios.

Furthermore, we introduce an alternative variant,
PEPNettiny , which integrates a lighter model architecture
while preserving relatively strong performance. As de-
picted in Fig. 3, PEPNet consists of three stages, and the
model’s size is contingent upon the dimensionality of MLPs
at each stage. The dimensions for the standard structure are
[64, 128, 256], whereas those for the tiny structure are [16,
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Network PoseNet Bayesian PoseNet Pairwise-CNN LSTM-Pose SP-LSTM CNN-LSTM PEPNet PEPNettiny

Parameter 12.43M 22.35M 22.34M 16.05M 135.25M 12.63M 0.774M 0.064M
FLOPs 1.584G 3.679G 7.359G 1.822G 15.623G 1.998G 0.459G 0.033G

shapes rotation 0.109m,7.388◦ 0.142m,9.557◦ 0.095m,6.332◦ 0.032m,4.439◦ 0.025m,2.256◦ 0.012m,1.652◦ 0.005m,1.372◦ 0.006m,1.592◦

box translation 0.193m,6.977◦ 0.190m,6.636◦ 0.178m,6.153◦ 0.083m,6.215◦ 0.036m,2.195◦ 0.013m,0.873◦ 0.017m,0.845◦ 0.031m,1.516◦

shapes translation 0.238m,6.001◦ 0.264m,6.235◦ 0.201m,5.146◦ 0.056m,5.018◦ 0.035m,2.117◦ 0.020m,1.471◦ 0.011m,0.582◦ 0.013m, 0.769◦

dynamic 6dof 0.297m,9.332◦ 0.296m,8.963◦ 0.245m,5.962◦ 0.097m,6.732◦ 0.031m,2.047◦ 0.016m,1.662◦ 0.015m,1.045◦ 0.018m,1.144◦

hdr poster 0.282m,8.513◦ 0.290m,8.710◦ 0.232m,7.234◦ 0.108m,6.186◦ 0.051m,3.354◦ 0.033m,2.421◦ 0.016m,0.991◦ 0.028m,1.863◦

poster translation 0.266m,6.516◦ 0.264m,5.459◦ 0.211m,6.439◦ 0.079m,5.734◦ 0.036m,2.074◦ 0.020m,1.468◦ 0.012m,0.588◦ 0.019m,0.953◦

Average 0.231m,7.455◦ 0.241m,7.593◦ 0.194m,6.211◦ 0.076m,5.721◦ 0.036m,2.341◦ 0.019m,1.591◦ 0.013m,0.904◦ 0.019m,1.306◦

Table 1. IJRR random split results. The table presents the median error for each sequence, as well as the average error across the six
sequences. It also presents the number of parameters and FLOPs for each model. Bold indicates the most advanced result, while underline
signifies the second-best result.

Figure 5. Error distribution of event-based CPR results achieved
by PEPNet using a random split. (a) Translation errors. (b) Rota-
tion errors.

32, 64]. As indicated in Tab. 1, even with a mere 0.5% of the
CNN-LSTM’s parameter, PEPNettiny achieves comparable
and even slightly superior results. This remarkable outcome
emphasizes the superiority of leveraging event cloud data
processing directly.

4.3.2 Error Distribution

Fig. 5 illustrates the error distribution of PEPNet across six
distinct sequences using the random split method, specifi-
cally: shape rotation, box translation, shape translation, dy-
namic 6-dof, hdr poster, and poster translation. To enhance
clarity, the top and bottom boundaries of the box represent
the first and third quartiles, respectively, indicating the inter-
quartile range (IQR). The median is denoted by the band
within the box. It is observed that the IQR of the translation
error approximately locates between 0.004m and 0.024m,
while the orientation error ranges from 0.4◦ to 1.9◦.

4.3.3 Novel Split Results

To assess the model’s robustness, we adopt the novel split
as an evaluation criterion, as shown in Tab. 2. During the
training process, we observe a more pronounced overfitting
phenomenon in PEPNet compared to the random split. We
attribute this observation to the disparities in data distribu-
tions between the trainset and the testset, as well as the lim-

ited data size. Contrary to the methods we compared, PEP-
Net does not necessitate pre-trained weights. For instance,
SP-LSTM relies on pre-trained VGG19 weights from Ima-
genet, while AECRN requires synthetic heuristic depth and
an extensive pretraining process.

To address overfitting, PEPNet employs conventional
methods that yield consistent and comparable results with
the SOTA on three shape sequences that are displayed in
the network column of Tab. 2. It is essential to note that AE-
CRN adopts a hybrid approach, combining neural network
regression for scene coordinates with derivable RANSAC
for pose estimation. Moreover, this method incurs signif-
icant time consumption, with even the SOTA DSAC* al-
gorithm taking nearly 30ms, excluding additional time for
data format conversion. This time constraint presents com-
patibility challenges with the low-latency nature of event
cameras. In contrast, PEPNet can execute on a server in
just 6.7ms, with the main time-consuming module being
grouping and sampling. Furthermore, with potential field
programmable gate array (FPGA) or application-specific in-
tegrated chip (ASIC) support for these operations[6, 20],
PEPNet’s performance can be further accelerated.

4.4. M3ED Dataset Results

We selected three robots (Car, Falcon, and Spot) to extend
the application scope of PEPNet across five sequences in an
outdoor night setting, as illustrated in the Tab. 3. Due to its
much higher resolution than IJRR, we performed downsam-
pling processing and more number of points (1024 to 2048),
and other experimental configurations are consistent with
the IJRR dataset with random split. The results demonstrate
the superior performance of PEPNet even in more challeng-
ing outdoor environments.

4.5. Attention Visualization

As shown in Fig. 6, We observe that the attention scores ex-
hibit larger at both the beginning and end. We tentatively
infer that the model focuses more on the difference in fea-
tures between the start and the end for CPR, which is also
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Network PoseNet Bayesian PoseNet Pairwise-CNN LSTM-Pose SP-LSTM DSAC* AECRN PEPNet
shapes rotation 0.201m,12.499◦ 0.164m,12.188◦ 0.187m,10.426◦ 0.061m,7.625◦ 0.045m,5.017◦ 0.029m,2.3◦ 0.025m,2.0◦ 0.016m,1.745◦

shapes translation 0.198m,6.696◦ 0.213m,7.441◦ 0.225m,11.627◦ 0.108m,8.468◦ 0.072m,4.496◦ 0.038m,2.2◦ 0.029m,1.7◦ 0.026m,1.659◦

shapes 6dof 0.320m,13.733◦ 0.326m,13.296◦ 0.314m,13.245◦ 0.096m,8.973◦ 0.078m,5.524◦ 0.054m,3.1◦ 0.052m,3.0◦ 0.045m,2.984◦

Average 0.240m,11.067◦ 0.234m,10.975◦ 0.242m,11.766◦ 0.088m,8.355◦ 0.065m,5.012◦ 0.040m,2.53◦ 0.035m,2.23◦ 0.029m,2.13◦

Inference time 5ms 6ms 12ms 9.49ms 4.79ms 30ms 30ms 6.7ms

Table 2. IJRR novel split results. Referred to as Tab. 1, showcases identical information. To assess the model’s runtime, we conduct tests
on a server platform, specifically focusing on the average time required for inference on a single sample.

M3ED PoseNet LSTM-Pose CNN-LSTM PEPNet
INPUT Event Frame Event Frame Event frame Point Cloud

Falcon Night High Beams 0.181m,2.221◦ 0.112m,0.946◦ 0.107m,1.435◦ 0.082m,0.575◦

Car Night Pen S Loop 1.618m,8.126◦ 0.667m,4.914◦ 0.773m,3.005◦ 0.577m,1.319◦

Spot Night Pen Loop 1.735m,5.502◦ 0.761m,7.898◦ 0.401m,1.771◦ 0.468m,1.062◦

Car Pen S Loop darker 1.841m,4.575◦ 0.751m,3.738◦ 0.598m,2.772◦ 0.385m,1.01◦

Spot Plaza Light 1.372m,9.564◦ 0.565m,5.221◦ 0.273m,2.001◦ 0.348m,1.234◦

Avergae 1.349m,5.998◦ 0.571m,4.543◦ 0.43m,2.197◦ 0.372m,1.04◦

Table 3. Outdoor extension on M3ED dataset with random split.

Condition HS LSTM Bi-LSTM Aggregation Translation Rotation T+R
1 ✓ Max 0.015m 0.884◦ 3.04
2 ✓ Temporal 0.014m 0.786◦ 2.77
3 ✓ ✓ Max 0.014m 0.833◦ 2.85
4 ✓ ✓ Temporal 0.012m 0.603◦ 2.25
5 ✓ ✓ Max 0.014m 0.813◦ 2.82
6 ✓ ✓ Temporal 0.011m 0.582◦ 2.12

Table 4. Abalation Study for three key modules. T+R = Transla-
tion + Rotation·π/180 (m+rad)

Figure 6. Visualization of the attention values in the time domain.
128 points in chronological order on the horizontal axis and the
attention values of the corresponding point on the vertical axis.

seen in the geometry approach [7, 24].

4.6. Ablation Study

Key Module Ablation: In order to validate the efficacy
of key modules, we conducted an ablation experiment fo-
cusing on three primary components: hierarchy structure,
Bi-LSTM, and temporal aggregation. These experiments
are designed to evaluate rotation and translation errors on
the shape translation sequence with the random split. The
combined error (T+R) is measured after processing. Our
experimental setup comprises four distinct conditions, as
illustrated in Tab. 4. Condition 1 represents the sole uti-

Scence α = 0.5, β = 0.5 α = 0.25, β = 0.75 α = 0.75, β = 0.25

shape translation 0.0302m,1.684◦,5.96 0.0359m,1.72◦,6.59 0.0303m,2.056◦,6.62
shape rotation 0.0143m,2.888◦,6.47 0.0159m,2.68◦,6.27 0.014m,3.36◦,7.26
dynamic 6dof 0.0542m,2.799◦,10.3 0.0611m,2.488◦,10.5 0.0516m,3.251◦,10.8

Table 5. Abalation Study for loss function’s coefficient.

lization of the hierarchy structure (HS), while Condition 2
combines the ordinary LSTM. Condition 3 incorporates the
bidirectional LSTM, and Condition 4 integrates the atten-
tion mechanism for feature aggregation. The ablation ex-
periments reveal significant insights. Experiments 1 and 3
demonstrate that augmenting LSTM enhances the extrac-
tion of explicit temporal features. Moreover, experiments 3
and 5 reveal the effectiveness of the bidirectional LSTM in
extracting motion information. Additionally, experiments 5
and 6 confirm the notable impact of attention in feature ag-
gregation, resulting in a substantial reduction in error rates.

Loss ablation: We incorporated the experiment involv-
ing scaling coefficients of the loss function in Tab. 5. This
experiment utilized a tiny version of PEPNet, trained for
100 epochs, and the outcome is MSE in translation, rotation,
and T+R. Across three distinct motion scenarios (transla-
tion, rotation, and 6dof) varied coefficient ratios induced
deviations in the obtained results. For example, in shape
rotation, increasing the weight on rotation makes the results
better.

5. Conclusion

In this paper, we introduce an end-to-end CPR network that
operates directly on raw event clouds without frame-based
preprocessing. PEPNet boasts an impressively lightweight
framework that adeptly extracts spatial and temporal fea-
tures, leading to SOTA performance. Diverging from
frame-based approaches, our method prioritizes preserving
the inherent distribution of the event cloud, capitalizing on
its sparse nature to achieve extraordinary capabilities for
ultra-low-power applications.
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