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Abstract

Category-agnostic pose estimation (CAPE) aims to pre-
dict the pose of a query image based on few support im-
ages with pose annotations. Existing methods achieve
the localization of arbitrary keypoints through similarity
matching between support keypoint features and query im-
age features. However, these methods primarily focus on
mining information from the query images, neglecting the
fact that support samples with keypoint annotations con-
tain rich category-specific fine-grained semantic informa-
tion and prior structural information. In this paper, we pro-
pose a Support-based Dynamic Perception Network (SDP-
Net) for the robust and accurate CAPE. On the one hand,
SDPNet models complex dependencies between support
keypoints, constructing category-specific prior structure to
guide the interaction of query keypoints. On the other
hand, SDPNet extracts fine-grained semantic information
from support samples, dynamically modulating the refine-
ment process of query. Our method outperforms existing
methods on MP-100 dataset by a large margin.

1. Introduction

Pose estimation is a fundamental task in computer vision,
aimed at estimating the coordinates of predefined semantic
parts, such as human bodies [22, 26, 42, 44], hands [41, 54],
faces [3, 43], animals [19, 47], and vehicles [35]. It is cru-
cial for human-computer interaction, human behavior anal-
ysis, autonomous driving, and biomedicine. However, most
current pose estimation methods are category-specific and
fail to estimate poses of categories not seen during train-
ing. For new categories, these methods require collect-
ing large amounts of annotated data for network training,
or even adopting different network architectures, which is
time-consuming and resource-intensive.

Recently, Category-Agnostic Pose Estimation (CAPE)
[45] has been proposed to achieve universal pose estima-
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Figure 1. Comparison with existing methods. Previous meth-
ods mainly focus on information mining of query samples. Our
method fully explores the support information, allowing support
features to deeply participate in the iterative refinement.

tion with a single model. Specifically, for an unseen object,
given few support images with pose annotations, CAPE
aims to predict keypoint locations in query images without
re-training. As shown in Fig. 1, existing methods [33, 45]
estimate the initial query keypoint positions through the
similarity matching between keypoint features and query
image features. Then, they iteratively refine the query key-
point positions through self-interaction among query key-
points and cross-interaction between query keypoint fea-
tures and query image features. Although existing methods
have made significant progress in CAPE, they still struggle
to handle complex occlusions, similar appearances, and a
wide range of pose variations.

The support samples serve as an explicit clue for pose es-
timation of novel categories, containing fine-grained visual
information and category-related prior structural informa-
tion. However, existing methods primarily use support in-
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formation to initialize query keypoint features, significantly
neglecting the potential of support samples. On the one
hand, the similarity matching process is easily disrupted by
complex occlusions or similar appearances, which is diffi-
cult to be refined through the interaction between query im-
age features and query keypoint features. On the other hand,
aggregating multiple support keypoint features through av-
eraging ignores the complex inter- and intra-sample depen-
dencies, making the refinement process susceptible to inter-
ference from low-quality keypoint features.

To address these problems, we propose a Support-based
Dynamic Perception Network (SDPNet) for the robust and
accurate CAPE. SDPNet extensively exploits the category-
specific semantic information and structural information in
support samples, to guide the similarity matching and it-
erative refinement of the query sample. On the one hand,
SDPNet models the complex dependencies between key-
points through cross-sample interaction, and generates a
category-specific prior structure. Based on the estimated
prior structures, SDPNet adopts a Graph Convolution Net-
work (GCN) to perform directional information passing be-
tween query keypoints, significantly enhancing the robust-
ness of query keypoint features against occlusions and sim-
ilarities. On the other hand, SDPNet constructs semantic-
aware keypoint features with category consensus through
cross-sample interaction. Based on the semantic-aware key-
point features, SDPNet dynamically modulates the inter-
action process between query keypoint features and query
visual feature maps, activates category-relevant visual fea-
tures and suppresses irrelevant features.

We evaluate our method on MP-100 dataset [45],which
is currently the only public dataset for the CAPE task.
Our method outperforms state-of-the-art (SOTA) methods
(POMNet [33] and CapeFormer [45]) by a large margin.
Our contributions can be summarized as follows:

• For the CAPE task, our method is the first to focus on
mining and utilizing the semantic and structural information
of support samples.

• Our method dynamically predicts category-related
structures using support keypoint features, subsequently
guiding the self-interaction among query keypoint features.

• Our method leverages semantic-aware support key-
point features to dynamically modulate the interaction be-
tween query keypoint features and query image features.

2. Related Works

2.1. Category-specific Pose Estimation

Pose estimation is a fundamental task in computer vision,
aimed at locating the predefined semantic parts of an ob-
ject. For a long time, pose estimation methods have focused
on specific categories or super-categories, such as human
bodies [22, 26, 42, 44], faces [3, 43], hands [41, 54], and

animal poses [19, 47]. These methods can be divided into
heatmap-based approaches [5, 8, 17, 26, 36, 38, 44, 48] and
regression-based approaches [21, 28, 54]. Regression-based
methods use an encoder structure to directly regress key-
point coordinates from images, while heatmap-based meth-
ods adopt an encoder-decoder structure to predict a dense
pose representation, such as likelihood maps. These two
types of methods mainly focus on building more powerful
backbone [8, 26], designing better loss functions [17, 21],
and adopting better pose representations [5, 38, 48]. How-
ever, these methods require a large amount of training data
and lack the ability to detect keypoints of novel objects.

2.2. Category-Agnostic Pose Estimation

Generic visual models adopt image inpainting [1, 40], im-
age editing [15], or the generation of serialized tokens
[6, 16, 24, 39] as agent target to achieve multiple visual
tasks, including pose estimation, object detection, semantic
segmentation, depth estimation, and image generation. Al-
though these methods are also category-agnostic, they pri-
marily focus on how to perform various vision tasks consis-
tently, overlooking the uniqueness of the pose estimation
task. POMNet [45] is the first method designed specifi-
cally for category-agnostic pose estimation tasks. Given
few support samples, POMNet achieves the query keypoints
localization through a similarity matching process between
keypoint features and query image features. The similarity
matching process is susceptible to interference from similar
appearances and occlusions. Thus, CapeFormer [33] pro-
poses an attention-based iterative refinement process, lever-
aging the query image feature to progressively enhance the
query keypoint features, significantly improving the accu-
racy of pose estimation. However, both methods substan-
tially neglect the rich semantic information and prior struc-
tural information in the support samples.

2.3. Graph Convolution Networks

Graph Convolution Networks (GCN) have significant ap-
plications in multiple tasks, including action recognition
[9, 32, 46], 3D reconstruction [10, 30, 52], human pose
estimation [7, 23, 49, 50, 56] and hand pose estimation
[4, 11, 12, 14, 20]. These works mainly use GCN to per-
form information passing between joints. For example, Cai
et al. [4] adopt a hierarchical GCN to estimate 3D pose
from a short sequence of 2D poses; Ren et al. [29] use
GCN for cross-view hand joint feature interaction. Most
of these methods depend on the physical structure between
joints, which limits their flexibility. To solve this problem,
some works [31, 51, 55] propose using data-driven meth-
ods to learn a adjacency matrix or dynamically predict the
adjacency matrix based on joint features. However, these
methods can still only handle a single category. Our method
adopts a mask reconstruction task that dynamically predicts
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Figure 2. Overall Framework. Support information deeply participates in the dynamic feature fusion process and the dynamic iterative
refinement process. ‘HR’ and ‘LR’ represent high resolution and low resolution, while ‘PE’ stands for positional encoding.

category-related structures based on support features.

3. Method

Category-Agnostic Pose Estimation (CAPE) [45] aims to
estimate the pose of a query image based on few sup-
port images. Specifically, we denote the query image as
Iq ∈ RH×W×3, the support images as Is ∈ RH×W×3,
and the number of support samples as N . Support sam-
ples provide rich clues for the pose estimation of the query
sample. On the one hand, support images contain category-
related visual information, such as color, texture and shape.
On the other hand, the support keypoint coordinates contain
category-related prior structure information, such as kine-
matic dependencies and symmetry relationships. Therefore,
we propose a Support-based Dynamic Perception Network
(SDPNet) to mine the semantic and structural information
of support samples.

Similar to CapeFormer [33], SDPNet adopts a similarity
matching to generate initial query keypoint coordinates and
adopts an iterative refinement process to refine the query
keypoint coordinates progressively. Differently, in SDP-
Net, the information of support samples is deeply integrated
into the similarity matching and the iterative refinement.
Firstly, SDPNet utilizes a cross-instance interaction mod-
ule to extract semantic-aware and structure-aware keypoint
features. Then, SDPNet adopts an information fusion mod-
ule and a dynamic convolution module to construct query
keypoint features and high-resolution query image features,
respectively. Finally, under the guidance of two types of
support keypoint features, SDPNet dynamically enhances

query keypoint features and iteratively refines the query
pose. T represents the iteration numbers.

3.1. Keypoint Feature Construction

SDPNet adopts a shared backbone to extract visual feature
maps from the support images and the query image respec-
tively. As shown in Fig. 2, the query image Iq is fed to the
backbone to extract the high-resolution query feature map
Fq

hr ∈ RH/4×W/4×C and low-resolution query feature map
Fq

lr ∈ RH/32×W/32×C , where the C represents the number
of channels. The support image Is is fed to the backbone to
extract the support feature map Fs ∈ RH/4×W/4×C . Then,
we extract initial support keypoint features Ks

init ∈ RK×C

from the support feature maps Fs using keypoint heatmaps
Hs ∈ RH×W×K as previous work [33, 45], where the K
represents the number of keypoints.

We construct semantic-aware keypoint features Ks
sem ∈

RK×C and structure-aware keypoint features Ks
str ∈

RK×C based on initial support keypoint features Ks
init. It is

worth mentioning that the same semantic parts of different
instances within the same category may vary significantly
in shape, color, texture, and other attributes. Therefore, us-
ing average operations to aggregate keypoint information
is unreliable. We adopt the self-attention mechanism [37]
to perform cross-instance information interaction, thereby
obtaining the support keypoint features with category con-
sensus. As shown in Fig. 3, we first perform intra-instance
keypoint interactions, followed by inter-instance keypoint
interactions. Notably, during inter-instance interactions, we
introduce instance order encoding and keypoint identifier
encoding [33] to construct the query and key, thereby dis-
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Figure 3. Illustration of the cross-instance interaction. We iter-
atively perform intra-instance keypoint interactions and then per-
form inter-instance keypoint interactions. Here, we use the 3-shot
setting for illustration.

tinguishing between different instances and different key-
points. For structure-aware keypoint features Ks

str, we en-
hance the initial keypoint features Ks

init with keypoint po-
sitional encoding and adopt another self-attention module
for cross-instance information interaction.

The quality of the support keypoint features from dif-
ferent instances varies due to occlusion. Therefore, we
utilize an instance-wise attention mechanism to obtain the
aggregated semantic-aware keypoint features Ks

sem and
structure-aware keypoint features Ks

str.

3.2. Semantic-Aware Feature Fusion

Since different instances in the support images and the
query image may have considerable differences in color,
texture, and pose, it is difficult to directly match the sup-
port keypoint features and the query image features. Cape-
Former [33] adopts a self-attention module to fuse support
keypoint features and query image features, thereby reduc-
ing the gap in embedding space.

Since the computational complexity of the self-attention
mechanism will grow quadratically with the length of the
processing sequence, existing methods can only perform
feature interaction with low-resolution feature maps. How-
ever, low-resolution feature maps need more fine-grained
visual information, making it challenging to achieve high-
precision pose estimation. To solve this problem, we use

both low-resolution query feature maps and high-resolution
query feature maps. Specifically, similar to [33], we adopt
a self-attention module to perform the fusion of support
keypoint features and low-resolution query feature maps to
construct query keypoint features. At the same time, we
feed the high-resolution query feature maps to the subse-
quent iterative refinement process to provide fine-grained
visual clues for enhancing query keypoint features and re-
fining query poses. To efficiently activate category-related
visual features and suppress irrelevant features, we perform
dynamic feature embedding based on support sample infor-
mation. Specifically, we generate category-specific convo-
lution kernels based on semantic-aware keypoint features
Ks

sem. Following [2, 27], we set convolution kernel size
S to 7 and we adopt the depth-wise convolution kernels
D ∈ RC×S×S to reduce computational complexity:

D = FC(GAP (Ks
sem)), (1)

where GAP denotes global average pooling and FC is a fully
connected layer. With the predicted dynamic convolution
kernels D, enhanced high-resolution query feature map F̂q

hr

is calculated as follow:

F̂q
hr = ReLU(BN(D ∗d Fq

hr)), (2)

where ∗d is the depth-wise convolution. ReLU and BN
represent ReLU function and batch normalization [18].

3.3. Dynamic Iterative Refinement

The similarity matching process focuses on the similar-
ity of local visual features, so it is susceptible to interfer-
ence from similar appearance and occlusion. For exam-
ple, symmetrically similar parts, such as eyes, ears, and
limbs, are prone to confusion in similarity matching. There-
fore, we adopt a dynamic, iterative refinement process to
enhance the query keypoint features and refine the query
keypoint positions. Specifically, we utilize dynamic GCN
and Multi-Head Self-Attention (MHSA) for query keypoint
self-interaction. In addition, we utilize a modulated de-
formable attention mechanism to extract fine-grained visual
information from high-resolution feature maps F̂q

hr, and
then update the query keypoint features.

Dynamic Graph Convolution. Each category has its
unique prior structure, including physical connections, such
as kinematic dependencies between key points, and spatial
relationships, such as symmetry. Performing keypoint in-
formation interaction based on the prior structure can al-
leviate the interference of local occlusion and absences.
Therefore, we utilize GCN to perform keypoint informa-
tion passing based on category-specific prior structures and
then adopt the MHSA to perform non-local keypoint in-
teraction. Specifically, we dynamically generate category-
specific prior structures A ∈ RK×K based on structure-
aware support keypoint features Ks

str as follow:
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A =
∑
i

Softmax((WθiK
s
str)

TWφi
Ks

str), (3)

where Wθi and Wφi
are two learnable matrices used

for feature embedding; i represents different embedding
spaces. As shown in Fig. 2, we adopt a mask reconstruction
task for self-supervised training. Specifically, we randomly
mask out some support keypoints, and use a GCN to recon-
struct keypoints. Meanwhile, we adopt a sparse constraint
on the predicted structure to avoid redundant edges.

As mentioned in previous work [23], in order to enhance
the modeling ability of graph convolution, different feature
transformation matrices need to be used for different key-
points before feature aggregation. To improve the modeling
capabilities without introducing too many parameters, Zou
et al. [55] proposed to use a learnable modulation matrix
M ∈ RK×C to achieve disentangled transformation of the
keypoint feature. Given a query keypoint feature Kq

i , the
graph convolution operation is defined as follow:

Kq
i = ReLU(

∑
j

(Mj ⊙W)Kq
jAij), (4)

where W is a shared feature transformation matrix and ⊙
represents Hadamard product. The value of M is fixed once
training is completed. In the CAPE task, the semantics of
each position in the keypoint features are not fixed. To solve
this problem, we dynamically generate modulation matrices
based on query keypoint features to achieve efficient disen-
tangled transformation of keypoint features as follows:

Mj = Sigmoid(MLP (Kq
j)), (5)

where MLP stands for a multi-layer perception consisting
of multiple FC layers and ReLU activation layers. Specifi-
cally, within a single refinement stage, this modulation ma-
trix is shared by all graph convolution layers.

Modulated Deformable Attention. In order to reduce
the computational complexity, we utilize the deformable at-
tention [53] for sparse image feature sampling and keypoint
feature update. Each keypoint predicts a set of offset vec-
tors based on its own information, then performs sparse im-
age feature sampling based on these offset vectors to update
its features. However, we observe that some keypoints ex-
hibit excessive confidence, sampling features within a small
range around themselves, which may lead to local optima.
To address this, we utilize support keypoint information to
modulate the sampling range, encouraging low-quality key-
points to access a broader range. As shown in Fig. 4, for
the support and query features of each keypoint, we com-
pare the differences in their embedded features and predict
a modulation coefficient matrix C ∈ RK×1 based on the
difference as follow:

Query 
Keypoint Feature 

Support 
Keypoint Feature 

Linear Linear Linear

Linear & Sigmoid

Standard
Deformable Attention

Modulated
Deformable Attention

Offset Scale

Figure 4. Illustration of the modulated deformable attention. We
focus on explaining the differences in feature sampling between
standard and modulated deformable attention, hence omitting the
process of weighted aggregation of sampled features. For simplic-
ity, we only draw a single keypoint feature.

C = 2∗Sigmoid(MLP (Wϕ0K
q
str −Wϕ1K

s
sem)), (6)

where Wϕi
are learnable matrices used for feature embed-

ding. Sigmoid function transforms the modulation coeffi-
cients to a range between 0 and 1.

Query Pose Refinement. We use the refined query key-
point features to predict the keypoint coordinates. Similar
to CapeFormer [33], we predict the offset of keypoints dur-
ing the iterative refinement. We use the output of the last
refinement stage as the final prediction result.

3.4. Loss Function

We supervise three network parts, including similarity
matching, iterative refinement, and prior structure genera-
tion. For similarity matching and iterative refinement, we
supervise the similarity heatmap and estimated query key-
point coordinates, respectively. The supervision loss func-
tion is the same as CapeFormer [33]. For the prior structure
generation, we mainly adopt support pose reconstruction
loss and structure sparsity loss. For N support instances,
we define the support pose reconstruction loss Lpose as:

Lpose =
1

N

1

K

N∑
n=1

K∑
k=1

∣∣∣Ps
nk − P̃s

nk

∣∣∣
1
, (7)

Given the estimated category-specific prior structure ma-
trix, the structure sparsity loss Lstr is defined as:

Lstr =
1

K2

K∑
i=1

L∑
j=1

|Aij |1 . (8)
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4. Experiments
4.1. Dataset and Metric

We train and evaluate our method on the MP-100 dataset
[33], which is currently the only public dataset for CAPE
tasks. MP-100 contains 100 sub-categories and 8 super-
categories, with a total of 18K images and 20K annotations.
The number of annotated keypoints covers a wide range,
from 8 to 68. Following previous methods [33, 45], the
dataset is divided into 5 splits. In each split, there is no over-
lap of categories between the training, validation, and test
sets. We use the Probability of Correct Keypoint (PCK) as
the evaluation metric. Following previous methods [33, 45],
we use PCK under the 0.2 threshold as default.

4.2. Implementation Details

We train and evaluate our method on a computer with an
AMD Ryzen 9 3900X 3.80 GHz CPU, 64 GB of RAM, and
an Nvidia 4090 GPU with 24 GB of memory. The network
is implemented with PyTorch. We use Adam optimizer to
train the model for 200 epochs with a batch size of 16. The
learning rate is set as 1e-5 and is divided by 10 at 160 and
180 epochs. Following previous methods [33, 45], data aug-
mentation with random scaling ([-0.15, 0.15]) and random
rotation ([-15, 15]) is applied to improve the model general-
ization ability. More details on implementation are provided
in the supplementary materials.

4.3. Ablation Study

Following prior works [33, 45], we conduct experiments un-
der split1 of MP-100. Due to computational resource con-
straints, we default to using 3-shot setting in ablation stud-
ies. We adopt the HRNet-32 pre-trained from ImageNet
as the backbone. We first investigate the impact of cross-
instance interaction on constructing support keypoint fea-
tures. Then, we study the importance of dynamically acti-
vating for high-resolution features. Finally, we evaluate the
impact of introducing support information in the iterative
refinement process, including prior structure-based graph
convolution and modulated deformable attention.

4.3.1 Cross-Instance Interaction

In this section, we compare three cross-instance interaction
methods, including: 1) Average 2) Weighted Aggregation
3) Cross-instance Interaction. For weighted aggregation,
we use the initial support keypoint features to predict the
keypoint quality and use the predicted quality as the weight
to aggregate support keypoint features. As shown in Table
1, direct averaging is susceptible to interference from low-
quality keypoints and has the lowest performance. Adopt-
ing a weighted average can improve the quality of the aggre-
gated keypoint features, thereby slightly improving the net-

Table 1. Comparison of
different aggregation meth-
ods. ‘AW’ and ‘CI’ stand
for weighted aggregation and
cross-instance interaction.

AW CI PCK
– – 92.97
✓ – 93.21
✓ ✓ 93.54

Table 2. The Impact of dy-
namic activation. ‘HR’ and
‘DC’ stand for adopting high-
resolution feature map and
dynamic convolution.

HR DC PCK
– – 92.84
✓ – 93.38
✓ ✓ 93.54

work’s performance. Adopting the cross-instance interac-
tion can better capture the complex dependencies between
keypoints, thus achieving the best performance.

4.3.2 Dynamic Feature Activation

We demonstrate the effectiveness of leveraging dynamic
convolution for high-resolution feature activation in Table
2. First, compared to using low-resolution features to up-
date keypoint features, using high-resolution features to
update has a better performance. This is because high-
resolution features can maintain fine-grained visual infor-
mation. Secondly, using dynamic convolution to reactivate
high-resolution features can further improve the network
performance, which shows that dynamic convolution oper-
ations can enhance category-related features and suppress
irrelevant features in the query feature map.

4.3.3 Prior Structure and Graph Convolution

In this section, we explore the impact of different compo-
nents in prior structure estimation and GCN. Specifically,
we explore the impact of prior structure generation meth-
ods, sparse constraint, and graph convolution operation on
network performance.

First, we compare three methods for estimating the prior
structure, namely global regression, concatenation regres-
sion, and multi-head attention. The method based on global
regression obtains a global keypoint feature through average
pooling and then directly predicts an K2-dimensional vec-
tor as a prior structure through an FC layer. Concatenation
regression concat each keypoint feature with other keypoint
features to construct an K×K×2C-dimensional tensor and
then performs element-wise connection strength prediction
through an FC layer. As shown in Table 3, global regression
(ID-1) is significantly worse than concatenation regression
(ID-2) and multi-head attention (ID-6), while multi-head at-
tention performs slightly better than concatenation regres-
sion. Therefore, we choose to use multi-head attention to
predict the prior structure.

Then, we explore the impact of the sparsity constraint.
As shown in Table 3, if the sparse constraint is not used
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Table 3. Ablation study on different components in prior structure
estimation and GCN. ‘GR’, ‘CR’ and ‘MA’ stand for global re-
gression, concatenation regression, and multi-head attention. ‘SC’
stands for sparse constraint. ‘SM’, ‘MM’, and ‘SEM’ stand for
shared matrix, modulation matrix, and self-information matrix.

ID GR CR MA SC SM MM SEM PCK
0 93.01
1 ✓ ✓ ✓ 93.17
2 ✓ ✓ ✓ 93.48
3 ✓ ✓ 92.87
4 ✓ ✓ ✓ 93.15
5 ✓ ✓ ✓ 93.22
6 ✓ ✓ ✓ 93.54

Figure 5. Visualization of estimated category-specific structures.
We show the three categories of animals, faces and clothes. The
yellow line represents the predicted edge between the keypoints.

(ID-3), a large number of meaningless edges are generated,
severely reducing the effectiveness of the graph convolution
operation. The performance of the network is even worse
than not using GCN (ID-0). Finally, we explore the impact
of different graph convolution operations. As shown in the
Table 3, using a shared feature embedding matrix for all
keypoints will limit the expressive capability of graph con-
volution (ID-4). Additionally, since keypoints of different
categories have distinct attributes, adopting a fixed modu-
lation matrix yields suboptimal results (ID-5). Generating
the dynamic modulation matrix based on self-information
of keypoints achieves the best performance.

At the same time, we visualize the estimated category-
specific prior structure. As shown in Fig. 5, our method can
generate reasonable prior structures for different categories.
It can effectively capture the kinematic dependence between
keypoints and some unique spatial relationships, such as
the symmetrical relationship between the eyes. However,
the structures generated for some objects with less struc-
tural characteristics still have certain defects. For example,
the prior structure generated for clothing overlooks some
connections on the overall silhouette, and the connections
around the cuffs are disordered.

Table 4. Ablation study on different modulated deformable at-
tention. ‘SB’ and ‘DB’ stand for support-based generation and
difference-based generation. ‘UM’ and ‘SM’ stand for unique
modulation coefficient and shared modulation coefficient.

SB DB UM SM PCK
93.17

✓ ✓ 93.06
✓ ✓ 93.32
✓ ✓ 93.54

4.3.4 Modulated Deformable Attention

In this section, we compared two methods for generating
modulation coefficients and two ways of modulating off-
sets. First, inspired by dynamic convolution, we use the
semantic-aware support keypoint feature to generate mod-
ulation coefficients. As shown in Table 4, this method per-
forms worse than standard deformable attention. We argue
that this is because the semantic-aware support keypoint
feature lacks query information and cannot effectively as-
sess the quality of the query keypoints, thus failing to modu-
late the offset. Secondly, we tried generating a unique mod-
ulation coefficient for each offset of the same keypoint. As
shown in Table 4, compared to generating a shared modula-
tion coefficient for all offsets of the same keypoint, adopting
a shared modulation coefficient brought only a minor per-
formance improvement. This indicates that giving excessive
freedom to sparse feature sampling could be harmful.

4.4. Comparisons with SOTA

We compare SIANet with the previous CAPE method, in-
cluding POMNet [45], CapeFormer [33], ProtoNet [34],
MAML [13] and Fine-tune [25]. For fairness of com-
parison, we also report the performance of SPDNet us-
ing ResNet-50 as the backbone, and accordingly abandon
the dynamic modulation designed for high-resolution fea-
tures. As shown in Table 5, SDPNet outperforms the SOTA
method CapeFormer [33] under both 1-shot and 5-shot set-
tings. Specifically, our method improves the average PCK
by 2.05% and 1.12% in 1-shot setting and 5-shot setting.

We show some qualitative results comparisons with
SOTA methods. As shown in the Fig. 6, our method demon-
strates some unique advantages. Firstly, SDPNet can focus
on fine-grained visual information, achieving more detailed
and precise predictions. For example, in the prediction of
the hind legs of the dog and fox in the first row, SPDNet can
achieve pixel-aligned keypoint estimation. This is attributed
to high-resolution feature sampling based on modulated de-
formable attention. Secondly, SPDNet is highly robust and
can handle variations in local texture, color, and shape. For
example, in the second row on the left, due to the inter-
ference of hair, the texture and shape of the eye area have
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Table 5. Comparisons with the SOTA methods on MP-100 dataset under both 1-shot and 5-shot settings (PCK).

Method 1-Shot 5-shot
Split 1 Split 2 Split 3 Split 4 Split 5 Average Split 1 Split 2 Split 3 Split 4 Split 5 Average

ProtoNet [34] 46.05 40.84 49.13 43.34 44.54 44.78 60.31 53.51 61.92 58.44 58.61 58.56
MAML [13] 68.14 54.72 64.19 63.24 57.20 61.50 70.03 55.98 63.21 64.79 58.47 62.50
Fine-tune [25] 70.60 57.04 66.06 65.00 59.20 63.58 71.67 57.84 66.76 66.53 60.24 64.61
POMNet [45] 84.23 78.25 78.17 78.68 79.17 79.70 84.72 79.61 78.00 80.38 80.85 80.71
CapeFormer [33] 89.45 84.88 83.59 83.53 85.09 85.31 91.94 88.92 89.40 88.01 88.25 89.30
SDPNet(ResNet-50) 90.03 85.42 84.22 84.17 85.95 85.96 92.65 89.64 89.46 88.57 88.74 89.81
SDPNet(HRNet-32) 91.54 86.72 85.49 85.77 87.26 87.36 93.68 90.23 89.67 89.08 89.46 90.42

Capeformer Ours GT Support Capeformer Ours GT Support

Figure 6. Qualitative results. We visualize the keypoint predictions under 5-shot setting. For simplicity, we only show one support image.
The bones are not the results predicted by our network, but provided by the dataset.

significant changes. However, our method can still accu-
rately predict the position of the eye keypoints; in the third
row on the left, there are considerable changes in the color
and angle of the clothing, yet our method can predict the
position of the keypoints accurately. Finally, our method is
also robust to occlusions. In the second and third rows on
the right, some keypoints of the bed and chair are not visible
due to self-occlusion. CapeFormer [33] cannot predict these
occluded keypoints, but SDPNet can locate these keypoints.
We attribute the robustness of SPDNet to the dynamic graph
convolution, which can perform information passing based
on the estimated prior structures.

5. Conclusion

In this paper, we propose a Support-based Dynamic Per-
ception Network (SDPNet) for the robust and accurate
category-agnostic pose estimation. SDPNet fully leverages
the visual feature and keypoint information of support sam-
ples to guide the query pose estimation. SDPNet utilizes
the semantic information of support samples to dynami-

cally activate the query visual feature map and modulate
the sampling process of the query keypoint feature. At the
same time, SDPNet uses the support keypoint information
to dynamically predict category-specific prior structures,
and adopts graph convolution to perform structured infor-
mation interaction between query keypoints. SDPNet can
achieve pixel-aligned pose estimation and is robust to local
appearance changes. However, SPDNet does not explicitly
consider the 3D structure of the object, resulting in unsatis-
factory prediction accuracy for some occluded keypoints.
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