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Figure 1. We propose a novel single-LiDAR-based approach for 3D HPS in large-scale scenarios, which is not limited
to fixed studios, light conditions, and wearable devices. Our method predicts full human SMPL parameters(pose, shape,
translation) from consecutive LiDAR point clouds and performs well for challenging poses and occlusion situations.

Abstract

For human-centric large-scale scenes, fine-grained mod-
eling for 3D human global pose and shape is significant
for scene understanding and can benefit many real-world
applications. In this paper, we present LiveHPS, a novel
single-LiDAR-based approach for scene-level Human Pose
and Shape estimation without any limitation of light condi-
tions and wearable devices. In particular, we design a dis-
tillation mechanism to mitigate the distribution-varying ef-
fect of LiDAR point clouds and exploit the temporal-spatial
geometric and dynamic information existing in consecu-
tive frames to solve the occlusion and noise disturbance.
LiveHPS, with its efficient configuration and high-quality
output, is well-suited for real-world applications. More-
over, we propose a huge human motion dataset, named
FreeMotion, which is collected in various scenarios with
diverse human poses, shapes and translations. It consists
of multi-modal and multi-view acquisition data from cali-
brated and synchronized LiDARs, cameras, and IMUs. Ex-
tensive experiments on our new dataset and other public
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datasets demonstrate the SOTA performance and robustness
of our approach.

1. Introduction

Human pose and shape estimation (HPS) is aimed at recon-
structing 3D digital representations of human bodies, such
as SMPL [32], using data captured by sensors. It is signif-
icant for two primary applications: one in motion capture
for the entertainment industry, including film, augmented
reality, virtual reality, mixed reality, etc.; and the other in
behavior understanding for the robotics industry, covering
domains like social robotics, assistive robotics, autonomous
driving, human-robot interaction, and beyond.

While optical-based methods [15, 16, 26, 28, 41] have
seen significant advancements in recent years, their efficacy
is limited due to the camera sensor’s inherent sensitivity to
variations in lighting conditions, rendering them impracti-
cal for use in uncontrolled environments. In contrast, in-
ertial methods [37, 55, 60, 61] utilize body-mounted iner-
tial measurement units (IMUs) to derive 3D poses, which
is independent of lighting and occlusions. However, these
methods necessitate the use of wearable devices, struggle
with drift issues over time, and fail to capture human body
shapes and precise global translations.

LiDAR is a commonly used perception sensor for robots
and autonomous vehicles [9, 33, 65, 66] due to its accu-
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rate depth sensing without light interference. Recent ad-
vances [42] in HPS are turning to utilize LiDAR for cap-
turing high-quality SMPLs in the wild. LiDARCap [30]
proposes a GRU-based approach for estimating only human
pose parameters from LiDAR point clouds. MOVIN [20]
uses a CVAE framework to link point clouds with human
poses for both human pose and global translation estima-
tion. Nevertheless, these approaches lack the capability to
estimate body shapes, and further, they disregard the chal-
lenging characteristics of LiDAR point clouds, leading to
an unstable performance in real-world scenarios. First, the
distribution and pattern of LiDAR point clouds vary across
different capture distances and devices. Second, the view-
dependent nature of LiDAR results in incomplete point
clouds of the human body, affected by self-occlusion or ex-
ternal obstruction. Third, real-captured LiDAR point clouds
invariably contain noise in complex scenarios, caused by the
reflection interference or carry-on objects. These properties
all bring challenges for accurate and robust HPS in exten-
sive, uncontrolled environments.

Considering above intractable problems of LiDAR point
cloud, we introduce LiveHPS, a novel single-LiDAR-based
approach for capturing high-quality human pose, shape, and
global translation in large-scale free environment, as shown
in Fig. 1. The deployment-friendly single-LiDAR setting is
unrestricted in acquisition sites, light conditions, and wear-
able devices, which can benefit many practical applications.
In order to improve the robustness for tackling point distri-
bution variations, we design an Adaptive Vertex-guided
Distillation module to make diverse point distributions
align with the regular SMPL mesh vertex distribution in
high-level feature space by a prior consistency loss. More-
over, to reduce the influence of occlusion and noise, we
propose a Consecutive Pose Optimizer to explore the ge-
ometric and dynamic information existing in temporal and
spatial spaces for pose refinement by attention-based fea-
ture enhancement. In addition, a Skeleton-aware Transla-
tion Solver is also presented to eliminate the effect of in-
complete and noised point cloud on accurate estimation for
human global translation. In particular, we introduce the
scene-level unidirectional Chamfer distance (SUCD) from
the input point cloud to the estimated human mesh vertex in
global coordinate system as a new evaluation measurement
for LiDAR-based HPS, which can reflect the fine-grained
geometry error and translation error between the prediction
and the ground truth.

It is worth noting that we also introduce FreeMotion,
a novel huge motion dataset captured in diverse large-
scale real scenarios with multiple persons, which contains
multi-modal data(LiDAR point clouds, RGB image and
IMUs), multi-view data(front, back and side), and compre-
hensive SMPL parameters(pose, shape and global transla-
tion). Through extensive experiments and ablation studies

on FreeMotion and other public datasets, our method out-
performs others by a large margin.

Our main contributions can be summarized as follows:
• We present a novel single-LiDAR-based method for 3D

HPS in large-scale free environment, which achieves
state-of-the-art performance.

• We propose an effective vertex-guided adaptive distilla-
tion module, consecutive pose optimizer, and skeleton-
aware translation solver to deal with the distribution-
varied, incomplete, and noised LiDAR point clouds.

• We present a new motion dataset captured in diverse real
scenarios with rich modalities and annotations, which can
facilitate further research of in-the-wild HPS.

2. Related Work
2.1. Optical-based Methods

Optical motion capture technology has advanced from ini-
tial marker-based systems [38, 49, 50] that rely on camera-
tracked markers to reconstruct a 3D mesh, to markerless
systems [1, 5, 12, 21, 34, 39, 43, 44, 47]. Despite they can
get high-accuracy results, these systems are often expen-
sive and require elaborate setup and calibration. To miti-
gate these challenges, monocular mocap methods using op-
timization [4, 17, 27, 29] and regression [22, 23, 25, 64],
along with template-based, probabilistic [14–16, 56, 57],
and semantic-modeling techniques [26], have emerged to
address monocular system limitations. Nonetheless, these
approaches still suffer from inherent light sensitivity and
depth ambiguity. Some strategies[2, 13, 45, 54, 63] use
depth cameras, yet these cameras have a limited sensing
range and are ineffective in outdoor scenes.

2.2. Inertial-based Methods

Unlike optical systems, inertial motion capture systems [55]
are not affected by light conditions and occlusions. They
generally need numerous IMUs attached to form-fitting
suits, a setup that can be heavy and inconvenient, motivat-
ing interest in more sparse configurations, such as six-IMU
setting [18, 51, 60, 61] and four-IMU setting [42]. How-
ever, these methods suffer from drift errors over time, can-
not provide precise shape and global translation, and require
wearable devices, not practical for daily-life scenarios.

2.3. LiDAR-based Methods

With precise long-range depth-sensing ability, LiDAR has
emerged as a key sensor in robotics and autonomous vehi-
cles [8, 40, 62, 65, 66]. LiDAR can provide precise depth
information and global translation in expansive environ-
ments, remaining uninfluenced by lighting conditions, en-
abling robust 3D HPS. Recently, PointHPS [7] provides a
cascaded network architecture for pose and shape estima-
tion from point clouds. However, it is applicable for dense
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point clouds rather than sparse LiDAR point clouds. Li-
DARCap [30] employs a graph-based convolutional net-
work to predict daily human poses in LiDAR-captured
large-scale scenes. MOVIN [20] presents a generative
method for estimating both pose and global translation.
However, these methods cannot predict full SMPL parame-
ters (pose, shape, and global translation) and are fragile for
complex real scenarios with occlusion and noise.

2.4. 3D Human Motion Datasets

Data-driven 3D HPS have gained traction in recent years
benefiting from extensive labeled datasets. Indoor marker-
based datasets [19, 46] use multi-view camera systems to
record daily motions. AMASS [35] unifies these datasets,
providing a standardized benchmark for network train-
ing. Marker-less datasets such as MPI-INF-3DHP [36]
and AIST++ [31] capture more complex poses without
constraint of the wearable devices, all above datasets are
still confined to indoor settings. Outdoor motion cap-
ture datasets [24, 52] capture motions in the wild but
lack accurate depth information, hindering scene-level hu-
man motion research. HuMMan [6] constitutes a mega-
scale database that offers high-resolution scans for sub-
jects, and MOVIN [20] provides motion data from multi-
camera capture system with point clouds, but both datasets
are limited in short-range scenes. [10, 11, 59] are pro-
posed for human motion capture in large-scale scenes using
environment-involved optimization, but they are limited in
a single-person setting. Recently, LiDARHuman26M [30]
and LIP [42] provide LiDAR-captured motion dataset in
large scenes, but both datasets exclusively provide pose pa-
rameters of SMPL in single-person scenarios. In contrast,
we propose a large-scale LiDAR-based motion dataset with
full SMPL parameter annotations. It comprises challenging
scenarios with occlusions and interactions among multiple
persons and objects, which has great practical significance.

3. Methodology
We propose a single-LiDAR-based approach named
LiveHPS for scene-level 3D human pose and shape estima-
tion in large-scale free environments. The overview of our
pipeline is shown in Fig. 2. We take consecutive 3D single-
person point clouds as input and aim to acquire consistently
accurate local pose, human shape, and global translation
without any limitation of acquisition sites, light conditions,
and wearable devices. There are three main procedures in
our network, including point-based body tracker (Sec. 3.2),
consecutive pose optimizer (Sec. 3.3), and attention-based
multi-head SMPL solver (Sec. 3.4). First, we utilize the
point-based body tracker to extract point-wise features and
predict the human body joint positions. Second, we propose
the attention-based temporal-spatial feature enhancement
mechanism to acquire refined joint positions using joint-

wise geometric and relationship features. Finally, we design
an attention-based multi-head solver to regress the human
SMPL parameters including human local pose, shape and
global translation from the refined body skeleton.

3.1. Preliminaries

LiveHPS takes a consecutive sequence of single-person
point clouds with T frames as input. As raw point clouds
have various numbers of points at different times t, we im-
plement normalization process by resampling each frame to
a fixed Nfps = 256 points utilizing the farthest point sam-
pling algorithm (FPS) and subtracting the average locations
loc(t) ∈ R3 of the raw data. P(t) ∈ R3Nfps denotes the
pre-processed input at time t.

We define NJ as the number of body joints and
NV as the number of body vertices on SMPL mesh;
Ĵ(t), J̃GT (t) ∈ R3NJ as predicted and ground-
truth root-relative joint positions at time t, repectively;
V̂(t), ṼGT (t) ∈ R3NV as predicted and ground-truth ver-
tex positions. Our network prediction consists of θ̂(t) ∈
R6NJ , β̂ ∈ R10 and T̂ r(t) ∈ R3, the pose, shape, and global
translation parameters of SMPL. θGT (t), βGT and TrGT (t)
are corresponding ground truth. We use 6D-rotation-based
pose representation.

3.2. Point-based Body Tracker

For the input of our pre-processed consecutive point clouds,
we extract the point-wise feature following the PointNet-
GRU structure proposed by LIP [42] and regress the human
body joint positions with an MLP decoder. Considering the
irregular distribution of LiDAR point clouds vary across
different capture distances and devices, and are also ef-
fected by occlusion and noise (Fig. 1), we design a Vertex-
guided Adaptive Distillation (VAD) mechanism to unify
the point distribution to facilitate the training of the net-
work and improve the robustness. Because the vertices of
SMPL mesh have relatively regular representation, we make
diverse point distributions aligned with the mesh vertex dis-
tribution in high-level feature space by distillation, as Fig. 2
shows.

Firstly, we use the global translation TrGT (t) to align
the LiDAR point cloud P(t) with the ground truth mesh
vertex ṼGT (t) and utilize k-Nearest-Neighbours (kNN) al-
gorithm to sample the corresponding vertices, defined as
ṼGT

pc (t). Then, we use ṼGT
pc (t) to pre-train a vertex body

tracker to regress the joint positions Ĵv(t). We use the mean
squared error (MSE) loss Lmse(Ĵv) for supervision:

Lmse(Ĵv) =
∑
t

∥ Ĵv(t)− J̃GT (t) ∥22 . (1)

Subsequently, we input sequential point clouds P(t) and
their corresponding vertex data ṼGT

pc (t) into two indepen-
dent body trackers to obtain point-wise features Fp(t) ∈ Rk
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Figure 2. The pipeline of LiveHPS. With sequential LiDAR point clouds as input, LiveHPS consists of three critical modules to obtain
human SMPL parameters, including a point-based body tracker to distill the pose-prior information, a consecutive pose optimizer to refine
the pose via utilizing joint-wise features, and a multi-head SMPL solver to regress parameters of human models.

and Fv(t) ∈ Rk, respectively, where k = 1024. No-
tably, two point-based body tracker networks share distinct
weights and we freeze the pre-trained parameters of the ver-
tex body tracker during training. To align real point distri-
butions with the regular vertex distribution, we employ a
pose-prior consistency loss Lpc to minimize the high-level
feature distance between LiDAR point clouds and guided
vertices. The distillation procedure enables our feature ex-
tractor to own the ability to maintain insensitivity under
vastly differentiated data distribution. Finally, we leverage
an MLP decoder to predict the joint positions Ĵp. A com-
bined loss Lprior consisting of Lmse(Ĵp) and Lpc is utilized
to train the network, which is formulated as below

Lmse(Ĵp) =
∑
t

∥ Ĵp(t)− J̃GT (t) ∥22, (2)

Lpc =
∑
t

Fv(t) log(
Fv(t)

Fp(t)
), (3)

Lprior = λ1Lmse(Ĵp) + λ2LPC , (4)

where λ1 and λ2 are hyper-parameters, and we set λ1 = 1
and λ2 = 103 in our experiments. During inference, the
VAD process is not required.

3.3. Consecutive Pose Optimizer

We have already obtained the joint positions of human poses
from the point-based body tracker. Considering that human
motions are coherent at time sequence and different joints
of the human body usually execute the action with relative
dynamic constraints, we propose a Consecutive Pose Op-
timizer (CPO) (Fig. 3) to refine the body skeleton using
consecutive joint-wise geometry features and relationship
features in temporal and spatial spaces, which can further
reduce the effect of incomplete and noised point clouds.
Specifically, we utilize the concatenation of point-wise fea-
ture Fp(t) ∈ Rk and the predicted joint positions Ĵp(t) as
the initial joint-wise feature input. To capture the motion

T

N

Ĵrefine(t)Ĵp(t)Fp(t) Fts(t)
Interaction

Ĵp(nj ∈ NJ)
Fp(t) Ft(t)

InteractionFt(t)

Temporal Interaction Spatial Interaction

Figure 3. The detailed feature interaction mechanism in CPO. The
same network architecture is applied in both consecutive pose op-
timizer and multi-head solver(pose and shape) except the decoder.
Here we take the consecutive pose optimizer as the reference.

consistency in sequence, we use linear transformations to
generate Q(t), K(t), and V (t) in each frame and conduct
temporal interaction to learn the motion-consistent feature
Ft(t) ∈ Rk2 for each joint, where k2 = 256. This tem-
poral interaction process guides the estimation of more rea-
sonable continuous human motions, especially for occluded
situations. Then, we use the dynamic and geometric con-
straints among joints to further enhance the joint feature
via spatial feature interaction. The input Fj(nj ∈ NJ) ∈
Rk+k2+3 consists of the point-wise feature Fp(t) ∈ Rk,
temporal interaction feature Ft(t) ∈ Rk2 , and each joint
feature Ĵp(nj ∈ NJ) ∈ Ĵp(t). We generate Q(nj), K(nj)
and V (nj) with linear mapping for each joint and conduct
the spatial joint-to-joint interaction to get the enhanced fea-
ture Fts(t) ∈ Rk3 , where k3 = 512. The feature interaction
matrix can be formulated as:

Finteraction = softmax

(
QKT

√
dk

)
V. (5)

Finally, we regress the refined joint positions Ĵrefine(t)
from the enhanced feature and the loss function is

Lmse(Ĵrefine) =
∑
t

∥ Ĵrefine(t)− J̃GT (t) ∥22 . (6)
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3.4. Multi-head SMPL Solver

In the last stage, we propose an attention-based multi-head
solver to regress the SMPL [32] parameters θ̂(t), β̂, T̂ r(t)
from refined joint positions and the input point cloud. Be-
cause the pose and the shape reflect local geometry of hu-
man body, they can be determined by root-relative joint
features obtained in last stage. We utilize the same net-
work structure as CPO as the pose solver and shape solver
to get θ̂(t) and β̂. However, the global translation could
be obtained only from the root-relative local geometry fea-
tures. Previous methods [30, 42] usually take the average
position of the body point cloud as the global location or
directly regress the global translation. However, due to
the interference of occlusion and noise, their predicted re-
sults are unstable in consecutive frames. In contrast, we
simplify the task of predicting global translation to predict
the bias between the average position of point cloud and
the real 3D location. Thus, we propose a Skeleton-aware
Translation Solver underpinned by a cross-attention archi-
tecture, which intelligently integrates skeletal and original
point cloud data to get more accurate translation estima-
tion. We employ point cloud P(t) and refined root-relative
joint positions Ĵrefine(t) as the input, utilizing the cross-
attention to match the geometric information of joints with
the point cloud. We generate the Q(t) from refined joint
positions and K(t), V (t) from point cloud. The feature in-
teraction matrix can be formulated as Eq. 5. The decoder
outputs the bias, which can be added to the average loca-
tion loc(t) of raw point cloud to get the global translation
T̂ r(t). Finally, we use SMPL model to generate the human
skeleton joint positions and mesh vertex positions as below.

Ĵsmpl(t), V̂smpl(t) = SMPL(θ̂(t), β̂, T̂ r(t)). (7)

The loss function for the multi-head solver is formulated as:

Lsolver =λ3Lmse(Ĵsmpl) + λ4Lmse(V̂smpl)

+λ5Lmse(θ̂(t)) + λ6Lmse(β̂

+λ7Lmse(T̂ r(t)) + λ8LSUCD,

(8)

where λ3, λ4, λ5, λ6, λ7 are hyper-parameters with λ3 =
100
Nj

, λ4 = 100
Nv

, λ5 = 1
5 , λ6 = 1, λ7 = 1 and λ8 = 103.

Because the raw point cloud contains the real pose,
shape, and global translation information, it can be taken
as an extra supervision which is ignored by previous meth-
ods. In particular, we introduce a novel scene-level unidi-
rectional Chamfer distance (SUCD) loss by calculating the
unidirectional Chamfer distance from the raw point cloud
to the predicted mesh vertices. It provides a comprehensive
evaluation for all predicted SMPL parameters, denoted as

LSUCD =
∑
t

1

|P(t)|
∑

x∈P(t)

min
y∈V̂smpl(t)

|x− y|22, (9)

4. FreeMotion Dataset
Previous LiDAR-related human motion datasets typically
involve a single performer carrying out common actions
with incomplete SMPL parameters, which have limitations
in evaluating the generalization capability and robustness
of HPS methods when being applied in daily-life complex
scenarios. To facilitate the research of high-quality human
motion capture in large-scale free environment, we provide
FreeMotion, the first motion dataset with multi-view and
multi-modal visual data with full-SMPL annotations, cap-
tured in diverse real-life scenarios with natural occlusions
and noise. It contains 578,775 frames of data and annota-
tions and contains 1 ∼ 7 performers in each scene.

Figure 4. The capture systems of FreeMotion. In (a), we use a
dense-camera capture system with LiDARs for accurate pose and
shape capture. In (b), we set LiDARs and cameras at three views
to capture human motions.

4.1. Data Acquisition

Considering that the indoor multi-camera panoptic studio
can provide high-precision full SMPL parameter annota-
tions and outdoor scenes are large-scale and suitable for
real applications, we have two capture systems as shown in
Fig. 4. For the first one, we set up a 76-Z-CAM system to
obtain SMPL ground truth and three OUSTER-1 LiDARs
at varied distances to get LiDAR data. Notably, we arrange
other performers outside the studio to simulate occlusions in
real-life scenarios. For the second one, we built three sets
of LiDAR-camera capture devices, including a 128-beam
OUSTER-1 LiDAR and a monocular Canon camera for
each, in different locations to capture multi-view and multi-
range visual data, and provide the global translation ground
truth. The performer is equipped with a full set of Notiom
equipment (17 IMUs) to obtain the pose ground truth. Par-
ticularly, the shape parameters of outdoor performers are
captured in panoptic studio in advance. The capture fre-
quencies for the LiDAR, Z-CAM, Canon camera, and IMU
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Table 1. Comparison with public human motion datasets from four different aspects. “Capture distance” means the maximum distance
between performer and capture device, which is approximately calculated with the data published. “Multi-person” indicates the capture
scenes involve multiple persons. “HOI” denotes the human-object interaction scenarios.

Dataset Statistics Scenarios Data SMPL annotation

Frame Capture distance(m) Multi-person In the wild HOI Point cloud IMU Image Multi-view Pose Shape Translation

AMASS [35] 16M 3.42 % % % % % ! ! ! ! !

HuMMan [6] 60M 3.00 % % % ! % ! ! ! ! !

SURREAL [48] 6M N/A ! % % % % ! % ! ! !

AIST++ [31] 10M 4.23 % % % % % ! ! ! % !

3DPW [52] 51k N/A ! ! ! % ! ! % ! ! !

LiDARHuman26M [30] 184k 28.05 % ! % ! ! ! % ! % %

LIPD [42] 62k 30.04 % ! % ! ! ! % ! % %

MOVIN [20] 161k N/A % % % ! % ! ! ! % !

Sloper4D [11] 100k N/A % ! % ! ! ! % ! ! !

CIMI4D [59] 180k 16.61 % ! % ! ! ! % ! ! !

FreeMotion 578k 39.85 ! ! ! ! ! ! ! ! ! !

are set at 10Hz, 25Hz, 60Hz, and 60Hz, respectively. All
the data are calibrated and synchronized.

4.2. Dataset Characteristics

The detailed comparison with existing public datasets is
presented in Tab. 1. FreeMotion has several distinctive char-
acteristics and we summarize three main highlights below.

Free Capture Scenes. Diverging from previous datasets
focused on single-person HPS, FreeMotion is captured in
real unconstrained environments, which involves diverse
capture scales, multi-person activities, and human-object
interaction scenarios. The large-scale human trajectories,
occlusions, and noise all bring challenges for precise hu-
man global pose and shape estimation, thereby promoting
the envelope of HPS technology for real-life applications.

Diverse Data Modalities and Views. FreeMotion offers
multi-view and multi-modal capture data, including LiDAR
point clouds, RGB images, and IMU measurements, pro-
viding rich resources for the exploration of single-modal,
multi-modal, single-view, multi-view HPS solutions.

Complete Scene-level SMPL Annotations. Existing
LiDAR-based motion datasets usually provide pose anno-
tations using dense IMUs and lack annotations for human
shape and global translation. FreeMotion remedies this by
providing full SMPL parameters annotations, as shown in
Fig. 4. FreeMotion involves 20 individuals with varying
body types engaging in 40 types of actions. Details are
in appendix. Accurate and complete annotations in rich
scenarios can comprehensive evaluation for algorithms and
benefit many downstream applications.

4.3. Data Extension

To enrich the dataset with various poses and shapes for
pretraining, we follow LIP [42] to create synthetic point
clouds from SURREAL [48], AIST++ [31], and portions
of AMASS [35], including ACCAD and BMLMovi. It con-
sists of 2, 378k frames and 3, 118 body shapes. Note that

Figure 5. Qualitative comparisons. The point cloud matches
the result better, representing more accurate estimation for pose,
shape, and translation. Point cloud is far from results of MOVIN.

statistics in Tab. 1 do not include the synthetic data. De-
tailed process is shown in appendix.

5. Experiments
In this section, we compare our method with current SOTA
methods on FreeMotion and various public datasets quali-
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Table 2. Comparison with state-of-the-art methods on various datasets. Lower values represent better performance for all metrics.
SURREAL [48] Sloper4D [11] FreeMotion

J/V Err(P)↓ J/V Err(PS)↓ J/V Err(PST)↓ Ang Err↓ SUCD↓ J/V Err(P)↓ J/V Err(PS)↓ J/V Err(PST)↓ Ang Err↓ SUCD↓ J/V Err(P)↓ J/V Err(PS)↓ J/V Err(PST)↓ Ang Err↓ SUCD↓
LiDARCap [30] 42.82/54.05 51.05/62.42 118.51/123.84 9.90 3.02 67.40/80.08 71.99/86.58 179.33/185.39 15.92 4.54 87.58/105.97 88.98/107.64 186.55/196.06 16.79 5.00

LIP [42] 31.72/42.40 32.71/43.02 45.22/53.18 12.17 0.95 60.11/74.90 62.03/77.26 94.81/106.34 19.95 2.27 81.13/98.65 81.99/99.58 129.88/141.77 18.76 4.24
MOVIN [20] 97.34/120.49 103.37/125.64 - 26.98 - 123.80/146.25 126.19/148.69 45559.25/45564.41 32.12 3311762.48 109.62/128.66 113.47/132.25 2853.87/2863.89 27.34 9252.86

LiveHPS 23.99/30.81 24.75/31.81 34.45/40.14 9.49 0.67 46.22/56.72 48.28/59.02 77.73/85.83 12.77 1.67 68.88/83.20 69.43/83.90 119.27/128.61 15.79 2.85

Table 3. The cross-dataset evaluation on various datasets. We use applicable metrics for each dataset according to its annotations.

LiDARHuman26M [30] LIPD [42] CIMI4D [59] SemanticKITTI [3] HuCenLife [58]

J/V Err(P)↓ Ang Err↓ SUCD↓ J/V Err(P)↓ Ang Err↓ SUCD↓ J/V Err(P)↓ J/V Err(PS)↓ Ang Err↓ SUCD↓ SUCD↓ SUCD↓

LiDARCap [30] 123.09/151.55 26.41 5.81 97.41/119.89 18.48 4.30 205.24/253.58 205.51/255.58 32.68 14.40 10.07 6.01
LIP [42] 103.48/124.18 24.14 3.93 83.38/102.25 18.73 2.81 162.28/205.25 166.38/211.10 33.03 8.47 9.93 5.06

MOVIN [20] 104.89/127.32 32.56 188906.16 101.78/121.67 28.82 66400.65 178.48/214.16 182.29/218.07 42.41 39681.84 1647852.73 58655.42

LiveHPS 101.33/121.74 23.58 2.67 78.63/97.45 18.36 1.98 142.00/181.21 149.42/190.60 32.17 4.26 7.28 3.14

Figure 6. Qualitative comparisons in cross-dataset evaluation. Se-
manticKITTI and HucenLife do not provide SMPL annotations.

tatively and quantitatively, demonstrating our method’s su-
periority and generalization capability. We also present de-
tailed ablation studies for our network’s modules to vali-
date their effectiveness. Our evaluation metrics include 1)
J/V Err(P/PS/PST) ↓: mean per joint/vertex position error
in millimeters, where we generate joint/vertex from SMPL
model by Pose/Pose-Shape/Pose-Shape-Translation param-
eters; 2) Ang Err ↓: mean per global joint rotation error
in degrees to evaluate local pose; 3) SUCD ↓: scene-level
unidirectional Chamfer distance in millimeters.

5.1. Implementation Details

We build our network on PyTorch 1.8.1 and CUDA 11.1,
trained over 200 epochs with batch size of 32 and sequence

length of 32, using an initial learning rate of 10−3. The pro-
cess was run on a server equipped with an Intel(R) Xeon(R)
E5-2678 CPU and 8 NVIDIA RTX3090 GPUs. For train-
ing, we used clustered and manually annotated human point
cloud sequences from raw data, while for testing, we em-
ploy sequential point clouds of human instances processed
by a pre-trained segmentation model [53]. As for the dataset
splitting, we take training set of FreeMotion, Sloper4D,
and synthetic dataset including training set of SURREAL,
AIST++, ACCAD, and BMLMovi for training.

5.2. Comparison

We evaluate LiveHPS against other state-of-the-art (SOTA)
LiDAR-related methods [20, 30, 42] on FreeMotion and
several public datasets [3, 11, 30, 42, 48, 58, 59] to demon-
strate its superiority in capturing human global poses and
shapes in large-scale free environment, even with severe
occlusions and noise. Our LiveHPS achieves SOTA perfor-
mance as shown in Tab. 2. The J/V Err(P) and Ang Err only
relate to the pose parameter estimation, we surpass LiDAR-
Cap [30], LIP [42] and MOVIN [20] by an obvious mar-
gin. For fair comparison, we only use the LiDAR branch
of LIP. As the pioneer to fully estimate SMPL parameters
for LiDAR-based HPS, we develop a shape regression head
with the same architecture of their pose regression head for
fair comparison with other methods [20, 30, 42], the transla-
tion prediction of LiDARCap is the average of point cloud.
Visual comparisons in Fig. 5 further highlight our method’s
superiority in global pose and shape estimations, yielding
results that closely mirror ground truth. Other methods
struggle in situations with occlusions and noise, as exempli-
fied in challenging scenes from Sloper4D [11] and FreeMo-
tion in Fig. 5. MOVIN [20] estimate translation based on
velocity regression, it is not applicable on synthetic data
SURREAL without real trajectories. Our LiveHPS demon-
strates robust performance against noise like carried objects,
as demonstrated in FreeMotion’s left case in Fig. 5.

Tab. 3 illustrates our cross-dataset evaluation to validate
the generalization capability of LiveHPS by directly testing
on other datasets. LiDARHuman26M [30] and LIPD [42]
only offer pose parameters. CIMI4D [59] provides pose,
shape, and translation, but the translation is not that precise
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Table 4. Ablation studies for our network modules. We also evaluate the internal details of each module.
Network Module Consecutive Pose Optimizer Multi-head SMPL(Pose and Shape) Solver Skeleton-aware Translation Solver Ours

w/o VAD w/o CPO w/o Temporal w/o Spatial ST-GCN GRU Average MOVIN LIP

J/V Err(PST) 129.19/140.42 127.44/140.87 121.93/135.56 120.20/129.51 124.37/135.38 120.63/130.83 177.66/184.57 1296.48/1310.95 165.04/172.36 119.27/128.61
Ang Err 16.95 25.20 27.58 18.09 19.40 18.34 - - - 15.79
SUCD 3.17 4.08 3.51 2.95 3.28 3.08 4.25 8569.68 3.07 2.85

Table 5. More results on different lengths of input sequence and
different point numbers on humans on FreeMotion dataset.

Frames 1 4 8 16 32

J/V Err(PST)↓ 142.88/155.58 130.73/141.10 126.23/135.60 123.08/132.14 119.27/128.61
Ang Err↓ 19.22 17.31 16.53 16.05 15.79
SUCD↓ 5.22 3.03 3.01 3.02 2.85

Points 0 ∼ 100 100 ∼ 200 200 ∼ 300 300 ∼ 1000 > 1000

J/V Err(PST)↓ 156.01/168.42 106.03/114.00 106.81/113.98 103.96/110.37 81.01/87.70
Ang Err↓ 16.78 16.34 15.17 13.64 12.84
SUCD↓ 4.54 2.31 2.25 2.52 2.63

as shown in the third row of Fig. 6. SemanticKITTI [3]
and HuCenLife [58] are large-scale datasets for 3D percep-
tion, not providing SMPL annotations. Thanks to our VAD
module’s ability to harmonize diverse human point cloud
distributions and CPO module’s ability to model geomet-
ric and dynamic human features, our method can achieve
SOTA performance on these cross-domain datasets, even in
challenging cases with extreme occlusions, as Fig. 6 shows.

5.3. Ablation Study

We first validate the effectiveness of each module in
LiveHPS. Then, we evaluate inner designs of each module
to verify the effectiveness of detailed structures.

Tab. 4 shows the performance of our method with dif-
ferent network modules, demonstrating the necessity of our
vertex-guided adaptive distillation (VAD) and consecutive
pose optimizer (CPO) modules. We also illustrate ablation
details of attention-based temporal and spatial feature en-
hancement in CPO, showing that the combination of tem-
poral and spatial feature interaction performs best. We
also conduct experiments to validate our attention-based
multi-head SMPL solver. Our pose and shape solver, us-
ing the same network as CPO, outperforms ST-GCN from
LiDARCap [30] and GRU from LIP [42] by fully utiliz-
ing the global temporal context and local spatial relation-
ship existing in consecutive body joints. For the transla-
tion solver, the average of point cloud can reflect the coarse
translation but it is very unstable with the distribution of
point cloud changes. Compared with global velocity esti-
mation utilized in MOVIN [20], our skeleton-aware transla-
tion solver directly estimates translations without error ac-
cumulation. Moreover, unlike GRU-based pose-guided cor-
rector in LIP [42] which overlooks relationship between the
skeleton and point cloud, our approach performs better by
considering the relationship and more spatial information.

5.4. Generalization Capability Test

We assess the generalization capability of LiveHPS across
varying lengths of input point cloud sequences and across

different point numbers on human body in each frame, as
Tab. 5 shows. Our method performs better with increas-
ing sequence length but maintains good accuracy even with
short inputs. In addition, our method performs relatively
robust even for the situation with 100 points on the human
body, which means far distance (about 15 meters) to LiDAR
or severe occlusion. Fig. 1 and Fig. 7 show our method is
practical for in-the-wild scenarios, capturing human motion
in large-scale scenes day and night with real-time perfor-
mance up to 45 fps. This strongly demonstrates the feasi-
bility and superiority of our method in real-life applications.
More application results are in appendix.

Figure 7. Performance of LiveHPS on real-time-captured scenes.

6. Conclusion

In this paper, we propose a novel single-LiDAR-based ap-
proach for predicting human pose, shape, and translations
in large-scale free environment. To solve the occlusion and
noise interference, we design a novel distillation mecha-
nism and temporal-spatial feature interaction optimizer. Im-
portantly, we propose a huge multi-person human motion
dataset, which is significant for future in-the-wild HPS re-
search. Extensive experiments on diverse datasets demon-
strate the robustness and effectiveness of our method.

Limitations When human is static in the large-scale
scene for a long time, our model can not fully utilize the
dynamic information in consecutive frames and cause the
misjudged orientation of human global orientations, oppo-
site to the ground-truth pose.

1288



References
[1] Sikander Amin, Mykhaylo Andriluka, Marcus Rohrbach,

and Bernt Schiele. Multi-view pictorial structures for 3D
human pose estimation. In BMVC, 2009. 2

[2] Andreas Baak, Meinard Müller, Gaurav Bharaj, Hans-Peter
Seidel, and Christian Theobalt. A data-driven approach for
real-time full body pose reconstruction from a depth camera.
In ICCV, 2011. 2

[3] Jens Behley, Martin Garbade, Andres Milioto, Jan Quen-
zel, Sven Behnke, Cyrill Stachniss, and Jurgen Gall. Se-
mantickitti: A dataset for semantic scene understanding of
lidar sequences. In Proceedings of the IEEE/CVF inter-
national conference on computer vision, pages 9297–9307,
2019. 7, 8

[4] Federica Bogo, Angjoo Kanazawa, Christoph Lassner, Peter
Gehler, Javier Romero, and Michael J Black. Keep it smpl:
Automatic estimation of 3d human pose and shape from a
single image. In Computer Vision–ECCV 2016: 14th Euro-
pean Conference, Amsterdam, The Netherlands, October 11-
14, 2016, Proceedings, Part V 14, pages 561–578. Springer,
2016. 2

[5] Magnus Burenius, Josephine Sullivan, and Stefan Carlsson.
3D pictorial structures for multiple view articulated pose es-
timation. In CVPR, 2013. 2

[6] Zhongang Cai, Daxuan Ren, Ailing Zeng, Zhengyu Lin, Tao
Yu, Wenjia Wang, Xiangyu Fan, Yang Gao, Yifan Yu, Liang
Pan, et al. Humman: Multi-modal 4d human dataset for ver-
satile sensing and modeling. In European Conference on
Computer Vision, pages 557–577. Springer, 2022. 3, 6

[7] Zhongang Cai, Liang Pan, Chen Wei, Wanqi Yin, Fangzhou
Hong, Mingyuan Zhang, Chen Change Loy, Lei Yang,
and Ziwei Liu. Pointhps: Cascaded 3d human pose
and shape estimation from point clouds. arXiv preprint
arXiv:2308.14492, 2023. 2

[8] Peishan Cong, Xinge Zhu, Feng Qiao, Yiming Ren, Xi-
dong Peng, Yuenan Hou, Lan Xu, Ruigang Yang, Dinesh
Manocha, and Yuexin Ma. Stcrowd: A multimodal dataset
for pedestrian perception in crowded scenes. In CVPR, pages
19608–19617, 2022. 2

[9] Peishan Cong, Xinge Zhu, Feng Qiao, Yiming Ren, Xi-
dong Peng, Yuenan Hou, Lan Xu, Ruigang Yang, Dinesh
Manocha, and Yuexin Ma. Stcrowd: A multimodal dataset
for pedestrian perception in crowded scenes. arXiv preprint
arXiv:2204.01026, 2022. 1

[10] Yudi Dai, Yitai Lin, Chenglu Wen, Siqi Shen, Lan Xu, Jingyi
Yu, Yuexin Ma, and Cheng Wang. Hsc4d: Human-centered
4d scene capture in large-scale indoor-outdoor space using
wearable imus and lidar. In CVPR, pages 6792–6802, 2022.
3

[11] Yudi Dai, Yitai Lin, Xiping Lin, Chenglu Wen, Lan Xu,
Hongwei Yi, Siqi Shen, Yuexin Ma, and Cheng Wang.
Sloper4d: A scene-aware dataset for global 4d human
pose estimation in urban environments. arXiv preprint
arXiv:2303.09095, 2023. 3, 6, 7

[12] Ahmed Elhayek, Edilson de Aguiar, Arjun Jain, Jonathan
Tompson, Leonid Pishchulin, Mykhaylo Andriluka, Chris
Bregler, Bernt Schiele, and Christian Theobalt. Efficient

ConvNet-based marker-less motion capture in general scenes
with a low number of cameras. In CVPR, 2015. 2

[13] Kaiwen Guo, Jonathan Taylor, Sean Fanello, Andrea
Tagliasacchi, Mingsong Dou, Philip Davidson, Adarsh Kow-
dle, and Shahram Izadi. Twinfusion: High framerate non-
rigid fusion through fast correspondence tracking. In 3DV,
pages 596–605, 2018. 2

[14] Marc Habermann, Weipeng Xu, Michael Zollhöfer, Gerard
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