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Figure 1. Move anything on an image. Top: our approach generates playable scenes: objects are spatially disentangled, thus can be
freely moved, resized, and cloned in the scene. Bottom: a scene can be generated conditioned on a reference image, thus supporting
extensive spatial image editing operations. Our approach is training-free and compatible with general text-to-image diffusion models.
Once optimized, rendering a new layout requires less than a second on a single GPU, allowing interactive interactions.

Abstract

Diffusion models generate images with an unprece-
dented level of quality, but how can we freely rearrange
image layouts? Recent works generate controllable scenes
via learning spatially disentangled latent codes, but these
methods do not apply to diffusion models due to their fixed
forward process. In this work, we propose SceneDiffusion
to optimize a layered scene representation during the diffu-
sion sampling process. Our key insight is that spatial disen-
tanglement can be obtained by jointly denoising scene ren-

∗Work done during an internship at Meta AI.

derings at different spatial layouts. Our generated scenes
support a wide range of spatial editing operations, includ-
ing moving, resizing, cloning, and layer-wise appearance
editing operations, including object restyling and replacing.
Moreover, a scene can be generated conditioned on a ref-
erence image, thus enabling object moving for in-the-wild
images. Notably, this approach is training-free, compatible
with general text-to-image diffusion models, and responsive
in less than a second.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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1. Introduction
Controllable scene generation, i.e., the task of generating
images with rearrangeable layouts, is an important topic
of generative modeling [27, 42] with applications ranging
from content generation and editing for social media plat-
forms to interactive interior design and video games.

In the GAN era, latent spaces have been designed to of-
fer a mid-level control on generated scenes [7, 26, 40, 41].
Such latent spaces are optimized to provide a disentangle-
ment between scene layout and appearance in an unsuper-
vised manner. For instance, BlobGAN [7] uses a group of
splattering blobs for 2D layout control, and GIRAFFE [26]
uses compositional neural fields for 3D layout control. Al-
though these methods provide good control of the scene
layout, they remain limited in the quality of the gener-
ated images. On the other hand, diffusion models have
recently shown unprecedented performance at the text-to-
image (T2I) generation task [4, 6, 13, 31, 33, 35]. Still, they
cannot provide fine-grained spatial control due to the lack
of mid-level representations stemming from their fixed for-
ward noising process [13, 35].

In this work, we propose a framework to bridge this
gap and allow for controllable scene generation with a gen-
eral pretrained T2I diffusion model. Our method, enti-
tled SceneDiffusion, is based on the core observation that
spatial-content disentanglement can be obtained during the
diffusion sampling process by denoising multiple scene lay-
outs at each denoising step. More specifically, at each diffu-
sion step t, we optimize a scene representation by first ran-
domly sampling several scene layouts, running locally con-
ditioned denoising on each layout in parallel, and then ana-
lytically optimizing the representation for the next diffusion
step t−1 to minimize its distance with each of denoised re-
sult. We employ a layered scene representation [15, 16, 19],
where each layer represents an object with its shape con-
trolled by a mask and its content controlled by a text de-
scription, allowing us to compute object occlusions using
depth ordering. Rendering of the layered representation is
done by running a short schedule of image diffusion, which
is usually completed within a second. Overall, SceneDiffu-
sion generates rearrangable scenes without requiring fine-
tuning on paired data [25, 43], mask-specific training [31],
or test-time optimization [29, 39], and is agnostic to de-
noiser architecture designs.

In addition, to enable in-the-wild image editing, we pro-
pose to use the sampling trajectory of the reference image as
an anchor in SceneDiffusion. When denoising multiple lay-
outs simultaneously, we increase the weight of the reference
layout in the noise update to keep the scene’s faithfulness to
the reference content. By disentangling the spatial location
and visual appearance of the contents, our approach bet-
ter reduces hallucinations and preserves the overall content
across different editing compared to baselines [8, 20, 24].

To quantify the performance, we build an evaluation
benchmark by creating a dataset containing 1,000 text
prompts and over 5,000 images associated with image cap-
tions, local descriptions, and mask annotations. We evalu-
ate our proposed approach on this dataset and show that it
outperforms prior works on both image quality and layout
consistency metrics by a clear margin on both controllable
scene generation and image spatial editing tasks.

In summary, our contributions are:
• We propose a novel sampling strategy, SceneDiffusion, to

generate layered scenes with image diffusion models.
• We show that the layered scene representation supports

flexible layout rearrangements, enabling interactive scene
manipulation and in-the-wild image editing.

• We build an evaluation benchmark and observe that our
method achieves state-of-the-art performance quantita-
tively on both scene generation and image editing tasks.

2. Related Works
2.1. Controllable Scene Generation

Generating controllable scenes has been an important topic
in generative modeling [27, 42] and has been extensively
studied in the GAN context [7, 26, 40, 41]. Various ap-
proaches have been developed on applications that include
controllable image generation [7, 40], 3D-aware image
generation [2, 14, 26, 41] and controllable video genera-
tion [21]. Usually, control at the mid-level is obtained in an
unsupervised manner by building a spatially disentangled
latent space. However, such techniques are not directly ap-
plicable to T2I diffusion models. Diffusion models employ
a fixed forward process [13, 35], which constrains the flex-
ibility of learning a spatially disentangled mid-level repre-
sentation. In this work, we solve this issue by optimizing a
layered scene representation during the diffusion sampling
process. It is also noteworthy that recent works enable dif-
fusion models to generate images grounded on given lay-
outs [9, 18, 25, 43]. However, they do not focus on spatial
disentanglement and do not guarantee similar content after
rearranging layouts.

2.2. Diffusion-based Image Editing

Off-the-shelf T2I diffusion models can be powerful im-
age editing tools. With the help of inversion [23, 36] and
subject-centric finetuning [10, 32], various approaches have
been proposed to achieve image-to-image translation in-
cluding concept replacement and restylization [5, 11, 17,
22, 38]. However, these approaches are restricted to in-
place editing, and editing the spatial location of objects has
been rarely explored. Moreover, many of the approaches
exploit an attention correspondence [3, 8, 11, 38] or a fea-
ture correspondence [24, 34, 37] with the final image, mak-
ing the approach dependent to a specific denoiser architec-
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Figure 2. Method overview. Our framework has two stages: i) optimization stage, we optimize a layered scene representation with
SceneDiffusion for T − τ diffusion steps, and ii) inference stage, we render the optimized layered scene with τ -step standard image
diffusion. iii) SceneDiffusion updates the layered scene by denoising multiple randomly sampled layouts in parallel. In the illustration,
the scene has 4 layers. Each layer consists of a feature map f , a mask m (shown as a box), and a text prompt y (shown at the bottom). At
denoising step t, we randomly sample N layouts and render them to get different views v(t). We then denoise the views using a pretrained
T2I diffusion model for one step to get v̂(t−1), which are used to update the feature maps f (t) → f (t−1) in the layered scene. Note that
boxes here only serve as a rough geometry of objects (like blobs in Epstein et al. [7]), and can be replaced by more accurate masks.

ture. Compared with concurrent works on spatial image
editing with diffusion models using self-guidance [8, 24]
and feature tracking [34], our method is different in: 1) we
generate scenes that preserve the content across different
spatial editing, 2) we use an explicit layered representation
that gives intuitive and precise control, and 3) we render a
new layout via a short schedule of image diffusion, while
guidance-based approaches require a long sampling sched-
ule and feature tracking requires gradient-based optimiza-
tion for each editing.

3. Our Approach

Framework Overview. An overview of our framework is
shown in Figure 2. In Section 3.1, we briefly introduce pre-
liminary works on diffusion models and locally conditioned
diffusion. Then, in Section 3.2, we present how we obtain
a spatially disentangled layered scene with SceneDiffusion.
Finally, in Section 3.3, we discuss how SceneDiffusion en-
ables spatial editing on in-the-wild images.

3.1. Preliminary

Diffusion Models. Diffusion models [13, 35] are a type
of generative model that learns to generate data from a ran-
dom input noise. More specifically, given an image from the
data distribution x0 ∼ p(x0), a fixed forward noising pro-
cess progressively adds random Gaussian noise to the data,
hence creating a Markov Chain of random latent variable
x1, x2, ..., xT following:

q(xt|xt−1) = N (xt;
√
1− βixt−1, βtI), (1)

where β1, ...βT are constants corresponding to the noise
schedule chosen so that for a high enough number of dif-
fusion steps xT is assumed to be a standard Gaussian. We
then train a denoiser θ that learns the backward process,
i.e., how to remove the noise from a noisy input [13]. At
inference time, we can sample an image by starting from a
random standard Gaussian noise xT ∼ N (0; I) and itera-
tively denoise the image following the Markov Chain, i.e.,
by consecutively sampling xt−1 from pθ(xt−1|xt) until x0:

xt−1 =
1√
λt

(
xt −

1− λt√
1− λ̄t

ϵθ(xt, t)
)
+σtz, (2)

where z ∼ N (0, I), λ̄t =
∏t

s=1 λs, λt = 1− βt, and σt is
the noise scale.

Locally Conditioned Diffusion. Various approaches [1,
28] have been proposed to generate partial image content
based on local text prompts using pretrained T2I diffusion
models. For K local prompts y = {y1, y2, ..., yK} and bi-
nary non-overlapping masks m = {m1,m2, ...mK}, lo-
cally conditioned diffusion [28] proposes to first predict a
full image noise ϵθ(xt, t, yk) for each local prompt yk with
classifier-free guidance [12], and then assign it to its corre-
sponding region masked by mk:

ϵLCD
θ (xt, t,y,m) =

K∑
k=1

mk ⊙ ϵθ(xt, t, yk), (3)

where ⊙ is element-wise multiplication.
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3.2. Controllable Scene Generation

Given a list of ordered object masks and their correspond-
ing text prompts, we would like to generate a scene where
object locations can be changed on the spatial dimensions
while keeping the image content consistent and high qual-
ity. We leverage a pretrained T2I diffusion model θ that
generates in the image space (or latent space) I ∈ Rc×w×h,
where c is the number of channels and w and h the width
and height of the image, respectively. To achieve control-
lable scene generation, we introduce a layered scene repre-
sentation in Section 3.2.1 for mid-level control and propose
a new sampling strategy in Section 3.2.2.

3.2.1 Layered Scene Representation

We decompose a controllable scene into K layers [lk]
K
k=1,

ordered by the depth of the objects. Each layer lk has
1) a fixed object-centric binary mask mk ∈ {0, 1}c×w×h

(e.g., a bounding box or segmentation mask) to show the
geometric property of the object, 2) a two-element offset,
ok ∈ [0;µk] × [0; νk], indicating its spatial locations, with
µk and νk defining the horizontal and vertical movement
range, and 3) a feature map f

(t)
k ∈ Rc×w×h representing its

visual appearance at diffusion step t.
A scene layout is defined by the masks and their asso-

ciated offsets. The offset ok of each layer can be sampled
from the movement range [0;µk] × [0; νk] to form a new
layout. Specially, we set the last layer lK as the background
so that mK = {1}c×w×h and oK = [0, 0]. Given a lay-
out, the layered representation can be rendered to an image,
and we name the image as a view. Similar to prior works in
controllable scene generation [7] and video editing [16], we
use α-blending to composite all the layers during rendering.
More concretely, the view v(t) can be calculated as:

v(t) =

K∑
k=1

αk ⊙ move(f (t)
k , ok),

αk = move(mk, ok)
k−1∏
j=1

(1− move(mj , oj)).

(4)

Each element in αk ∈ {0, 1}w×h indicates that the visibility
of that location in the k-th latent feature map, and the func-
tion move(·, o) means that we spatially shift the values of
the feature map f or mask m by o. The rendering process
can be applied to the layered scene at any diffusion step,
resulting in a view with a certain noise level.

For initialization at diffusion step T , the initial feature
map f

(T )
k is independently sampled from a standard Gaus-

sian noise N (0, I) for each layer. It can be shown that since
α is binary and

∑K
k=1 α

2
k = 1, the rendered views from the

initial layered scene still follow the standard Gaussian dis-
tribution. This allows us to denoise the views directly using

pretrained diffusion models. In Section 3.2.2, we discuss
how to update f

(t)
k in a sequential denoising process.

3.2.2 Generating Scenes with SceneDiffusion

We propose SceneDiffusion to optimize the feature maps in
the layered scenes from Gaussian noise. Each SceneDiffu-
sion step 1) renders multiple views from randomly sampled
layouts, 2) estimates the noise from the views, and then 3)
updates the feature maps.

Specifically, SceneDiffusion samples N groups of off-
set [o1,n, o2,n, · · · , oK,n]

N
n=1, with each offset ok,n being

an element of the movement range [0;µk] × [0; νk]. This
leads to N layout variants. A higher number of layouts
helps the denoiser locate a better mode while also increas-
ing the computational cost, as shown in Section 4.2. From
the K latent feature maps, we render the layouts as N views
vn ∈ {v(t)1 , ..., v

(t)
N }:

v(t)n =

K∑
k=1

αk ⊙ move(f (t)
k , ok,n). (5)

Then, we stack all views in each SceneDiffusion step and
predict the noise {ϵ̂(t)n }Nn=1 using locally conditioned diffu-
sion [28] described in Equation 3:

ϵ̂(t)n = ϵLCD
θ (v(t)n , t,m,y),∀n ∈ {1, 2, · · · , N} (6)

where m are the object masks, and y are local text prompts
for each layer. Since we can run multiple layout denoising
in parallel, computing {ϵ̂(t)n }Nn=1 brings little time overhead,
while costing an additional memory consumption propor-
tional to N . We then update the views v

(t)
n from the esti-

mated noise ϵ̂
(t)
n using Equation 2 to get v̂(t−1)

n .
Since each view corresponds to a different layout and is

denoised independently, conflict can happen in overlapping
mask regions. Therefore, we need to optimize each feature
map f

(t−1)
k so that the rendered views from Equation 5 is

close to denoised views:

f (t−1) = argmin
f(t−1)

N∑
n=1

||v̂(t−1)
n − v(t−1)

n ||22 (7)

This least square problem has the following closed-form so-
lution:

f
(t−1)
k =

∑N
n=1 move(αk ⊙ v̂

(t−1)
n ,−ok,n)∑N

n=1 move(αk,−ok,n)
,

∀k ∈ {1, · · · ,K},
(8)

where move(x,−o) denotes the values in x translated in the
reverse direction of o. The derivation for this solution is
similar to the discussion in Bar-Tal et al. [1]. The solution
essentially sets f (t−1)

k to a weighted average of cropped de-
noised views.
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3.2.3 Neural Rendering with Image Diffusion

We switch to vanilla image diffusion for τ steps after run-
ning SceneDiffusion for T − τ steps. Since the layer masks
m like bounding boxes only serve as a rough mid-level rep-
resentation instead of an accurate geometry, this image dif-
fusion stage can be viewed as a neural renderer that maps
mid-level control to the image space [7, 26, 41]. The value
of τ trades off the image quality and the faithfulness to the
layer mask. A value of τ in 25% to 50% of the total dif-
fusion steps strikes the best balance, which usually costs
less than a second using a popular 50-step DDIM sched-
uler [36]. The global prompt used for the image diffusion
stage can be separately set. In this work, we mainly set the
global prompt to the concatenation of local prompts in the
depth order yglobal =< y1, y2, . . . , yK > and find this sim-
ple strategy sufficient in most cases.

3.2.4 Layer Appearance Editing

The appearance of each layer can be edited individually via
modifying local prompts. Objects can be restyled or re-
placed by changing the local prompt to a new one and then
performing SceneDiffusion using the same feature map ini-
tialization.

3.3. Application to Image Editing

SceneDiffusion can be conditioned on a reference image by
using its sampling trajectory as an anchor, allowing us to
change the layout of an existing image. Concretely, when
a reference image is given along with an existing layout,
we set the reference image to be the optimization target at
the final diffusion step, i.e., an anchor view denoted as v̂(0)a .
Then, we add Gaussian noise to this view at different dif-
fusion noise levels, creating a trajectory of anchor views at
different denoising steps.

v̂(t)a =
√

1− βtv̂
(0)
a + βtϵ, ∀t ∈ [1, · · · , T ], (9)

where ϵ ∼ N (0, 1). In each diffusion step, we use the
corresponding anchor view v̂

(t)
a to further constraint f (t−1),

which leads to an extra weighted term in Equation 7:

f (t−1) = argmin
f(t−1)
.

∑
n

wn||v̂(t−1)
n − v(t−1)

n ||22

wn =

{
w if n = a,

1 otherwise.

(10)

where n ∈ {1, · · · , N} ∪ {a}, and w controls the impor-
tance of v̂

(t)
a . A large enough w produces good faithful-

ness to the reference image, we set w = 104 in this work.
The closed-form solution of this equation is similar to Equa-
tion 8 and can be found in supplementary material.

4. Experiments

4.1. Experimental Setup

We evaluate our method both qualitatively and quantita-
tively. For quantitative study, a thousand-scale dataset is
required to effectively measure metrics like FID. However,
populating semantically meaningful spatial editing pairs
for multi-object scenes is challenging, particularly when
inter-object occlusions should be considered. Therefore,
we restrict quantitative experiments to single-object scenes.
Please refer to qualitative results for multi-object scenes.

Dataset. We curate a dataset of high-quality, subject-
centric images associated with image captions and local de-
scriptions. Object masks are also annotated automatically
using GroundedSAM [30]. We first generate 20,000 images
from 1,000 image captions and then apply a rule-based filter
to remove low-quality images, which results in 5,092 im-
ages in total. Object masks and local descriptions are then
automatically annotated.

Metrics. Our main metrics for controllable scene genera-
tion are Mask IoU, Consistency, Visual Consistency, LPIPS,
and SSIM. Mask IoU measures the alignment between the
target layout and the generated image. Other metrics com-
pare multiple generated views in the same scene and evalu-
ate their similarity: Consistency for mask consistency, Vi-
sual Consistency for foreground appearance consistency,
LPIPS for perceptual, and SSIM for structural changes.
Moreover, in the image editing experiment, we report FID
to measure the similarity of the edited images to the original
ones for image quality quantification.

Implementation By default we set N = 8 in our exper-
iments. For quantitative studies, all experiments are aver-
aged on 5 random seeds. Please refer to our supplemental
document for more information on our dataset construction,
metrics selection, standard deviations of experiments and
implementation details.

4.2. Controllable Scene Generation

Setting. We randomly place an object mask at different
positions to form random target layouts. Images should
be generated conditioned on the target layouts and local
prompts, and the content is expected to be consistent in dif-
ferent layouts. The object masks are from the aforemen-
tioned curated dataset. To reduce the chance that objects
move out of the canvas, we restrict the maks position to a
square centered at the original position with its side length
of 40% of the image width. A visual example can be found
in Figure 9.
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Move allAdd bed & window Shrink and clone bed
“bed, wooden cabinet, window, bedroom”

Move allAdd blue yarn ball Shrink and clone blue yarn ball
“yellow yarn ball, blue yarn ball, British shorthair, cat house”

Figure 3. Sequential manipulations. Our generated scenes can be manipulated by operating on layers sequentially.

b) Move Up c) Move down d) Move left e) Move right f) Shrink g) Clonea) Original

“a photo of a fluffy cat sitting on a museum bench looking at an oil painting of cheese”

“a photo of a raccoon in a barrel going down a waterfall”

“distant shot of the Tokyo tower with a massive sun in the sky”

Figure 4. Object moving. Our approach can be employed to move objects on a given image. Edited objects are shown in bold in the
prompts. Examples are borrowed from Epstein et al. [8] and no access to the initial latent noise is assumed. All layouts for each example
are generated from the same scene. As a result, our approach keeps the overall content consistent across different editings, which most
prior works fail to achieve. A full comparison with prior works can be found in appendix.

Baselines. We compare our approach to MultiDiffu-
sion [1], which is a training-free approach that generates
images conditioned on masks and local descriptions. We
use a 20% solid color bootstrapping strategy following their
protocol. Foreground and background noise are fixed in the
same scene for better consistency.

Results. We present quantitative results in Table 1, which
show that SceneDiffusion outperforms MultiDiffusion on
all metrics. For qualitative study, we show the results of
sequentially manipulation our generated scenes in Figure 3.

Table 1. Quantitative comparison for controllable scene gener-
ation. †: without the solid color bootstrapping strategy.

Method M. IoU ↑ Cons.↑ V. Cons.↓ LPIPS ↓ SSIM ↑

MultiDiff. [1]† 0.263 0.257 - 0.521 0.450
MultiDiff. [1] 0.466 0.436 0.236 0.519 0.471

Ours† 0.310 0.609 - 0.198 0.761
Ours 0.522 0.721 0.112 0.215 0.762

4.3. Object Moving for Image Editing

Setting. Given a reference image, an object mask, and a
random target position, the goal is to generate an image
where the object has moved to the target position while
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window
round window

wooden cabinet
sliding door cabinet

bed
spindle bed

bedroom
Bohemian bedroom

bed
blue bed

wooden cabinet
glass cabinet

window
modern window

bedroom
romantic bedroom

Figure 5. Restyling objects. Adding style description to the layer prompt restyles the object when fixing the initial noise. The circular
arrow shows the restyled object.

armchair sofabed table

wooden cabinet balcony wooden wardrobe bedroom plants

pendant lights mirror bookshelfbedroom window

Figure 6. Replacing objects. Objects can be changed to different
objects by modifying their layer prompts without affecting other
objects in the scene. The circular arrow shows the replaced object.
Table 2. Quantitative comparison for object moving. †: spe-
cialized inpainting model trained with masking.

Method FID ↓ M. IoU ↑ V. Cons. ↓ LPIPS ↓ SSIM ↑

RePaint [20] 10.267 0.620 0.166 0.278 0.671
Inpainting† 6.383 0.747 0.112 0.264 0.680

Ours 5.289 0.817 0.075 0.263 0.709

keeping the rest of the content similar. The aforementioned
range is used to prevent moving the object out of the canvas.

Baselines. We compare with inpainting-based ap-
proaches. We first crop the object from the reference
image, paste it to the target location, and then inpaint the
blank areas. We dilate the edge of objects for 30 pixels to
better blend the object with the background. We compare
our approach with two inpainting models: a standard T2I

a) Scene A b) Scene B c) Mixed

Take bed

Take macaron

Figure 7. Mixing scenes. One may mix scenes by copying a layer
from one scene and pasting it in another scene.

diffusion model using the RePaint technique [20], and a
specialized inpainting model trained with masking. We set
all local layer prompts in our approach to the global image
caption for a fair comparison.

Results. We report quantitative results in Table 2. Our
approach outperforms both inpainting-based baselines by a
clear margin on all metrics. Qualitative results of object
moving are shown in Figure 4.

4.4. Layer Appearance Editing

We show the results of object restyling in Figure 5 and
object replacement in Figure 6. We observe that changes
are mostly isolated to the selected layer, while other lay-
ers slightly adapt to make the scene more natural. Further-
more, layer appearance can be transferred across scenes by
directly copying a layer from one scene to another, as shown
in Figure 7.
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a) Original b) Edited (𝜏 = 25) c) Edited (𝜏 = 15)

“a burger and an ice cream cone floating in the ocean”

Figure 8. Ablation on τ . We swap the locations of the two objects. Stopping SceneDiffusion at a later step improves consistency and
prevents hallucination.

a) Mask

c) Ours

b) Multi-
Diffusion

“a bag, a sunny day after the snow”

Figure 9. Qualitative evaluation of controllable scene genera-
tion. Multidiffusion [1] is able to generate a backpack in accor-
dance to the target mask, but both the background and the object
change at different layouts. Our method can produce coherent and
consistent images with minimal visual appearance difference.

Table 3. Component analysis.
Method CLIP-a ↑ VC ↓ M. IoU ↑ Cons.↑ LPIPS ↓ SSIM ↑

Ours (N=8, τ=13) 6.12 0.11 0.51 0.72 0.22 0.74

w/o multiple layouts 6.05 0.23 0.46 0.43 0.51 0.47
w/o random sampling 5.98 0.12 0.50 0.68 0.22 0.75
w/o image diffusion 5.96 0.09 0.51 0.72 0.21 0.76

Table 4. Analysis on N and τ

N τ Optim.↓ Infer.↓ CLIP-a ↑ M. IoU ↑ Cons.↑ LPIPS ↓ SSIM ↑

8 13 17.3s 0.82s 6.12 0.514 0.721 0.224 0.749

4 13 9.65s 0.82s 5.99 0.491 0.689 0.225 0.747
2 13 5.73s 0.82s 5.97 0.481 0.672 0.229 0.735

8 25 12.0s 1.53s 6.13 0.502 0.643 0.276 0.685
8 0 22.9s 0.0s 5.96 0.515 0.723 0.211 0.767

4.5. Ablation study

In Table 3, we ablate all components. We additionally mea-
sure CLIP-aesthetic (CLIP-a) following [1] to quantify the
image quality. Without jointly denoising multiple layouts,

all metrics drop drastically. With a deterministic sampling
of layouts, the image quality degrades. Without the image
diffusion stage, although consistency metrics slightly im-
prove, image quality significantly deteriorates. In Table 4,
we analyze the effect of the number of views and image dif-
fusion steps. We observe that having more views and more
SceneDiffusion steps leads to a better disentanglement be-
tween the object and the background, as indicated by higher
Mask IoU and Consistency. A qualitative comparison can
be found in Figure 8. We also present the accuracy-speed
trade-off when limiting to a single 32GB GPU. Larger N in-
creases the optimization time. Larger τ increases the infer-
ence time. For all ablation experiments, we use a randomly
selected 10% subset for easier implementation.

5. Conclusion
We proposed SceneDiffusion that achieves controllable
scene generation using image diffusion models. SceneD-
iffusion optimizes a layered scene representation during the
diffusion sampling process. Thanks to the layered represen-
tation, spatial and appearance information are disentangled
which allows extensive spatial editing operations. Leverag-
ing the sampling trajectory of a reference image as an an-
chor, SceneDiffusion can move objects on in-the-wild im-
ages. Compared to baselines, our approach achieves bet-
ter generation quality, cross-layout consistency, and running
speed. Limitations. The object’s appearance may not fit
tightly to the mask in the final rendered image. Besides, our
approach requires a large amount of memory to simultane-
ously denoise multiple layouts, restricting the applications
in resource-limited user cases. Acknowledgments. This
study is supported by the National Research Foundation,
Singapore under its AI Singapore Programme (AISG Award
No: AISG2-PhD-2021-08-018), the Ministry of Education,
Singapore, under its MOE AcRF Tier 2 (MOET2EP20221-
0012), NTU NAP, and under the RIE2020 Industry Align-
ment Fund – Industry Collaboration Projects (IAF-ICP)
Funding Initiative.

6387



References
[1] Omer Bar-Tal, Lior Yariv, Yaron Lipman, and Tali Dekel.

Multidiffusion: Fusing diffusion paths for controlled image
generation. In Proceedings of the 23rd International Confer-
ence on Machine Learning, 2023. 3, 4, 6, 8

[2] Eric R Chan, Connor Z Lin, Matthew A Chan, Koki Nagano,
Boxiao Pan, Shalini De Mello, Orazio Gallo, Leonidas J
Guibas, Jonathan Tremblay, Sameh Khamis, et al. Efficient
geometry-aware 3d generative adversarial networks. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 16123–16133, 2022. 2

[3] Hila Chefer, Yuval Alaluf, Yael Vinker, Lior Wolf, and
Daniel Cohen-Or. Attend-and-excite: Attention-based se-
mantic guidance for text-to-image diffusion models. ACM
Transactions on Graphics (TOG), 42(4):1–10, 2023. 2

[4] Shoufa Chen, Mengmeng Xu, Jiawei Ren, Yuren Cong, Sen
He, Yanping Xie, Animesh Sinha, Ping Luo, Tao Xiang, and
Juan-Manuel Perez-Rua. Gentron: Delving deep into dif-
fusion transformers for image and video generation. arXiv
preprint arXiv:2312.04557, 2023. 2

[5] Yuren Cong, Mengmeng Xu, Christian Simon, Shoufa Chen,
Jiawei Ren, Yanping Xie, Juan-Manuel Perez-Rua, Bodo
Rosenhahn, Tao Xiang, and Sen He. Flatten: optical flow-
guided attention for consistent text-to-video editing. arXiv
preprint arXiv:2310.05922, 2023. 2

[6] Prafulla Dhariwal and Alexander Nichol. Diffusion models
beat gans on image synthesis. Advances in neural informa-
tion processing systems, 34:8780–8794, 2021. 2

[7] Dave Epstein, Taesung Park, Richard Zhang, Eli Shechtman,
and Alexei A Efros. Blobgan: Spatially disentangled scene
representations. In European Conference on Computer Vi-
sion, pages 616–635. Springer, 2022. 2, 3, 4, 5

[8] Dave Epstein, Allan Jabri, Ben Poole, Alexei A Efros, and
Aleksander Holynski. Diffusion self-guidance for control-
lable image generation. arXiv preprint arXiv:2306.00986,
2023. 2, 3, 6

[9] Oran Gafni, Adam Polyak, Oron Ashual, Shelly Sheynin,
Devi Parikh, and Yaniv Taigman. Make-a-scene: Scene-
based text-to-image generation with human priors. In Eu-
ropean Conference on Computer Vision, pages 89–106.
Springer, 2022. 2

[10] Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patash-
nik, Amit H Bermano, Gal Chechik, and Daniel Cohen-
Or. An image is worth one word: Personalizing text-to-
image generation using textual inversion. arXiv preprint
arXiv:2208.01618, 2022. 2

[11] Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman,
Yael Pritch, and Daniel Cohen-Or. Prompt-to-prompt im-
age editing with cross attention control. arXiv preprint
arXiv:2208.01626, 2022. 2

[12] Jonathan Ho and Tim Salimans. Classifier-free diffusion
guidance. arXiv preprint arXiv:2207.12598, 2022. 3

[13] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising dif-
fusion probabilistic models. Advances in neural information
processing systems, 33:6840–6851, 2020. 2, 3

[14] Fangzhou Hong, Zhaoxi Chen, Yushi LAN, Liang Pan, and
Ziwei Liu. EVA3d: Compositional 3d human generation

from 2d image collections. In International Conference on
Learning Representations, 2023. 2

[15] Phillip Isola and Ce Liu. Scene collaging: Analysis and syn-
thesis of natural images with semantic layers. In Proceedings
of the IEEE International Conference on Computer Vision,
pages 3048–3055, 2013. 2

[16] Yoni Kasten, Dolev Ofri, Oliver Wang, and Tali Dekel. Lay-
ered neural atlases for consistent video editing. ACM Trans-
actions on Graphics (TOG), 40(6):1–12, 2021. 2, 4

[17] Bahjat Kawar, Shiran Zada, Oran Lang, Omer Tov, Huiwen
Chang, Tali Dekel, Inbar Mosseri, and Michal Irani. Imagic:
Text-based real image editing with diffusion models. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 6007–6017, 2023. 2

[18] Yuheng Li, Haotian Liu, Qingyang Wu, Fangzhou Mu, Jian-
wei Yang, Jianfeng Gao, Chunyuan Li, and Yong Jae Lee.
Gligen: Open-set grounded text-to-image generation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 22511–22521, 2023. 2

[19] Erika Lu, Forrester Cole, Tali Dekel, Weidi Xie, Andrew
Zisserman, David Salesin, William T Freeman, and Michael
Rubinstein. Layered neural rendering for retiming people in
video. arXiv preprint arXiv:2009.07833, 2020. 2

[20] Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher
Yu, Radu Timofte, and Luc Van Gool. Repaint: Inpainting
using denoising diffusion probabilistic models. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 11461–11471, 2022. 2, 7

[21] Willi Menapace, Stephane Lathuiliere, Sergey Tulyakov,
Aliaksandr Siarohin, and Elisa Ricci. Playable video gener-
ation. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 10061–10070,
2021. 2

[22] Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jia-
jun Wu, Jun-Yan Zhu, and Stefano Ermon. Sdedit: Guided
image synthesis and editing with stochastic differential equa-
tions. arXiv preprint arXiv:2108.01073, 2021. 2

[23] Ron Mokady, Amir Hertz, Kfir Aberman, Yael Pritch, and
Daniel Cohen-Or. Null-text inversion for editing real im-
ages using guided diffusion models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 6038–6047, 2023. 2

[24] Chong Mou, Xintao Wang, Jiechong Song, Ying Shan, and
Jian Zhang. Dragondiffusion: Enabling drag-style manipula-
tion on diffusion models. arXiv preprint arXiv:2307.02421,
2023. 2, 3

[25] Chong Mou, Xintao Wang, Liangbin Xie, Jian Zhang, Zhon-
gang Qi, Ying Shan, and Xiaohu Qie. T2i-adapter: Learning
adapters to dig out more controllable ability for text-to-image
diffusion models. arXiv preprint arXiv:2302.08453, 2023. 2

[26] Michael Niemeyer and Andreas Geiger. Giraffe: Represent-
ing scenes as compositional generative neural feature fields.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 11453–11464, 2021.
2, 5

[27] Yu-ichi Ohta, Takeo Kanade, and Toshiyuki Sakai. An anal-
ysis system for scenes containing objects with substructures.

6388



In Proceedings of the Fourth International Joint Conference
on Pattern Recognitions, pages 752–754, 1978. 2

[28] Ryan Po and Gordon Wetzstein. Compositional 3d scene
generation using locally conditioned diffusion. arXiv
preprint arXiv:2303.12218, 2023. 3, 4

[29] Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Milden-
hall. Dreamfusion: Text-to-3d using 2d diffusion. arXiv
preprint arXiv:2209.14988, 2022. 2

[30] Tianhe Ren, Shilong Liu, Ailing Zeng, Jing Lin, Kun-
chang Li, He Cao, Jiayu Chen, Xinyu Huang, Yukang Chen,
Feng Yan, Zhaoyang Zeng, Hao Zhang, Feng Li, Jie Yang,
Hongyang Li, Qing Jiang, and Lei Zhang. Grounded sam:
Assembling open-world models for diverse visual tasks,
2024. 5

[31] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. arxiv. arXiv preprint
arXiv:2112.10752, 2021. 2

[32] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch,
Michael Rubinstein, and Kfir Aberman. Dreambooth: Fine
tuning text-to-image diffusion models for subject-driven
generation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 22500–
22510, 2023. 2

[33] Chitwan Saharia, William Chan, Saurabh Saxena, Lala
Li, Jay Whang, Emily L Denton, Kamyar Ghasemipour,
Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans,
et al. Photorealistic text-to-image diffusion models with deep
language understanding. Advances in Neural Information
Processing Systems, 35:36479–36494, 2022. 2

[34] Yujun Shi, Chuhui Xue, Jiachun Pan, Wenqing Zhang, Vin-
cent YF Tan, and Song Bai. Dragdiffusion: Harnessing diffu-
sion models for interactive point-based image editing. arXiv
preprint arXiv:2306.14435, 2023. 2, 3

[35] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan,
and Surya Ganguli. Deep unsupervised learning using
nonequilibrium thermodynamics. In International confer-
ence on machine learning, pages 2256–2265. PMLR, 2015.
2, 3

[36] Jiaming Song, Chenlin Meng, and Stefano Ermon.
Denoising diffusion implicit models. arXiv preprint
arXiv:2010.02502, 2020. 2, 5

[37] Luming Tang, Menglin Jia, Qianqian Wang, Cheng Perng
Phoo, and Bharath Hariharan. Emergent correspondence
from image diffusion. arXiv preprint arXiv:2306.03881,
2023. 2

[38] Narek Tumanyan, Michal Geyer, Shai Bagon, and Tali
Dekel. Plug-and-play diffusion features for text-driven
image-to-image translation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 1921–1930, 2023. 2

[39] Haochen Wang, Xiaodan Du, Jiahao Li, Raymond A Yeh,
and Greg Shakhnarovich. Score jacobian chaining: Lifting
pretrained 2d diffusion models for 3d generation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 12619–12629, 2023. 2

[40] Jianyuan Wang, Ceyuan Yang, Yinghao Xu, Yujun Shen,
Hongdong Li, and Bolei Zhou. Improving gan equilib-
rium by raising spatial awareness. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11285–11293, 2022. 2

[41] Yinghao Xu, Menglei Chai, Zifan Shi, Sida Peng, Ivan Sko-
rokhodov, Aliaksandr Siarohin, Ceyuan Yang, Yujun Shen,
Hsin-Ying Lee, Bolei Zhou, et al. Discoscene: Spatially
disentangled generative radiance fields for controllable 3d-
aware scene synthesis. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 4402–4412, 2023. 2, 5

[42] Ceyuan Yang, Yujun Shen, and Bolei Zhou. Semantic hier-
archy emerges in deep generative representations for scene
synthesis. International Journal of Computer Vision, 129:
1451–1466, 2021. 2

[43] Lvmin Zhang and Maneesh Agrawala. Adding conditional
control to text-to-image diffusion models, 2023. 2

6389


