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Figure 1. NeRF On-the-go. Given casually captured image sequences or videos in the wild as inputs, the goal of this paper is to train a
NeRF for static scenes and effectively remove all dynamic elements in the scenes (cars, trams, pedestrians, etc), i.e. distractors. Unlike
existing methods such as NeRF-W [23] and RobustNeRF [35], which produce imperfect results, our method leverages the predicted
uncertainty maps to effectively remove those distractors. This results in high-fidelity novel view synthesis on challenging dynamic scenes.

Abstract
Neural Radiance Fields (NeRFs) have shown remark-

able success in synthesizing photorealistic views from multi-
view images of static scenes, but face challenges in dy-
namic, real-world environments with distractors like mov-
ing objects, shadows, and lighting changes. Existing meth-
ods manage controlled environments and low occlusion ra-
tios but fall short in render quality, especially under high
occlusion scenarios. In this paper, we introduce NeRF On-
the-go, a simple yet effective approach that enables the ro-
bust synthesis of novel views in complex, in-the-wild scenes
from only casually captured image sequences. Delving into
uncertainty, our method not only efficiently eliminates dis-
tractors, even when they are predominant in captures, but
also achieves a notably faster convergence speed. Through
comprehensive experiments on various scenes, our method
demonstrates a significant improvement over state-of-the-
art techniques. This advancement opens new avenues for
NeRF in diverse and dynamic real-world applications.

1. Introduction
Novel View Synthesis (NVS) tackles the challenge of ren-
dering a scene from previously unobserved viewpoints.

* Equal contribution.

Neural radiance fields (NeRFs) [26] have emerged as a
groundbreaking paradigm for this task. This is because a
NeRF can produce geometrically consistent and photoreal-
istic renderings, even for complex scenarios with thin struc-
tures and semi-transparent objects.

Training a NeRF model requires a set of RGB images
with given camera poses, and demands manual adjustments
of camera settings, such as focal length, exposure, and white
balance. More crucially, vanilla NeRFs operate under the
assumption that the scene should remain completely static
during the capture process, without any distractors such as
moving objects, shadows, or other dynamic elements [35].
Nevertheless, the real world is inherently dynamic, making
this distractor-free requirement often unrealistic to meet.
Additionally, removing distractors from the captured data
is non-trivial. The process involves per-pixel annotation for
each image, a procedure that is very labor-intensive, espe-
cially for lengthy captures of large scenes. This underscores
a key limitation in the practical application of NeRFs in dy-
namic, real-world environments.

Recently, several works [22, 34, 42, 47] have attempted
to address the challenges. [34] and [42] use pre-trained se-
mantic segmentation models for specific moving objects,
but the model fails to segment undefined object classes.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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NeRF-W [22] optimizes pixel-wise uncertainty from ran-
domly initialized embedding by volume rendering. Such
a design is suboptimal since it neglects the prior informa-
tion of the image and entangles the uncertainty with radi-
ance field reconstruction. As a result, they need to intro-
duce transient embeddings to account for distractors. The
addition of a new degree of freedom complicates system
tuning, leading to a Pareto-optimal scenario as discussed
in [35]. Dynamic NeRF methods like D2NeRF [47] can
decompose static and dynamic scenes for video input, but
underperform with sparse image inputs. More recently, Ro-
bustNeRF [35] models distractors as outliers and demon-
strates impressive results in controlled and simple scenarios.
Nevertheless, its performance significantly drops in com-
plex, in-the-wild scenes. Interestingly, RobustNeRF also
underperforms in scenarios without any distractors. This
leads to a compelling research question:

Can we build a NeRF for in-the-wild scenes from casually
captured images, regardless of the ratio of distractors?

Toward this goal, we introduce NeRF On-the-go, a ver-
satile plug-and-play module designed for effective distrac-
tor removal, allowing rapid NeRF training from any casu-
ally captured images. Our method is grounded in three key
aspects. First, we utilize DINOv2 features [29] for their
robustness and spatial-temporal consistency in feature ex-
traction, from which a small multi-layer perception (MLP)
predicts per-sample pixel uncertainty. Second, our method
leverages a structural similarity loss to improve uncertainty
optimization, enhancing the distinction between foreground
distractors and the static background. Third, we incorpo-
rate estimated uncertainty into NeRF’s image reconstruc-
tion objective using a decoupled training strategy, which
significantly enhances distractor elimination, particularly in
high occlusion scenes. Our method demonstrates robust-
ness across a wide range of scenarios, from confined in-
door scenes with small objects to complex, large-scale street
view scenes, and can effectively handle varying levels of
distractors. Notably, we find that our On-the-go module can
also significantly accelerate NeRF training up to one order
of magnitude, compared with RobustNeRF. This efficiency,
combined with its straightforward integration with modern
NeRF frameworks, makes NeRF On-the-go an accessible
and powerful tool for enhancing NeRF training in dynamic
real-world settings.

2. Related Work

Uncertainty in Scene Reconstruction. Uncertainty has
proven to enhance the robustness and reliability of a wide
range of tasks such as monocular depth prediction [11, 32],
semantic segmentation [13, 27], and simultaneous localiza-
tion and mapping (SLAM) [5, 24, 36, 54]. In general, un-
certainty can be divided into two categories: epistemic and

aleatoric [16]. In the specific context of scene reconstruc-
tion, epistemic uncertainty generally arises from data lim-
itations, such as restricted viewpoints. For instance, [40]
utilizes ensemble learning to quantify epistemic uncertainty
for exploring unobserved regions in next-best-view (NBV)
planning for NeRF. Goli et al. [10] establishes a volumetric
uncertainty field to remove the floaters from NeRF. On the
other hand, aleatoric uncertainty comes from the inherent
randomness of the data, such as the noise of measurement,
appearance changes, and distractors in the scene. There
are works [15, 30, 33] that utilize aleatoric uncertainty as
a guiding principle for active learning and NBV planning
for better NeRF training. Similarly, DebSDF [49] improves
indoor scene reconstruction through an uncertainty map to
mitigate the noise from monocular prior.

Closely related to us, NeRF-W [23] was pioneering to
eliminate transient objects and address variable illumina-
tion in unstructured internet photo collections, achieved by
introducing transient and appearance embeddings. Follow-
up works like Ha-NeRF [4] hallucinates NeRFs from un-
constrained tourism images, while Neural Scene Chronol-
ogy [21] reconstructs temporal-varying chronology from
time-stamped Internet photos. Building upon previous for-
mulation for aleatoric uncertainty, we innovate by integrat-
ing DINOv2 features into uncertainty prediction, which
enhances the quality of predicted uncertainty. In a re-
cent work, Kim et al. [17] also presents a similar DINO-
based uncertainty prediction approach, but directly adapts
for NeRF-W [23] to a pose-free condition. In contrast, we
focus on refining NeRF training to effectively handle dis-
tractors from casually-captured image sequences.

SLAM and SfM in Dynamic Scenes. Handling dynamic
scenes has been studied for years in the literature of SLAM
and SfM. Classical methods exclude pixels associated with
dynamic objects with robust kernel function [7, 28] or
RANSAC [37, 38]. However, such hand-craft features
are effective in scenarios with a low occlusion ratio but
struggle at in-the-wild scenes. To address this, recent ad-
vances have integrated additional information. This in-
cludes external segmentation or detection modules for pre-
defined classes [55, 57–59], utilization of optical or scene
flow [2, 8, 41, 43, 56, 61], and geometry-based approaches
using clustering and epipolar line distance [3, 12, 58].

NeRF in Dynamic Scenes. Recent NeRF methods focus on
reconstructing both static and dynamic components from a
video sequence [6, 9, 19, 20, 31, 44, 47, 48] enabling novel
view synthesis at arbitrary timestamps. Although primar-
ily designed for video inputs, these methods often under-
perform with photo collection sequences [35]. Addition-
ally, separating static and dynamic components can be time-
consuming and requires extensive hyperparameter tuning.
A notable example in this realm is EmerNeRF [53], which
also employs the DINOv2 [29] features. However, they use
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Figure 2. Pipeline. A pre-trained DINOv2 network extracts fea-
ture maps from posed images, followed by a dilated patch sampler
that selects rays. The uncertainty MLP G then takes the DINOv2
features of these rays as inputs to generate the uncertainties β(r).
Three losses (on the right) are used to optimize G and the NeRF
model. Note that the training process is facilitated by detaching
the gradient flows as indicated by the colored dashed lines.

them for enhanced scene decomposition, while we use them
as a strong prior knowledge for distractor removal.

RobustNeRF, to our knowledge the only method that also
targets static scene reconstruction from dynamic scenes,
uses Iteratively Reweighted Least Squares for outlier ver-
ification. Compared with it, our method can deal with more
complex scenes with various levels of occlusions.

3. Method
We start by showing how to utilize per-pixel DINO fea-
tures for uncertainty prediction (Sec. 3.1). Subsequently,
we show a novel approach for learning uncertainty to re-
move distractors in NeRF (Sec. 3.2). We further introduce
our decoupled optimization scheme for uncertainty predic-
tion and NeRF (Sec. 3.3). Finally, we illustrate why sam-
pling method is important in distractor-free NeRF training
(Sec. 3.4). An overview of our pipeline is depicted in Fig. 2.

3.1. Uncertainty Prediction with DINOv2 Features

Our primary objective is to effectively identify and elimi-
nate recurring distractors–those that appear across multiple
images. To achieve this, we take advantage of DINOv2 [29]
features, which have shown to be able to maintain spatial-
temporal consistency across views.

We begin with extracting DINOv2 features for each in-
put RGB image. Next, these features serve as inputs to a
small MLP to predict the uncertainty value for each pixel.
To further enforce the consistency of our uncertainty pre-
diction, we incorporate a regularization term.
Image Feature Extraction. For RGB images with a res-
olution of H × W , we derive per-pixel features through a
pre-trained DINOv2 feature extractor E :

Fi = E(Ii), E ∈ RH×W×3 → RH×W×C (1)

where i spans all training images, and C denotes feature
dimension. This module also upsamples the feature maps
to the original resolution by nearest-neighbor sampling.
Uncertainty Prediction. Once we obtain the 2D DINOv2
feature maps, we proceed to determine the uncertainty of
each sampled ray r. We first query its corresponding fea-
ture f = Fi(r), and then input it to a shallow MLP to
estimate the uncertainty for this ray β(r) = G(f), where
G is the uncertainty MLP. In the subsequent sections, we
will demonstrate how this predicted uncertainty β(r) is in-
tegrated into the optimization process as a weighting func-
tion, which plays a crucial role in refining the NeRF model,
particularly in handling and mitigating the impact of dis-
tractors in the scene.
Uncertainty Regularization. To enforce spatial-temporal
consistency in uncertainty predictions, we introduce a reg-
ularization term based on the cosine similarity of feature
vectors within a minibatch. Specifically, for each sampled
ray r, we define a neighbor set N (r) consisting of rays
in the same batch whose associated feature vectors exhibit
high similarity to the feature f of r. This neighbor set is
formed by selecting rays that meet a specified cosine simi-
larity threshold η:

N (r) = {r′| cos(f , f ′) > η}

where f ′ is the associated feature of r′. The refined uncer-
tainty for a ray r is computed as the average of N (r):

β̄(r) =
1

|N (r)|
∑

r′∈N (r)

β(r′) (2)

To reinforce consistency, we introduce a regularization term
that penalizes the variance of uncertainty within N (r):

Lreg(r) =
1

|N (r)|
∑

r′∈N (r)

(β̄(r)− β(r′))2. (3)

This regularization aims to smooth out abrupt changes in
uncertainty predictions across similar features from rays
across images, thereby enhancing the overall robustness and
consistency of the uncertainty estimation process.

3.2. Uncertainty for Distractor Removal in NeRF

We hypothesize that pixels correlating with dynamic ele-
ments (distractors) should have high uncertainty, whereas
static regions should have low uncertainty. This premise
allows us to effectively integrate predicted uncertainty into
NeRF training objectives, aiming to progressively filter out
distractors for enhanced novel view synthesis.

We will analyze the potential issue of the classical way
of incorporating uncertainty into the loss function for NeRF.
Finally, we introduce a simple yet effective modification, to
incorporate uncertainty, for robust distractor removal.
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Uncertainty Convergence Analysis. Uncertainty predic-
tion has been widely used in different fields, including
NeRF-based novel view synthesis. For example, in the sem-
inal work NeRF in the Wild [23], their loss is written as *:

L(r) = ∥C(r)− Ĉ(r)∥2

2β2(r)
+ λ1 log β(r) (4)

Here, C(r) and Ĉ(r) represent the input and rendered RGB
values. The uncertainty β(r) is treated as a weight function.
The regularization term is crucial for balancing the first term
and preventing the trivial solution where β(r) = ∞.

Here we present a simple analysis to understand how the
uncertainty changes wrt. the loss function, we first take the
partial derivative wrt. β(r):

dL(r)
dβ(r)

= −∥C(r)− Ĉ(r)∥2

β(r)3
+ λ1

1

β(r)
(5)

Setting this derivative to 0, we derive the closed-form solu-
tion for the optimal uncertainty:

dL(r)
dβ(r)

= 0 ⇒ β(r) =

√
1

λ1
∥C(r)− Ĉ(r)∥ (6)

This reveals an important relationship between uncertainty
prediction and the error between the rendered and input col-
ors. Specifically, the optimal uncertainty is directly propor-
tional to this error term.

However, a challenge arises when employing the ℓ2 loss
as shown in Eq. (4), particularly when the color of distrac-
tors and background is close (as illustrated in Fig. 3 (d)). In
such cases, the predicted uncertainty in those regions will
also be low according to Eq. (6). This impedes the effec-
tiveness of uncertainty-based distractor removal, and leads
to cloud artifacts in the rendered images.

Recognizing the limitation inherent in the ℓ2 RGB loss,
we propose a new loss for better uncertainty learning, so
that the predicted uncertainty can discriminate between dis-
tractors and static background more effectively.
SSIM-Based Loss for Enhanced Uncertainty Learning.
The structural similarity index (SSIM) is comprised of three
measurements: luminance, contrast, and structure similari-
ties. These components capture local structural and contrac-
tual differences, which is crucial for distinguishing between
scene elements. This is verified in Fig. 3, where SSIM is ef-
fective in detecting distractors by incorporating these three
components together. An SSIM loss can be formulated as:

LSSIM = 1− SSIM(P, P̂ )

= 1− L(P, P̂ ) · C(P, P̂ ) · S(P, P̂ )
(7)

where P and P̂ are patches sampled from the input and ren-
dered images C(r) and Ĉ(r), respectively. L,C, S refer to

*We omit their regularization term for transient density.

(a) Rendering (b) Input (c) SSIM Error

(d) Luminance Error (e) Contrast Error (f) Structure Error

Figure 3. SSIM Can Effectively Distinguish Distractors. In this
scene from [35], the 3 wooden robots are the dynamic elements.
SSIM pinpoints distractors by leveraging discrepancies in three
measurements including luminance, contrast, and structure. Con-
versely, relying solely on the ℓ2 error between RGB values (lu-
minance error) proves challenging, especially when the distractors
and background have similar colors. The color bar on the right
side indicates the correspondence for error interpretation.

the luminance, contrast, and structure similarities between
P and P̂ . We further modify Eq. (7) as:

LSSIM = (1−L(P, P̂ )) ·(1−C(P, P̂ )) ·(1−S(P, P̂ )) (8)

Compared to Eq. (7), our reformulation in Eq. (8) places
greater emphasis on the differences between dynamic and
static elements. Consequently, this enhances the disparity
in uncertainty, facilitating more effective optimization of
uncertainty. The mathematical proof and comparisons be-
tween Eq. (7) and Eq. (8) are included in the supplements.

Building on this updated SSIM formulation, we intro-
duce a new loss tailored for uncertainty learning:

Luncer(r) =
LSSIM

2β(r)2
+ λ1 log β(r) (9)

This loss is a simple modification of Eq. (4), adapted for
better uncertainty learning. Luncer is specifically applied to
train the uncertainty estimation MLP G. This is crucial as it
allows us to decouple the training of the NeRF model from
uncertainty prediction. Such decoupling ensures that the
learned uncertainty is robust to various types of distractors.
Please refer to Table 4 for an ablation for Luncer.

Note that a recent work S3IM [50] also uses SSIM for
NeRF training, but their loss is tailored for static scenes,
whereas ours is designed for better uncertainty learning.
Also, S3IM employs stochastic sampling to identify non-
local structural similarities, while we use dilated sampling
to focus on local structures for distractor removal.

3.3. Optimization

As mentioned above, it is crucial to separately optimize
the uncertainty prediction module and NeRF model. For
optmization of the uncertainty prediction MLP, we employ
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(a) Random [23] (b) Patch [35] (c) Dilated Patch

Figure 4. Comparison of Different Ray Sampling Strategies.
In contrast to random sampling and patch sampling, dilated patch
sampling can improve training efficiency and uncertainty learning.

Luncer in Eq. (9) and Lreg in Eq. (3). In parallel, we train the
NeRF model with the following:

Lnerf(r) =
∥C(r)− Ĉ(r)∥2

2β2(r)
(10)

This loss, essentially Eq. (4) without the regularization
term, is used because Luncer already prevents trivial solu-
tions for uncertainty (β(r) = ∞). The parallel training
process is facilitated by detaching the gradient flow from
Luncer to NeRF representation, and Lnerf to the uncertainty
MLP G as illustrated in Fig. 2. Note that we also follow Ro-
bustNeRF [35] and include the interval loss and distortion
loss from Mip-NeRF 360 [1] for NeRF training, which we
omit here for simplicity. Our overall objectives integrate all
losses together, denoted as:

λ2Lnerf(r) + λ3Luncer(r) + λ4Lreg(r) (11)

where each term is weighted by a corresponding λ.

3.4. Dilated Patch Sampling

In this section, we delve into the ray sampling strategy, a
key factor in the efficacy of NeRF training, particularly in
achieving distractor-free results.

RobustNeRF has demonstrated the efficacy of patch-
based ray sampling (Fig. 4 (b)) over random sampling
(Fig. 4 (a)). However, this approach has its limitations, pri-
marily due to the small size of the sampled patches (e.g.
16 × 16). Especially when the batch size is small due to
the constraint of GPU memory, this small context can re-
strict the network’s learning capacity to remove distractors,
impacting optimization stability and convergence speed.

To tackle the issue, we utilize dilated patch sampling [14,
25, 39, 45, 51, 52], depicted in Fig. 4 (c). This strategy
involves sampling rays from a dilated patch. By enlarging
the patch size, we can significantly increase the amount of
contextual information available in each training iteration.

Our empirical findings in Table 3 show that dilated patch
sampling not only accelerates the training process, but also
yields superior performance in distractor removal.

4. Experiments

RobustNeRF Dataset. There are four sequences with toys-
on-the-table settings. However, note that we are unable to

Mountain Fountain

Corner Patio

Spot Patio-High

Figure 5. On-the-go Dataset. Sample training images showing
the distractors in several scenes of our self-captured dataset.

include the Crab scene since it is not released. Meanwhile,
we put comparisons on Baby Yoda scene in supplements,
since each image in this sequence contains a distinct set of
distractors, which is different from our setting.
On-the-go Dataset. To rigorously evaluate our approach
in real-world indoor and outdoor settings, we captured a
dataset that contains 12 casually captured sequences, in-
cluding 10 outdoor and 2 indoor scenes, with varying ra-
tios of distractors (from 5% to over 30 %). For quantitative
evaluation, we select 6 sequences representing different oc-
clusion rates, as shown in Fig. 5. More details and results
for this dataset are available in supplements.
Baselines. We compare our method with Mip-NeRF
360 [1], D2NeRF [47], NeRF-W [23]†, Ha-NeRF [4]‡, Ro-
bustNeRF [35]§, and Mip-NeRF 360 + SAM, a baseline
that we design to exclude dynamic objects in images with
SAM [18], and train a NeRF on static parts. Refer to sup-
plements for more details.
Metrics. We adopt the widely used PSNR, SSIM [46] and
LPIPS [60] for the evaluation of novel view synthesis.

4.1. Evaluation

On-the-go Dataset. We extend our evaluation on our On-
the-go dataset, as depicted in Fig. 5 and Table 1. Compared
to our method, RobustNeRF often fails to retain fine de-
tails in low to medium-occlusion scenarios, and struggles to
eliminate distractors in high-occlusion settings. Besides, we
notice that even after tuning the hyperparameter of outlier
ratios for highly-occluded scenes, RobustNeRF still shows
inferior performance. Please refer to the supplements.

Unlike RobustNeRF, NeRF-W and Ha-NeRF show pro-
ficiency in removing distractors at low and medium occlu-

†https://github.com/kwea123/nerf pl/tree/nerfw
‡https://github.com/rover-xingyu/Ha-NeRF
§https://github.com/google-research/multinerf
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Figure 6. Novel View Synthesis Results on Our On-the-go Dataset. Our method constantly outperforms baseline methods on scenes
with various ratios of distractors, from confined indoor scenes with objects to large outdoor scenes.

8936



Low Occlusion Medium Occlusion High Occlusion
Mountain Fountain Corner Patio Spot Patio-High

LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑

Mip-NeRF 360 [1] 0.295 0.601 19.64 0.556 0.290 13.91 0.345 0.660 20.41 0.421 0.503 15.48 0.469 0.306 17.82 0.486 0.432 15.73
NeRF-W [23] 0.491 0.492 18.07 0.546 0.410 17.20 0.349 0.708 20.21 0.445 0.532 17,55 0.690 0.384 16.40 0.606 0.349 12.99
Ha-NeRF [4] 0.499 0.485 18.64 0.569 0.393 16.71 0.367 0.684 19.23 0.393 0.543 16.82 0.599 0.460 17.85 0.505 0.463 16.67
RobustNeRF [35] 0.383 0.496 17.54 0.576 0.318 15.65 0.244 0.764 23.04 0.251 0.718 20.39 0.391 0.625 20.65 0.366 0.578 20.54
Mip-NeRF 360 + SAM 0.258 0.642 20.20 0.556 0.287 13.65 0.332 0.670 20.65 0.227 0.738 20.83 0.323 0.542 21.08 0.326 0.576 20.13
Ours 0.259 0.644 20.15 0.314 0.609 20.11 0.190 0.806 24.22 0.219 0.754 20.78 0.189 0.787 23.33 0.235 0.718 21.41

Table 1. Novel View Synthesis Results on Our On-the-go Dataset. We show quantitative comparison between our methods and baselines.

sion levels, but this effectiveness comes at the cost of re-
duced image quality. This trade-off is a consequence of
its transient embedding approach, as discussed in [30, 35].
Furthermore, NeRF-W and Ha-NeRF struggle notably at
higher occlusion ratios. In such cases, their per-image tran-
sient embeddings are unable to adequately model distrac-
tors, leading to a noticeable performance drop. The Mip-
NeRF 360 combined with SAM method works well in sim-
ple scenes like Mountain, where distractors are easy to seg-
ment. However, its effectiveness diminishes in more com-
plex scenes. In contrast, we exhibit versatility across scenes
with various occlusion ratios, and can consistently produce
high-quality renderings.
Comparison on RobustNeRF Dataset [35]. As shown in
Table 2, our method exhibits superior performance quan-
titatively and qualitatively over all baselines. Robust-
NeRF’s hard-thresholding approach tends to overlook com-
plex structures with limited observations, such as the shoes
and carpet in the Android scene. Moreover, we observed
that they underperform in scenarios involving plane sur-
faces with view-dependent effects, e.g. the wooden texture
on the table with view-dependent highlight in Statue scene.
Note that Mip-NeRF 360 + SAM requires a tedious process
of manually selecting every distractor in each image using
SAM [18], but it still struggles with capturing thin struc-
tures, shadows, and reflections.

4.2. Ablation Study

All ablations are conducted on the challenging highly-
occluded “Patio-High” scene in our On-the-go dataset.
Patch Dilation. Here we test different dilation rates for our
dilation patch sampling, as shown in Table 3. Within a range
from 1 to 4, a higher dilation rate results in much faster
convergence and better rendering quality. This verifies our
hypothesis in Sec. 3.4 that increasing the contextual infor-
mation within patches can effectively boost performance.
However, when the dilation rate is above 4, uncertainty op-
timization begins to collapse. It is likely because higher di-
lation rates cause patches to lose semantic information. This
occurs as the sampling now becomes more akin to random
sampling, negatively impacting the learning of uncertainty.
Further details and analysis on patch size and dilation rate
across different sequences are available in the supplements.

Statue Android
LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑

Mip-NeRF 360 [1] 0.36 0.66 19.09 0.40 0.65 19.35
D2NeRF [47] 0.48 0.49 19.09 0.43 0.57 20.61
RobustNeRF [35] 0.28 0.75 20.89 0.31 0.65 21.72
RobustNeRF∗ [35] 0.27 0.73 21.13 0.22 0.73 22.83
Mip-NeRF 360 + SAM 0.23 0.74 21.30 0.23 0.71 22.62
Ours 0.24 0.77 21.58 0.21 0.75 23.50

A
nd

ro
id

St
at

ue

Mip-NeRF 360 RobustNeRF∗ Mip-NeRF360+SAM Ours

Table 2. Novel View Synthesis Results on the RobustNeRF
Dataset. The numbers for Mip-NeRF 360 [1], D2NeRF [47] and
RobustNeRF [35] are taken from [35]. RobustNeRF∗ [35] denotes
our own run using the official code release.

Loss Functions. In Table 4, we ablate on different train-
ing losses. In (b), SSIM proves more adept at differentiat-
ing distractors with static elements compared to ℓ2 loss. In
(c), we train the uncertainty MLP and NeRF together. This
results in a significant performance drop, indicating the ef-
fectiveness of our decoupled training approach. Moreover,
we find from (a) that omitting Lreg will negatively impact
the rendering quality of certain views. Additional studies
on various sequences are available in the supplements.

4.3. Analysis

Fast Convergence. Fig. 7 presents a comparison between
RobustNeRF and ours during training processes. Thanks to
our uncertainty prediction pipeline and dilated patch sam-
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LPIPS↓ SSIM↑ PSNR↑

1 0.451 0.515 17.82
2 0.262 0.692 20.70
4 0.235 0.718 21.41
8 0.392 0.529 18.22
16 0.477 0.439 16.08
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Training Iterations (K)
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Table 3. Ablations on Patch Dilation Rates. Comparisons of
various dilation rates for the dilated patch sampling, with a patch
size of 32× 32.

LPIPS↓ SSIM↑ PSNR↑

(a) w/o Lreg 0.261 0.698 21.02
(b) ℓ2 in Luncer 0.437 0.492 17.13
(c) Luncer for NeRF 0.496 0.437 16.70
Ours 0.235 0.718 21.41

(a) (b) (c) Ours GT

Table 4. Ablations on Loss Functions. We compare different loss
choices for training our system.

R
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tN

eR
F
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5]

0.498 0.422 0.372 0.349

O
ur

s 0.285 0.249 0.233 0.232

25K 50K 100K 250K

Figure 7. Convergence Speed Comparison. LPIPS metrics are
included in images. Our method can already capture better details
at 25K iterations than RobustNeRF at 250K iterations.

pling, we show notably faster convergence. It can be noticed
that we can already capture fine details from the early stages
of training, see ours at 25K and RobustNeRF at 250K.

Applicability to Static Scenes. After showcasing our effi-
cacy in building a NeRF from dynamic scenes, we explore
whether it is directly adaptable to static scenes. We evaluate

0.447 0.376 0.374

RobustNeRF [35] Ours Mip-NeRF 360 [1] GT

Figure 8. Performance on Static Scenes. LPIPS metrics are in-
cluded in images. Our performance is much better than Robust-
NeRF and on par with the SOTA method [1].

Arc de Triomphe Patio-High

Figure 9. Handling Large Obstructions. From top to bottom:
input frames, our uncertainty maps, our rendering results.

using a static scene from the Mip-NeRF 360 [1] dataset. As
illustrated in Fig. 8, we indeed achieve great performance
as Mip-NeRF 360 [1]. In contrast, RobustNeRF fails to
capture certain parts of the bicycle, since one of their key
designs involves omitting at least some portions of a scene.
Large Obstructions. In Fig. 9, we further show that our
method can faithfully model the large obstructions with our
predicted uncertainty, and effectively remove them.

5. Conclusions
We introduce NeRF On-the-go, a versatile method that en-
ables effective and efficient distractor removal in dynamic
real-world scenes containing various levels of distractors.
Our method represents a step towards realizing the full po-
tential of NeRF in practical, in-the-wild applications.
Limitation. While our method shows robustness on diverse
real-world scenes, we suffer in predicting correct uncertain-
ties for regions with strong view-dependent effects, such
as highly reflective surfaces like windows and metals. In-
tegrating additional prior knowledge into the optimization
process could potentially be beneficial.
Acknowledgements. We thank the Max Planck ETH Cen-
ter for Learning Systems (CLS) for supporting Songyou
Peng. We also thank Yiming Zhao and Clément Jambon
for helpful discussions.
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