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Figure 1. Relightful Harmonization on four real-world images. Each set shows a direct composition (upper left) of the foreground subject

onto a new backgound (lower left), and our harmonized result (right) that accounts for both lighting and color.

Abstract

Portrait harmonization aims to composite a subject into

a new background, adjusting its lighting and color to en-

sure harmony with the background scene. Existing harmo-

nization techniques often only focus on adjusting the global

color and brightness of the foreground and ignore crucial

illumination cues from the background such as apparent

lighting direction, leading to unrealistic compositions. We

introduce Relightful Harmonization, a lighting-aware diffu-

sion model designed to seamlessly harmonize sophisticated

lighting effect for the foreground portrait using any back-

ground image. Our approach unfolds in three stages. First,

we introduce a lighting representation module that allows

our diffusion model to encode lighting information from tar-

get image background. Second, we introduce an alignment

network that aligns lighting features learned from image

background with lighting features learned from panorama

*Work done during an internship at Adobe.

environment maps, which is a complete representation for

scene illumination. Last, to further boost the photorealism

of the proposed method, we introduce a novel data simula-

tion pipeline that generates synthetic training pairs from a

diverse range of natural images, which are used to refine

the model. Our method outperforms existing benchmarks

in visual fidelity and lighting coherence, showing superior

generalization in real-world testing scenarios, highlighting

its versatility and practicality.

1. Introduction

Portrait harmonization [59, 63] stands as a crucial element

in both photography and creative image editing, seeking

to seamlessly composite a subject into a new background

while maintaining realism and aesthetic uniformity in terms

of lighting and color. The process initiates with the seg-

mentation of the subject from its original image, followed

by the composition into a new background. To enhance vi-

sual consistency, the subsequent step entails meticulous ad-
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justments to the foreground, aligning it with the new back-

ground—considering factors such as color, brightness, sat-

uration, and lighting conditions. The manual effort could

be labor-intensive, particularly when dealing with intricate

lighting scenarios in portraiture.

There are two principal sets of methods that could auto-

matically adjust the foreground to match the background for

human portraits: (1) image harmonization techniques, and

(2) portrait relighting methods. Harmonization-based meth-

ods [5, 7, 8, 14–16, 22, 26, 29, 30, 56, 61, 67, 68] aim to

match the color statistics of the foreground with those of the

background, by adjusting the foreground color tone, con-

trast, and illumination. Yet, they often overlook the light-

ing characteristics and leave the foreground illumination ef-

fects unchanged, such as the lighting direction and shadows,

potentially resulting in an unnatural appearance when the

background has distinct lighting conditions. For instance,

compositing a person photographed under a top-down light

into a sunset scene might make the composite non-realistic

to the human eye. On the other hand, recent work on portrait

relighting [33, 38, 42, 55, 64, 69, 72, 76, 79] are designed

for matching the lighting of the subject towards a new en-

vironment by using the paired training data acquired with

the light stage system [10]. Nevertheless, current relighting

methods often require dynamic range (HDR) panorama en-

vironment maps [42] during training and inference, which

are not always feasible to acquire, especially in casual pho-

tography settings. In this work, we explore the possibil-

ity of generating realistic and lighting-aware composition

images in a straightforward harmonization set up. Given

a foreground image (with its corresponding alpha mask)

and an arbitrary background image, we propose a unified

and end-to-end framework that encompasses both color and

lighting harmonization. We approach the task through a

conditional generative framework, leveraging a pretrained

diffusion model [3, 8], and develop a three-stage training

pipeline.

In the first phase, we conduct Lighting-aware Diffusion

Training to integrate explicit lighting conditioning into a

pretrained diffusion model. This involves a lighting repre-

sentation learning module that derives lighting conditions

from a selected background image. The resulting light-

ing information is then integrated into the diffusion UNet

backbone to guide the generative process. The training is

performed on a pairwise relighting-specialized light stage

dataset to effectively capture the lighting dynamics.

Given the challenge of accurately inferring environ-

mental lighting from a single background image, which

is inherently an ill-posed problem, we employ paired en-

vironment maps to augment the physical plausibility of

our background-derived lighting representation. This is

achieved through a second stage of Lighting Representa-

tion Alignment, designed to align the lighting representa-

tion extracted from background images with that learned

from their corresponding panorama environment maps.

Finally, we perform Finetuning for Photorealism on an

expanded dataset to improve the photorealism of the harmo-

nization. We propose a novel data synthesis pipeline using

our initially trained model to create additional data from

natural images. Notably, once trained, our pipeline does

not rely on any external environment maps, which greatly

empowers the proposed framework for flexible background

replacement and portrait harmonization.

Our contributions are threefold. (1) We enable the light-

ing effects to be encoded in a pretrained image-conditioned

latent diffusion model by incorporating a spatial lighting

feature extraction and conditioning module to the diffu-

sion backbone. The background-extracted lighting repre-

sentation is further aligned with the feature extracted from

panorama environment map to ensure better physical plau-

sibility. (2) We use our model as a data augmenter and pro-

pose a novel data simulation pipeline to synthesize training

pairs from natural images. The model is then refined with

the enlarged dataset to further boost the photorealism of the

results. (3) Compared with existing harmonization and re-

lighting methods, our pipeline demonstrates improvements

of the harmonized results in both lighting coherence visual

fidelity, providing a versatile solution for real-world portrait

harmonization in a variety of settings.

2. Related Works

Image Harmonization aims to rectify color, contrast,

and style differences between foreground and back-

ground to ensure natural and consistent composition.

In deep learning, this task is approached as an end-to-

end image-to-image translation problem [5, 7, 8, 14–

16, 22, 30, 56, 57, 61, 67, 80], where the network is trained

to predict a harmonized image from the input composite.

Pixel-aligned datasets are created by altering foreground

color in real images with pre-designed [7] or learned [41]

augmentations. Yet, existing harmonization methods

primarily focus on global color adjustment, overlooking the

subtle but important discrepancies between foreground and

background lighting, i.e., direction, intensity, and shadow.

This can lead to a harmonized image that, despite matching

colors, still appears unnatural due to mismatched lighting

conditions. Therefore, we postulate that enhancing the

lighting-awareness of harmonization models is a vital yet

underexplored area for natural and realistic composition.

Portrait Relighting Recent advancements in portrait re-

lighting has been driven by deep learning methods [33, 34,

38, 42, 44, 55, 64, 69, 72, 76, 79]. They leverage super-

vised training with the paired training data acquired with

the light stage system [10]. These methods require a tar-

get HDR enviroment map as the external input source, and
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Figure 2. The Pipeline of Relightful Harmonization. In Stage I, a lighting representation module is integrated into the diffusion model,

conditioning the generation on lighting information encoded from the background image, trained with a light stage dataset for relighting

(lower left). Stage II aligns lighting features derived from the background with the environment map for enhanced physical accuracy.

Finally, Stage III refines the model on a real image dataset (lower right) obtained via a novel data simulation pipeline.

typically involve the intermediate prediction of surface nor-

mals, albedo, and/or a set of diffuse and specular maps with

ground truth supervision. However, reliance on HDR maps

for background replacement and harmonization tasks poses

significant limitations on their applicability in everyday sce-

narios where HDR maps cannot be easily captured along-

side [42]. In our framework, we do not require any ex-

ternal input sources except a single target background im-

age. Furthermore, many current relighting systems employ

multistage frameworks and/or heavily rely on external pack-

ages [12]. The accuracy and performance of these systems

are consequently contingent on the precision of each indi-

vidual stage, making the overall process complicated and

prone to errors propagated through these intermediate steps.

Additionally, the datasets commonly employed for training

are rendered from limited light stage illumination acqui-

sition, which means the target images utilized during the

training phase are not captured in real-world conditions but

are rendered composites. Therefore, its generalization on

unseen images, as well as the photorealism when applied to

arbitrary background replacement tasks remain unclear.

Diffusion Models [11, 19, 51, 52] have significantly ad-

vanced the image and video synthesis quality [18, 20, 24,

25, 45, 47]. Image-conditioned diffusion models [48, 62,

73] typically take an image as additional input to perform

an image-conditioned generation such as image enhance-

ment [23, 25, 28, 46], harmonization [6, 31, 32] and trans-

lation [27, 40, 50, 62, 73, 78], typically trained on task-

specific pairwise data. Recently, the application of pre-

trained text-to-image diffusion models [39, 47, 49] has been

extended to image editing tasks [1–4, 9, 13, 17, 21, 35–37,

53, 54, 58, 60, 65, 77]. These models leverage text-image

correlations to perform context modifications in image edit-

ing, such as ‘adding a sunset’ with InstructPix2Pix [3],

which is loosely connected to our lighting-aware set up.

However, text-based editing does not incorporate spatial in-

formation, thus lacking finegrained control to the model. In-

stead, we propose to use a spatial lighting representation as

the new ‘instruction’ that guide the diffusion model to per-

form lighting-aware editing.

3. Method

We aim to develop a conditional diffusion model that pro-

cesses a composite image (along with its alpha mask) as

the input, conditioned on the target background, and pro-

duce color and lighting harmonized output. To do so, we

develop a three-stage training strategy presented in Fig. 2.

Stage I: Lighting-aware Diffusion Training: We build

our model on a pretrained diffusion model [3] and enable

its lighting awareness by attaching a lighting representa-

tion learning branch to encode lighting information from

the background image, which is then injected into the UNet

backbone as illustrated in Fig. 2-I. The training is conducted

with relighting-specialized light stage rendered dataset, as

shown on the bottom left of Fig. 2-I.

Stage II: Lighting Representation Alignment: As one

of our of goals is to enable lighting-aware portrait harmo-

nization without relying on environment maps during infer-

ence, we propose a representation alignment step (Fig. 2-II)

to adapt the lighting representation extracted from a back-

ground image towards the learned representation from its

environment map. We assume the aligned representation is

more robust and physically plausible.

Stage III: Finetuning for Photorealism: In the third stage,

we finetune our model using high-quality pixel-aligned

training pairs from natural images, where these paired

datasets are generated via a novel data synthesis pipeline

(Fig. 2-III) using the stage 2 model as a data augmenter.
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3.1. Lighting­aware Diffusion Training

Our lighting-aware diffusion model learns to generate a har-

monized image given the composite input, conditioned on a

lighting representation extracted from the target background

image. Adhering to established practice for training relight-

ing models [42, 55, 75], we assume access to the light stage

rendered training dataset. A training tuple includes the input

image (alongside its alpha mask), the target background, the

target environment map, as well as the target image. An ex-

ample of training data is shown on the bottom left of Fig. 2.

Formally, we represent a rendered image sample as xa
i ,

indicating a portrait image of subject i illuminated under the

lighting condition a. The corresponding environment map

is denoted as zai , and the background image yai for xa
i is

generated by projecting the HDR map with a specified field

of view and resolution. Subject masks mi are obtained us-

ing methods described in [70, 71].

Lighting Conditioning: We further modify the diffusion

backbone to incorporate explicit lighting conditions. As

depicted in Fig. 2-I, a lighting conditioning branch is in-

tegrated atop the UNet backbone, injecting a lighting repre-

sentation f encoded from the target background image by

a CNN F , at multiple scales within the UNet. The condi-

tioning mechanism is designed in a similar fashion as [73]

where conditional feature maps are added to the UNet fea-

tures at respective resolution within the encoder.

With the light stage dataset, we postulate that the light-

ing representation f can be learned from the pairwise train-

ing. Specifically, a training tuple from the same subject i

is sampled as (xa,m, yb, xb). Noise is progressively added

to the target image xb until time step t, resulting in a noisy

image xb
t . The UNet, denoted as Ubg , is conditioned on

the background-extracted lighting feature Fbg(y
b), and is

trained to predict the noise ϵ, with the following objective:

LD = Exa,yb,xb

0
,t,ϵ

[

∥

∥ϵ− Ubg(x
b
t , t, x

a, Fbg(y
b))

∥

∥

2

2

]

(1)

where ϵ ∼ N (0, 1). At this stage, we initilize the weights

of the UNet backbone from [3], and jointly train both UNet

and the conditioning branch.

3.2. Lighting Representation Alignment

Given that a background image is a partial projection of the

environment map which encapsulates panoramic lighting

information (see example on bottom left of Fig. 2), we sus-

pect that the lighting cues learned from an environment map

will be inherently more comprehensive than those from fbg ,

implying that an environment-conditioned model could po-

tentially offer more physically plausible relighting under the

same training scenario. This is further empirically verified

in our ablation detailed in Sec. 4.5. However, in real-world

photography, environment maps are usually not co-acquired

which poses practical challenges, limiting the applicability

of environment map dependent models. To circumvent this,

we align the lighting representation extracted from a back-

ground image with features derived from its ground truth

environment map, ultimately enabling effective portrait har-

monization with just a single background image.

As shown in Fig. 2 II., we first pretrain an environ-

ment map conditioned harmonization model (in green box)

to generate a ground truth environment map-derived light-

ing representation. The model architecture is identical to

the background-based model in Fig. 2 I, while substituting

the Stage I input condition from the background image to

its corresponding environment map. It is trained with the

same light stage dataset, under a denoising loss analogous

to Eq.1, where the background lighting feature fbg is re-

placed with an environment map-derived feature Fenv(z
b).

Then, we freeze the environment-conditioned model and

introduce an alignment network Fbg→env that calibrates the

background-extracted lighting representation to align with

its environment map equivalent. We formulate such a pro-

cess as an inverse problem that can be learned with a net-

work Fbg→env, under a supervised loss. For a training tu-

ple (xa,m, yb, zb, xb), the alignment network takes fbg =
Fbg(y

b) as input, and maps it with the alignment network to

f∗

bg. The environment extracted feature fenv = Fenv(z
b) is

utilized as the ground truth, and we use a L1 objective:

f∗ = Fbg→env(Fbg(y
b)),

LA = Eyb,zb

[

∥

∥Fenv(z
b)− f∗

bg

∥

∥

1

]

. (2)

During this phase, we update only Fbg → env, while freez-

ing the other networks. We assume that this alignment en-

hances the background-derived lighting representation to

more accurately encode the environmental lighting, which

is empirically verified where the aligned feature maps re-

flect more global illumination information (Fig. 7). Once

trained, we integrate the aligned feature extraction and con-

ditioning into Uenv, formulating our final model in Fig. 2-III.

3.3. Finetuning for Photorealism

The light stage dataset serves as a valuable resource for

learning lighting representations, providing physically con-

strainted relighting pairs. However, it is essential to rec-

ognize that this dataset is compositional by nature. It uses

backgrounds projected from environment maps, combined

with relit foreground subjects, to create composites that

serve as ground truth for the diffusion model. However,

these composites differ from real photographs, leading to

potential concerns about the photorealism of the model’s

outputs. Moreover, due to the cost of light stage data acqui-

sition, it restricts the number and diversity of the subjects

that can be collected. The diversity of the background im-

ages is also bounded by the scale of available environment

maps during rendering (a few thousands). These limitations

6455



Model from

Stage I and II

Generative 

Inpainting

Synthetic Input

Real Image Synthetic BackgroundForeground Mask

Random sampled  

background / env. map

Synthetic Dataset

Input Background Target

Figure 3. Data synthesis pipeline. Given a real image, and in-

paint the subject region, we obtain a synthetic background. The

foreground lighting is then altered with our model trained in Stage

I/II, to create an input image with distinct lighting. Two example

pairs are shown on the lower right.

could affect the model’s generalization ability to real im-

ages, and the capacity to produce realistic and varied light-

ing effects. Therefore, we propose a third stage (Fig. 2 III)

that finetunes our final model for improved photorealism.

We introduce a novel data synthesis pipeline that cre-

ates pairwise training pairs from natural images, to ensure

that the ground truth for finetuning the diffusion model re-

mains real images. As depicted in Fig. 3, the process starts

with a portrait photograph, from which we extract the fore-

ground mask [70, 71]. We then inpaint the foreground re-

gion [66] with text guidance ‘clear background’ to create a

clean background image for the real image, which can serve

as the condition input for the training. Next, the lighting of

the foreground subject(s) is altered by running our trained

model from stage I/II with a randomly chosen background

image or environment map as the condition. This produces

a synthetic input image with distinct foreground lighting

and color compared to the target image. Two sets of gener-

ated training tuples are displayed at bottom right of Fig. 3.

Once we obtain a sufficient number of synthetic data, we

combine the original light stage dataset with the synthetic

data to refine our model. During this stage, we freeze the

lighting representation extraction and conditioning branch

and only finetune the UNet backbone to refine the synthesis

quality while maintaining the learned lighting plausibility.

Once trained, our final model in Fig. 2 III is used to perform

portrait harmonization given arbitrary background images,

eliminating the need for environment maps.

4. Experiments

4.1. Setup and Metrics

Three testing scenarios are created for evaluation: (1) 500

Light stage rendered test pairs to evaluate the lighting accu-

racy; (2) 200 natural image test pairs, synthetically created

from real images using our data synthesis pipeline, to assess

the lighting realism; and most importantly, (3) Real-world

portraits combined with arbitrary backgrounds, examining

the model’s generalizability and adaptability in real-life

scenarios. For (1) and (2), we also quantify the results

with common metrics MSE, SSIM, PSNR and LPIPS [74].

To benchmark, we compare Relightful Harmonization with

both established harmonization methods INR [5], PCT [14],

Harmonizer [26] and PIH [61], and relighting method

TR [42]. We also construct a relighting baseline with a

transformer architecture and trained it with light stage

data. More details are provided in the appendix. Note that

relighting methods are applied only on the light stage test

set as they are not applicable without HDR maps.

4.2. Implementation Details

Our model is implemented in PyTorch [43] using 8×80GB

A100 at 512× 512 resolutions, with 96 batch size. In stage

I, we initialize UNet from the pretrained weights of the In-

structPix2Pix [3] checkpoint. In the first and second stage,

we use in total 400k training image pairs, rendered from

a arbitrary combination of 100 unique light stage subjects,

and 2908 HDR environment maps. We also randomly ro-

tate the HDR maps and use various FoVs to increase the

diversity of the background. In the third stage, we train the

network with additional 200k pairs of images synthesized

from natural images. We set learning rate to 5e−5. More

details are provided in the appendix.

4.3. Benchmark Results

In Figs. 4a and 4b, we present visual comparisons of our

method with selected benchmarks across on both test sets.

Our approach performs better in adjusting both the fore-

ground color and lighting, aligning more closely with the

ground truth on the right. Quantitative results in Table 1

further demonstrate the benefit of our methods. Fig. 4c

showcases test results on natural images. While harmoniza-

tion methods adjust for color, the composition still lacks fi-

delity due to counterintuitive lighting on the composed im-

age. For example, the strong cast shadow on the foreground

in the first row, and opposite lighting directions between

foreground/background in the second and third rows. Full

visual results with all methods are provided in appendix.

We further conducted a user study to verify the visual

plausibility of our method on the real world testing set.

Given pairwise comparison between our method and each

baseline, we asked Amazon Mechanical Turk raters to se-

lect the better harmonized image from a given pair of re-

sults sample from 70 image. The results on 1750 ratings

are collected, and we report the fraction of times that raters

preferred our results over the baseline method in Table. 2.

4.4. Arbitrary Portrait Background Replacement

We further test our model on various in-the-wild portraits

by compositing them onto arbitrary natural backgrounds.
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(a) Comparison on the light stage test set with [42] and [26].

Composite PIH Harmonizer Ours GT

(b) Comparison on the natural image synthetic test set with [26, 61].

Composite PIH Harmonizer Ours

(c) Comparison with [61] and [26] on real test images. Our method more

effectively harmonizes incoherent foreground lighting and shadow.

Figure 4. Visual comparisons with benchmark methods.

Table 1. Quantitative results on both light stage test set and the natural image test set. The relighing methods including TR [42] and the

transformer baseline require HDR maps during the inference and are thus non-applicable on the natural image test set.

Method
Light stage test set Natural image test set

MSE ↓ PSNR ↑ SSIM ↑ LPIPS ↓ MSE ↓ PSNR ↑ SSIM ↑ LPIPS ↓

TR [42] 0.044 (0.057) 15.889 (4.318) 0.757 (0.087) 0.354 (0.092) N/A N/A N/A N/A

Transformer* 0.026 (0.021) 17.259 (3.715) 0.742 (0.096) 0.337 (0.095) N/A N/A N/A N/A

INR [5] 0.016 (0.014) 19.147 (3.353) 0.823 (0.081) 0.327 (0.083) 0.009 (0.005) 21.566 (2.943) 0.904 (0.038) 0.113 (0.031)

Harmonizer [26] 0.015 (0.011) 19.304 (2.980) 0.822 (0.077) 0.338 (0.087) 0.010 (0.007) 21.419 (3.506) 0.905 (0.039) 0.108 (0.032)

PCT [14] 0.020 (0.016) 18.339 (3.454) 0.808 (0.093) 0.408 (0.082) 0.014 (0.010) 19.647 (3.279) 0.898 (0.038) 0.147 (0.039)

PIH [61] 0.018 (0.015) 18.865 (3.087) 0.807 (0.087) 0.330 (0.089) 0.010 (0.007) 21.147 (3.097) 0.901 (0.038) 0.112 (0.033)

Ours 0.012 (0.010) 20.527 (3.136) 0.848 (0.076) 0.159 (0.058) 0.005 (0.004) 23.562 (2.830) 0.913 (0.034) 0.097 (0.044)

Table 2. User preference. Each value represents the fraction of

times that raters preferred our results than the baseline method.

Method PIH [61] INR [5] PCT [14] Harmonizer [26]

Preference Rate 0.713 0.702 0.845 0.639

Lighting Plausibility: We start by evaluating the lighting

plausibility and visual fidelity by replacing the backgrounds

with strong lighting indications, like sunlight. Example re-

sults are shown in Fig. 5a. As can be seen, the lighting

tone and direction in the harmonized foreground matched

the background effectively. We further vertically flip the

backgrounds on the right side, and observe a corresponding

change in the lighting effects as expected.

Shadow Plausibility: We then examine how our model

handles shadows. Fig. 5b depicts the test cases on input sub-

jects with prominent shadows. When compositing and har-

monizing them onto background images with more ambient

lighting, our model is able to remove the strong shadow and

estimate a shadow-free output, while adapting to the back-

ground light. Conversely, in Fig. 5c, under backgrounds in

daytime scenes with potential overhead sunlight, our model

generates visually plausible self-occlusion shadows.

Creative Background Replacement: Our method allows

for creative background replacement for portrait images. In

Fig. 5d (right), we create a sequence of background crops

from one panorama image with a sliding window, so that the

major light source consistently changes from left to right.

We observe visually consistent lighting changes on the fore-

ground. Similarly, Fig. 5d (left) shows the harmonization

results by placing a subject into different timelapse video

frames at different timepoints, resulting in a series of por-

trait images that effectively mimicked a timelapse effect.

Reference-based Harmonization: Our pipeline also ex-

tends to reference-based harmonization, where users can in-

tegrate their portrait photos with scenes from a chosen ref-

erence portrait image. This is achieved by first inpainting

the reference portrait to generate a background image, onto

which the desired foreground is composited. Our method

ensures that the final output matches the tone and lighting

of the original scene. Fig. 5e showcases examples where

our results effectively align with the tone and lighting of the

reference image, displayed on the top left.
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(a) In cases where the target backgrounds offer clear lighting cues, our method generates visually convincing lighting effects. Additionally, upon

flipping the background, we note consistent and appropriate adjustments to the lighting direction in the output.

(b) Our method effectively neutralizes pronounced shadows in the input while accommodating the ambient lighting of the background.

(c) When applied to backgrounds with intense lighting conditions, e.g., with overhead sunlight, our method casts plausible self-occlusion shadows.

(d) Our method consistently adjusts lighting when applied to moving backgrounds with temporally(left) and spatially(right) changing lighting direc-

tions.

(e) Our approach allows for reference-based harmonization tasks. This involves removing the subject from the reference image (upper left) to create a

background (lower left) for composition. The harmonized results (right) achieve lighting effects closely resembling those in the reference.

Figure 5. Real-world testing results under different scenarios to examine the lighting and shadow effects. For each pair of results in row

(a)-(c), we display the composite image (left) and the harmonized image (right). In row (d), we omit the composition for better visibility.

Full visualization is provided in the Appendix.
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Table 3. Ablation to verify the effects of lighting conditioning (‘Cond’), alignment (‘Align’), and finetuning (‘Finetune’).

Model Cond Align Finetune
Light stage test set Natural image test set

MSE ↓ PSNR ↑ SSIM ↑ LPIPS ↓ MSE ↓ PSNR ↑ SSIM ↑ LPIPS ↓

0 - - - 0.018 (0.015) 18.768 (3.531) 0.815 (0.085) 0.188 (0.070) 0.012 (0.008) 20.158 (3.024) 0.866 (0.045) 0.103 (0.028)

1 Bg - - 0.014 (0.012) 19.748 (3.161) 0.835 (0.084) 0.168 (0.063) 0.013 (0.008) 19.787 (2.684) 0.864 (0.042) 0.106 (0.028)

2 Env - - 0.009 (0.009) 21.626 (3.162) 0.866 (0.077) 0.148 (0.056) 0.013 (0.008) 19.824 (2.634) 0.863 (0.045) 0.105 (0.028)

3 Bg ✓ - 0.012 (0.009) 20.439 (2.987) 0.842 (0.077) 0.163 (0.059) 0.012 (0.007) 20.006 (2.586) 0.866 (0.044) 0.106 (0.028)

4 Bg ✓ ✓ 0.012 (0.010) 20.527 (3.136) 0.848 (0.076) 0.159 (0.058) 0.005 (0.004) 23.562 (2.830) 0.913 (0.035) 0.097 (0.044)

Composite Model 1 Model 2 Model 3 Model 4

Figure 6. Example testing results from our ablation. Model 1 to Model 4 correspond to the configurations in Table 3.

Bg Env ∥fbg∥2 ∥fenv∥2 ∥fbg→env∥2

Figure 7. The L2 norm of learned lighting representations.

The aligned background-derived feature on the right matches the

panorama much closer, indicating a better lighting representation.

4.5. Ablation

As our proposed method involves multiple stages, we con-

ducted an ablation study to isolate individual and collec-

tive effects. We define the base Model#0 as a baseline

diffusion model without lighting conditioning. Model#1

and Model#2 incorporate lighting conditioning via back-

ground and environment map, respectively. Model#3 fur-

ther introduces the alignment module and Model#4 is our

final model that includes the finetuning. Table 3 illustrates

the quantitative performance of each model configuration

on both light stage and natural image test sets. We include

more visual comparisons in the appendix.

Lighting-conditioning: Upon integrating lighting condi-

tioning into Model#0, we observe notable improvements

across all metrics on light stage data with both background

conditioned Model#1 and environmental conditioned

Model#2. Model#2 further outperforms Model#1, ver-

ifying our assumption that an environmental map facilitates

a more accurate encoding of lighting.

Lighting Representation Alignment: In Model#3, we

introduce the embedding alignment. The improvements

from Model#1 to Model#3 validated the benefits of uti-

lizing an additional adaptation step to extract robust lighting

representation from a single background image. As shown

in Fig. 7, the right column representing the aligned feature

norms, shows a visual convergence towards the features ex-

tracted from the environment map.

Finetuning for Photorealism: Model#4 is a finetuned

version of Model#3 with the newly synthesized data. We

observe significant improvements in particular on the nat-

ural image test set, verifying our assumption that the fine-

tuning boosts the photorealism on natural images. As can

be also seen in examples in Fig. 6, while Model#2 and

Model#3 estimate plausible lighting direction, the lighting

effects are much less realistic than the finetuned Model#4.

5. Conclusion

We present Relightful Harmonization, a novel lighting-

aware diffusion model to blend advanced lighting effects

into foreground portraits when compositing onto diverse

background images. Limitations exist including a resolu-

tion cap of 512x512, potentially affecting facial detail, es-

pecially in smaller faces. Also, subtle variations may occur

in the subject’s clothing and skin tones. Detailed analyses

and additional failure cases are included in the appendix.
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