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Abstract

Recently, diffusion models have emerged as a new pow-
erful generative method for 3D point cloud generation
tasks. However, few works study the effect of the archi-
tecture of the diffusion model in the 3D point cloud, re-
sorting to the typical UNet model developed for 2D im-
ages. Inspired by the wide adoption of Transformers, we
study the complementary role of convolution (from UNet)
and attention (from Transformers). We discover that their
respective importance change according to the timestep in
the diffusion process. At early stage, attention has an out-
sized influence because Transformers are found to generate
the overall shape more quickly, and at later stages when
adding fine detail, convolution starts having a larger im-
pact on the generated point cloud’s local surface quality. In
light of this observation, we propose a time-varying two-
stream denoising model combined with convolution lay-
ers and transformer blocks. We generate an optimizable
mask from each timestep to reweigh global and local fea-
tures, obtaining time-varying fused features. Experimen-
tally, we demonstrate that our proposed method quantita-
tively outperforms other state-of-the-art methods regard-
ing visual quality and diversity. Code is avaiable https:

//github.com/Zhiyuan-R/Tiger-Diffusion.

1. Introduction

The point cloud is an essential 3D shape representation
that is easy to obtain (sensed directly from laser scanning),
versatile (serving as a building block of mesh), and easy
to manipulate (geometrically transformed in a straightfor-
ward manner by affine matrices). 3D point cloud generative
models benefit extensive applications across robotics [35],
medicine [15] and content creation [36], and lay the ground-
work for other vision tasks like point cloud upsampling
[52], point cloud completion [21, 31] and mesh generation
[9]. However, compared to 2D images, the cost and com-
plexity of acquiring 3D point clouds make it crucial to ex-

Figure 1. An illustration of different roles played by convolution
and attention operations in the denoising model. Convolution is
good for learning local relationships, and attention is optimal for
modeling global relationships. We propose to merge these two
properties across different timesteps in the diffusion process.

plore and develop efficient and effective model architectures
for 3D point cloud generation.

Existing point cloud generative models are built on a
range of frameworks, including generative adversarial net-
works (GANs) [1, 5], variational autoencoders (VAEs) [24],
normalizing flows [23, 27, 51]. However, these methods
neither are stable in training nor produce high-fidelity re-
sults. Recently, the denoising diffusion model [18], a novel
generative method, has demonstrated exceptional results in
3D point cloud generation. Typically, diffusion models per-
turb a point cloud using a forward process and denoising
algorithm. Once trained, the model can be used to generate
new point clouds by iterating the reverse process over a se-
quence of time steps, with each step adding more noise to
the input point cloud.

Several recent works, including DPM [34] and
PVD [55], have successfully applied diffusion models to
3D point cloud generation, achieving high levels of natu-
ralness and diversity. Very recently, LION [53] further im-
proves by encoding point clouds into latent space. However,
these methods commonly utilize UNet-like convolutional
networks that are originally designed for image processing.
There has been limited research on developing suitable de-
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noising model architectures that are specifically tailored for
3D point cloud generation. For example, PVD and LION
both utilize Point-Voxel CNN (PVCNN) [30] as their de-
noising model. However, we observed that these PVCNN-
based denoising models require a considerable number of
timesteps to establish a rough shape since the limited recep-
tive field cannot capture the global distribution of noise.

In contrast to convolution operations, we observe that the
attention mechanism used in Transformers [10, 48] is more
effective at capturing long-range dependencies and thus the
overall shape of 3D points. This difference is illustrated in
the first two rows of Fig. 1. Compared to the convolution-
based diffusion model (first row), the attention-based dif-
fusion model (second row) correctly conforms to the over-
all object shape at earlier denoising time steps (middle col-
umn). However, the convolution operation excels in mod-
eling local relationships. Therefore, the details of the final
output are better modeled with convolutions (last column)
which is also discussed in the ablation analysis of Sec. 4.3.
The finding suggests that the two operations, the convolu-
tion and the attention are complementary in their roles at
different denoising timesteps (the last row of Fig. 1) and we
ask the following question.

How to leverage the strengths of both CNNs and
Transformers and enable them to dynamically cap-
ture complementary information in denoising diffu-
sion for 3D point cloud generation?

To answer this question, we propose a Time-varying de-
noising model for 3D point cloud generation (TIGER), a
two-stream architecture combining a shallow CNN branch
and Transformer branch with a timestep-dependent mask
that adaptively reassigns weights to the global Transformer
feature and the local CNN feature. To enable this feature-
level fusion, we design an encoder-decoder to downsam-
ple the point cloud for reducing the number of points to a
manageable size for Transformer. And we learn a selection
mask that finds the optimal configuration at each timestep.

Furthermore, in this two-stream architecture where
global and local information is modeled separately, we dis-
cover that supplying 3D points position information to the
global branch is critical to the performance. To supply the
3D position information more effectively, we design two
novel position encoding methods: phase-shifted position
encoding and Base-λ position encoding. They create 3D
position information in a continuous space and retain the
property of linear expression of relative position. The effect
of the time-dependent dual branch mask and the proposed
position embedding is ablated in Sec. 4.3.

A unique property of TIGER is that the weights of the
two branches are dependent on the diffusion timesteps, and
they are learned and optimized for the 3D point cloud gen-

eration. Interestingly, experiments demonstrate that the
weight of the convolution branch is monotonically increas-
ing with the timestep, which is in accordance with our ini-
tial observation that convolutions are good for modeling fine
details. Empirically we show that TIGER achieves state-of-
the-art (SoTA) performance in 3D point cloud generation.

Our main contributions include:
• We propose a novel two-stream denoising model, which

uses timestep to optimally reweigh the global feature
from Transformer and the local feature from shallow
CNN.

• We design two novel 3D continuous position encoding
methods and position-aware self-attention to enable our
Transformer branch to aggregate global features effec-
tively from the latent point cloud input.

• Experiments show that our method outperforms prior
works in 3D point cloud generation tasks qualitatively and
quantitatively on the ShapeNetv2 dataset.

2. Related Work

3D Point Cloud Generation. The advances in 3D point
cloud generation can be categorized by how the input is rep-
resented. Early methods [1, 12, 14, 38, 39, 44] represent the
point cloud as a N × 3 matrix, where N is the predefined
number of 3D points. The backbone comprises 1D convo-
lutions and max-pooling to allow the points’ permutation
invariance. So, the shape is represented by a global feature
vector.

More recent works [5, 7, 13, 27, 34, 51] have improved
upon the input representation by introducing a probabilis-
tic distribution assumption, where each point cloud is con-
sidered as one data point sampled from the distribution.
For instance, PointFlow [51] models the distribution of
points by continuous normalizing flows, allowing the sam-
pling of an arbitrary number of points to represent a point
cloud. However, the backbone architecture is still based on
1D convolution-based encoder with the max-pooling oper-
ation [38].

Recently, PVD [55] and LION [53] adopt a hybrid point-
voxel representation [30] which voxelize the point clouds
for 3D convolution. This representation with rich spatial
information combines well with the diffusion objective and
produces promising results [53]. However, the backbone
is still confined to convolution-based networks, lacking the
capacity to effectively model the long range-dependencies.
We, on the other hand, find the complementary roles of at-
tention and convolution in the point cloud generator and
propose a network that combines the benefits of both.

Diffusion Models. Diffusion [18] and score-based meth-
ods [22, 46] have enjoyed remarkable success in images
synthesis. Diffusion has been extended to many generation
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Figure 2. Illustration of our time-varying two-stream architecture (TIGER). The network’s input is a noisy point cloud Xt at timestep
t, and the goal is to predict the noise in Xt to obtain the denoised point cloud Xt−1. We first encode Xt into latent point cloud X̂t

and export coordinates information for position encoding and decoder. We feed the latent point cloud into both the Latent Point Cloud
Transformer and a shallow CNN branch to get global feature Xtr and local feature Xc. Then, we combine two features using timestep
dependent mask Mc to create a fused feature X̂F . Last, we apply our latent point cloud decoder to predict the noise from X̂F .

tasks [2, 8, 17, 20, 25, 28, 41–43, 47], and largely improved
by innovative techniques, such as fast sampling [33, 45],
classifier-free guidance [19, 37] and latent diffusion [4, 42].
Recently 3D point cloud generation with diffusion [34, 53,
55] is also proposed with remarkable diversity and fidelity.

However, previous works do not investigate the behavior
of the diffusion backbone with respect to the diffusion time
step. We find that the network equipped with both convolu-
tion and attention operations learns to utilize the local and
global shape representation with different magnitudes based
on the timestep. This time adaptive architecture allows the
3D point cloud generator to be trained faster than LION [53]
while producing higher-quality outputs.

Transformer for Point Clouds. Transformer architec-
ture [48] is intrinsically a set operator, which is suitable for
permutation-invariant point clouds. PCT [16] applies global
attention to the point cloud. Point Transformer V1 [54] and
V2 [49] convert global attention to local attention to reduce
memory consumption and computational complexity.

Contrary to the previous methods, our method decouples
the global and local information by using Transformer to
aggregate global information effectively while using CNN
to model the local information. Also, we find that position
embedding is crucial to performance and propose a new po-
sition embedding to further improve the performance.

3. Method
In this section, we first briefly formulate the probabilistic
model of forward and reverse diffusion processes for 3D
point cloud generation. Then, we dive into the details of
our time-varying two-stream architecture, including the en-
coder part, latent point Transformer, time mask generator,
and decoder part. The entire architecture is shown in Fig. 2.

3.1. Problem Formulation

Given a point cloud X0 ∈ RN×3, where N is the num-
ber of points, the diffusion forward process gradually dif-
fuses the original point cloud into Gaussian noise XT ; the
forward process can be formulated with a transition prob-
ability q(Xt|Xt−1). By giving a sequence of pre-defined
noising scales β1, β2, ..., βT , the transition probability can
be expressed as :

q(Xt|Xt−1) = N (
√
1− βtXt−1, βtI). (1)

For the reverse process, we use learn the pθ(Xt−1|Xt),
a Gaussian distribution which approximates the intractable
real distribution q(Xt−1|Xt). Specifically,

pθ = N (µθ(Xt, t), σ
2
t I), (2)

where we learn the mean µθ(Xt, t) and set the variance σ2
t

to a fixed schedule as in [18]. Conventionally, µθ(Xt, t)
is modeled using a UNet backbone and it depends on the
timestep t to scale and shift the feature. We design a two-
stream backbone where the timestep modulates the weight
between the two streams. To sample a 3D point cloud, we
iteratively denoise XT , T times to finally generate the high-
fidelity samples. In training, we optimize the MSE loss:

Lsimple = Et∼[1,T ]∥µ− µθ(Xt, t)∥22
= Et∼[1,T ]∥ϵ− ϵθ(Xt, t)∥22,

(3)

where ϵ is the ground truth noise and ϵθ is the noise predic-
tion by our diffusion model.

3.2. Noisy Point Cloud Encoder

To effectively represent the N ×3 points, we adopt the vox-
elization encoding scheme of PVCNN [30]. This represen-
tation works well with both CNN and Transformer architec-
ture as we can downsample the voxel-grid following [11] to
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Figure 3. The overview of our encoder. It extracts features in
voxel space and downsamples the point cloud by applying trilinear
interpolation of voxel with grouped points.

increase computation efficiency. Specifically, a noisy point
cloud encoder E : RN×3 → RM×d transforms the noisy
point cloud Xt ∈ RN×3 at timestep t into a latent point
cloud representation X̂t ∈ RM×d, where N is the number
of original points, M is the number of downsampled points
and d is the dimension of each latent point’s feature. The
overview of our encoder is illustrated in Fig. 3.

To aggregate features in a rigid field, we first voxelize
the noisy point cloud {xn, yn, zn} = Xt ∈ RN×3 into the
voxel grids {Vu,v,w} = V ∈ RL×L×L, where L is the
resolution and n is the point index in N . Specifically,

Vu,v,w =
∑N

n=1 I(xn ∈ N(u, δ), yn ∈ N(v, δ), zn ∈ N(w, δ)) ∗ fn,
(4)

where N(z, δ) = {x|x ∈ [z − δ, z + δ)}, fn denotes the
nth extracted latent feature corresponding to the nth point
(Xt)n and I(·) is an indicator of whether the nth point falls
into the voxel grid (u, v, w). After voxelization, we apply a
series of 3D convolution, Swish [40] activation and Group-
Norm [50]. After applying a series of these operations, this
results in a latent volume V̂ ∈ RL×L×L×d, where d is the
channel size for each voxel.

We use furthest point sampling algorithm [11] to down-
sample the input noisy point cloud Xt ∈ RN×3 into a
sparser point cloud Xs

t ∈ RM×3 (M < N ). Then, as the
position in volume is discrete, we query the latent volume
V̂ by the sparse point cloud Xs

t via trilinear interpolation,
eventually transformed into latent point cloud X̂t ∈ RM×d.
It is worth noting we preserve the coordinates of Xt and
Xs

t to do upsampling with the decoder and provide position
embedding for our latent point cloud Transformer.

3.3. Latent Point Cloud Transformer

Previous denoising models such as PVCNN [30] simply ap-
ply stacked convolutional layers to create feature represen-
tations. Contrarily, we aim to better model the global rela-
tionship by introducing a novel Transformer branch named
latent point cloud Transformer.
Tokenization. After encoding, we get a latent point cloud
representation X̂t∈RM×d and its coordinates Xs

t ∈RM×3.

(a) PSPE (b) BλPE

Figure 4. Illustration of two examples of the position embedding
from PSPE and BλPE respectively. Both methods show distin-
guished representation for each position.

Following [29], we use dual PatchNorm to project the latent
point cloud into tokens, which place LayerNorm before and
after an MLP layer for more stable training:

T = LN(MLP(LN(X̂t))), (5)

where T ∈ RM×D and D is the dimension in the token
space (in our paper, D = 2d).
Position Encoding. Since the order of the latent points is
arbitrary in a point cloud, it’s necessary to create a 3D po-
sition embedding and fuse it into the feature, so that the
model knows the position of each point. Contrary to the po-
sition embedding in image domains [10, 26], the design of
3D position embedding plays a vital role in the performance
and our position embedding produces the best result. We
propose two novel 3D space continuous position encoding
methods: Phase Shift Position Encoding (PSPE) and Base-
λ Position Encoding (BλPE). For PSPE, we use Sine and
Cosine functions of different frequencies and phases:

Pemb(posj , 6i+2 ∗ (j− 1)) = sin(
posj

10000
2i
D

+(j− 1)
2π

3
)

(6)

Pemb(posj , 6i+1+2∗(j−1)) = cos(
posj

10000
2i
D

+(j−1)
2π

3
)),

(7)
where posj is j-th element in each point’s position, specif-
ically pos1 = x, pos2 = y, pos3 = z, and i is the index
of the dimension. We maximize the phase shift difference
( 4π3 ) of different axes to distinguish them and combine Sine
and Cosine to guarantee the linear representation of relative
position, which will be proved mathematically in Supp. An
example is shown in Fig. 4a and Pemb is shaped RM×D.

However, PSPE requires 6 channels to represent one fre-
quency feature, which is quite inefficient. To improve chan-
nel utilization, we apply BλPE to compress 3D position into
one scalar:

pos = λ2 ∗ z + λ ∗ y + x (8)

Pemb(pos, 2i) = sin(
pos

10000
2i
D

) (9)

Pemb(pos, 2i+ 1) = cos(
pos

10000
2i
D

), (10)
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Figure 5. The overview of the position-aware self-attention. We
compute position relationship map H by previous position embed-
ding to reweigh the QKT matrix.

where pos is a polynomial expression of λ. Specifically,
we set λ to 1000, which means this preserves three decimal
places of precision and one example is shown in Fig. 4b.
The choice between these two position encoding methods is
essentially a trade-off between granularity and expressive-
ness. We ablate them and other non-position encoding and
learnable position encoding in Sec. 4.3.
Transformer and Position-Aware Attention We stack L
layers of Transformer block [48] which comprises of Lay-
erNorm(LN) [3] and Multihead Self Attention (MHA) and
MultiLayer Perceptrons. We let the token T0 = T and let

Tl∗ = MHA(LN(Tl−1)) +Tl−1, (11)
Tl = MLP (LN(Tl∗)) +Tl∗, (12)
Xtr := TL. (13)

To add position embedding into the model, one can simply
add it to T. But as the Transformer blocks are gradually
stacked, the continuous 3D position encoding is difficult to
retain in the token representation. Inspired by [54], we ex-
plicitly add the position encoding to each MHA in order to
make our attention map position-aware, as shown in Fig. 5.
Specifically, our position-aware MHA modified as

H = Softmax((PembWp)(PembWp)
T ) (14)

Tl∗ = Softmax(
(TlWq)(TlWk)

T ⊙H√
D

)(TlWv) (15)

where Wq ,Wk,Wv ,Wp∈RD×Z are projection matrices and
H ∈ RM×M is the position relationship map. Modified
MHA could incorporate position information explicitly and
sufficiently during training. Xtr is the final output.

Figure 6. The overview of our decoder. By querying the latent
volume X̂F with previous coordinates information Xt, we can
upsample the latent point cloud into 3D space.

3.4. Time Mask Generator

We apply a depth-2 PVCNN [30] to get local feature Xc ∈
RM×D and our latent point cloud Transformer to get global
feature Xtr ∈ RM×D. Time mask generator module scales
the local and global features by the time variable. We force
the sum of two learnable time masks to be 1. With this
constraint, the trade-off of local and global features can be
learned by the network.

We first align the dimension and scale of Xc and Xtr by
one layer MLP and Sigmoid function σ.

X∗
c = σ(MLP(Xc)), X∗

tr = σ(MLP(Xtr)). (16)

Then we encode a timestep t to a sinusoidal position embed-
ding [18, 48] to temb ∈ Rc. We use two stacked MLP to
map temb to a higher dimension space and apply Sigmoid
to keep one of the masks between 0 to 1. Specifically,

Mc = σ(MLP(LeakyReLU(MLP(temb))), (17)
Mtr = 1−Mc. (18)

where Mc, Mtr ∈ RD are the time masks for CNN and
Transformer feature respectively. We ablate the dimension
of masks in Sec. 4.3 to be RD or R1. We multiply these
two masks by the respective features and adjust the fused
feature by MLP .

X̂F = MLP(X∗
c ⊙Mc +X∗

tr ⊙Mc), (19)

where X̂F ∈ RM×D is the final feature adaptively aggre-
gating local and global features based on the timestep.

3.5. Latent Point Cloud Decoder

In order to upsample the latent point cloud and predict the
corresponding noise, we design a latent point cloud decoder
D, which converts the latent point cloud X̂F ∈ RM×D to
Xt ∈ RN×3. Similar to Sec. 3.2, we can voxelize X̂F into
a latent volume ṼF ∈ RL×L×L×D, and take Xt as the
query for trilinear interpolation, eventually resulting in the
final noise prediction ϵθ ∈ RN×3. This formulation can be
expressed as:

ϵθ = Trilinear(Voxelize(X̂F ),Xt)W
D×3, (20)
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Method Generative Model Airplane Chair Car
CD→ 50% EMD→ 50% CD→ 50% EMD→ 50% CD→ 50% EMD→ 50%

r-GAN [1] GAN 98.40 96.79 83.69 99.70 94.46 99.01
l-GAN(CD) [1] GAN 87.30 93.95 68.58 83.84 66.49 88.78

l-GAN(EMD) [1] GAN 89.49 76.91 71.90 64.65 71.16 66.19
PointFlow [51] Normalizing Flow 75.68 70.74 62.84 60.57 58.10 56.52
DPF-Net [27] Normalizing Flow 75.18 65.55 62.00 58.53 62.35 54.48
ShapeGF [5] GAN 80.00 76.17 68.96 65.48 63.20 56.53
SoftFlow [23] Normalizing Flow 76.05 65.80 59.21 60.05 64.77 60.09
SetVAE [24] VAE 76.54 67.65 58.84 60.57 59.95 59.94

DPM [34] Diffusion 76.42 86.91 60.05 74.77 68.89 79.97
PVD [55] Diffusion 73.82 64.81 56.26 53.32 54.55 53.83
TIGER Diffusion 71.85 55.82 54.61 52.71 54.31 52.24

LION [53] Diffusion 67.41 61.23 53.70 52.34 53.41 51.14
TIGER Diffusion 67.21 56.26 54.32 51.71 54.12 50.24

Table 1. Quantitative comparison with baselines using 1-NN. Both CD and EMD are considered, where CD is multiplied by 103 and EMD
is multiplied by 102. The closer the score is to 50%, the better the quality and diversity of generated samples. [Key: Best, Second Best]

PointFlow ShapeGF SetVAE DPM PVD LION TIGER

Figure 7. Our generation results (right) compared to baseline models (left). TIGER generates high-quality and diverse 3D point clouds.

where WD×3 is the projection matrix to map the noise into
3D space and Xt is the original point cloud coordinates.
The overview of our decoder is shown in Fig. 6.

4. Experiments
4.1. Experimental Setup

Datasets. We follow previous works and choose
ShapeNetv2 [6] as our main dataset, which is pre-processed
by PointFlow [51]. To fairly compare with other different
baseline methods, we train and evaluate on three categories:
airplane, chair and car. For each shape, we sample 2, 048
points and normalize them globally across the entire dataset.
The training set consists of 2, 832, 4, 612, and 2, 458 shapes,
while the evaluation set is composed of 405, 662, and 352
shapes for airplanes, chairs, and cars, respectively.
Metrics. Following the baselines PVD [55] and LION [53],
we use 1-NN (1-nearest neighbor) accuracy [32] as our eval-
uation metric. This metric has been shown to effectively

measure both the quality and diversity of generated point
clouds and a score closer to 50% indicates superior per-
formance [51]. To calculate the 1-NN distance matrix, we
consider two commonly used metrics for measuring the dis-
tance between point clouds: CD (Chamfer Distance) and
EMD (Earth Movers’ Distance).

4.2. Comparison with SoTA methods

Results. To compare our time-varying denoising model
with SoTA methods, we evaluate its performance against
competitive models such as SetVAE [24], DPM [34],
PVD [55] and LION [53]. It is noteworthy that in order to
compare with LION, which uses a different dataset splitting
strategy (sampling from the first 10, 000 points instead of
the latter 5, 000 points), we evaluate our model under both
LION’s strategy and the standard strategy used by other
methods. As shown in Tab. 1, we outperform LION in four
out of six metrics. Compared to other methods, our per-
formance is significantly better. Notably, our EMD-based
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Method Training Time (GPU hours) Inference Time (s)
PVD [55] 142 8.46
LION [53] 550 27.12

Tiger 164 9.73

Table 2. Training and inference time comparison. Training time
is counted on average for three categories: airplane, chair and car.

Method aaa W1 aaa W2 Mean CD Mean EMD
Convolution 1 0 61.34 56.31
Transformer 0 1 62.41 55.85
Conv+Tran 0.5 0.5 64.45 57.92

Ours learnable (scalar) 60.79 54.12
Ours learnable (channel-wise) 59.43 53.51

Table 3. Ablation of different architecture designs. W1 and W2

are the weights for the ConvNet branch and Transformer branch.
[Key: Best, Second Best]

1-NN accuracy shows a significant improvement of 13.45%
relative to PVD and 8.12% relative to LION for airplanes.
This is attributed to the efficient aggregation of global fea-
tures by our Transformer branch, which is especially bene-
ficial for EMD as it is primarily influenced by global distri-
bution. Fig. 7 shows that our generated samples are of high
quality and diversity compared with other methods.
Efficiency. To compare the training and inference speed,
we report the GPU hours with NVidia V100 GPUs as in
LION [53]. As shown in Tab. 2, our model trains much
faster than LION, with only a quarter of its training time
and a third of its inference time. Our training and inference
speed is comparable to that of PVD while surpassing LION
and PVD in the generation quality as shown in Tab. 1. More
computation analysis can be found in Supp.

4.3. Ablation and Analysis

Time-varying two-stream architecture. We ablate our
time-varying two-stream architecture by comparing it with
single ConvNet, single Transformer, and two-stream net-
works with equal weight. In this ablation, we also com-
pare the performance of our time masking with scalar value
setting and channel-wise value setting. The results, pre-
sented in the first two rows of Tab. 3, show that Transformer
performs better on the EMD metric, while ConvNet per-
forms better on the CD metric. Using a fixed equal weight
for the two-stream network leads to a significant perfor-
mance drop on both metrics. However, the learnable time
mask improves the performance on both metrics, indicat-
ing the importance of the time-varying design. Further,
channel-wise time masking improves performance slightly
more than scale value setting due to its greater expressivity.
Transformer backbones, position encoding, and self-
attention strategies. Here we carried out three ablations:
(1) We compare the performance of our Transformer back-
bone with two classic Transformer backbones, PCT [16]
and Point Transformer (PointTran) [54]. (2) To assess

TB PE AP Mean CD Mean EMD
PCT [16] Learnable - 65.82 60.21

PointTran [54] Learnable Learnable 66.42 62.39

Ours - - 63.51 57.98
Ours Learnable Learnable 62.17 56.13

Ours PSPE - 60.11 55.74
Ours PSPE Learnable 61.48 55.97
Ours PSPE PSPE 59.02 54.49

Ours BλPE - 61.35 54.27
Ours BλPE Learnable 61.89 56.02
Ours BλPE BλPE 59.43 53.51

Table 4. Ablation of Transformer backbones, position en-
coding, and self-attention strategies. [Key: Best, Sec-
ond Best; TB=Transformer backbone; PE=position encoding;
AP=additional position information]

Figure 8. Visualization of attention maps in 3D point clouds. Col-
umn (c) is the result of column (b) multiplied by position relation-
ship map H. Taking the first row as an example, queried by the air-
plane head’s position, our method can aggregate the position infor-
mation from the airplane’s right wing and left elevator compared
with standard self-attention. This comparison highlights the effec-
tiveness of our position-aware self-attention module in capturing
long-range relationships in 3D point clouds. [SA: Self-attention,
PASA: Position-aware Self-attention]

our proposed position encoding methods, PSPE and BλPE,
we compare them with no position encoding and learnable
position encoding. (3) We investigate our position-aware
self-attention module by comparing it with standard self-
attention and self-attention with learnable position encod-
ing as proposed in [54]. As shown in Tab. 4, our latent point
cloud Transformer outperforms both PCT and Point Trans-
former under various settings. Furthermore, our proposed
position encoding methods, PSPE and BλPE, significantly
improve performance compared to no position encoding or
learnable position encoding. Specifically, PSPE improves
the CD metric, while BλPE improves the EMD metric. Our
position-aware self-attention module, which aggregates cor-
responding position encoding, achieves better results than
standard self-attention and self-attention with learnable po-
sition encoding. To illustrate this, Fig. 8 visualizes the
attention map in 3D point space for both standard self-
attention and our position-aware self-attention. This visu-
alization demonstrates the ability of our method to capture

9468



(a) Airplane (b) Chair (c) Car

Figure 9. The changes of ConvNet importance for each category over timesteps with the channel-wise time mask setting. The thick curve
is the result of Gaussian smoothing.

Figure 10. High quality and diverse 3D point clouds generated from our TIGER model trained on 55 ShapeNetv2 categories.

long-range relationships in the data.
Weight changing over timesteps. To validate our motiva-
tion of reweighing the local and global features from Con-
vNet and Transformer at different time steps, we visualize
the changes in weights. For channel-wise time mask setting,
we use the ratio of the weight of the local feature over the
weight of the global feature to measure the importance of
ConvNet and Transformer at each timestep. Fig. 9 indicates
that the importance of ConvNet for each category increases
nearly monotonically, implying that the diffusion process of
3D point cloud generation benefits from global features at
the early stages of diffusion and requires the aggregation of
more local features at later stages. Moreover, we observe
that the curves of airplanes and chairs change more drasti-
cally than that of cars, which we hypothesize is due to the
complicated shapes of airplanes and chairs, resulting in a
more complex diffusion process.
Unconditional generation of multiple classes. To fur-
ther demonstrate the generalizability of our model, we
train a universal TIGER model on all 55 categories of
ShapeNetv2 [6]. Fig. 10 shows that our universal model
can produce shapes with high quality and diversity.

5. Conclusions
In this work, we propose a novel time-varying denoising
model with a latent point transformer backbone. Exper-
imentally, we show how the time mask optimally aggre-

gates local and global features at different timesteps, which
quantitatively reaches SoTA performance. In accordance
with our hypothesis, Transformer is more important at early
diffusing stages and ConvNet has a larger weight at later
timesteps in the 3D point cloud generation task. Future
work will be focused on exploring how our time-varying de-
noising model would behave in other diffusion-based tasks.

Limitations. Although we generate high-quality and nat-
ural samples, we cannot control the category of the gener-
ated shape. One potential solution is to encode the category
into latent space and train the diffusion model conditioned
on the latent code. We also acknowledge that our model
needs to get the local feature and global feature by two sub-
networks, which is not quite efficient. In this work, we gain
efficiency with the model converging with fewer epochs.
But future works can increase the backbone efficiency by
proposing time-varying properties with only one network.

Potential Negative Impacts. While it has the potential
to speed up progress in both areas, it also has the risk of
eliminating the jobs of game and furniture designers due
to automation. However, our model should have a mostly
positive impact, because the most likely use of our method
would be to assist designers not completely replace their
jobs. It is still necessary to select suitable shapes among
many generated samples.
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