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Figure 1. SMIRK reconstructs 3D faces from monocular images with facial geometry that faithfully recover extreme, asymmetric, and
subtle expressions. Top: images of people with challenging expressions. Bottom: SMIRK reconstructions.

Abstract

While existing methods for 3D face reconstruction from
in-the-wild images excel at recovering the overall face
shape, they commonly miss subtle, extreme, asymmetric, or
rarely observed expressions. We improve upon these meth-
ods with SMIRK (Spatial Modeling for Image-based Recon-
struction of Kinesics), which faithfully reconstructs expres-
sive 3D faces from images. We identify two key limitations
in existing methods: shortcomings in their self-supervised
training formulation, and a lack of expression diversity in
the training images. For training, most methods employ
differentiable rendering to compare a predicted face mesh
with the input image, along with a plethora of additional
loss functions. This differentiable rendering loss not only
has to provide supervision to optimize for 3D face geom-
etry, camera, albedo, and lighting, which is an ill-posed
optimization problem, but the domain gap between ren-
dering and input image further hinders the learning pro-
cess. Instead, SMIRK replaces the differentiable render-
ing with a neural rendering module that, given the ren-
dered predicted mesh geometry, and sparsely sampled pix-
els of the input image, generates a face image. As the
neural rendering gets color information from sampled im-
age pixels, supervising with neural rendering-based recon-
struction loss can focus solely on the geometry. Further,

it enables us to generate images of the input identity with
varying expressions while training. These are then utilized
as input to the reconstruction model and used as supervi-
sion with ground truth geometry. This effectively augments
the training data and enhances the generalization for di-
verse expressions. Our qualitative, quantitative and partic-
ularly our perceptual evaluations demonstrate that SMIRK
achieves the new state-of-the art performance on accurate
expression reconstruction. For our method’s source code,
demo video and more, please visit our project webpage:
https://georgeretsi.github.io/smirk/.

1. Introduction

Reconstructing 3D faces from single images in-the-wild has
been a central goal of computer vision for the last three
decades [98] with practical implications in various fields
including virtual and augmented reality, entertainment, and
telecommunication. Commonly, these methods estimate the
parameters of a 3D Morphable Model (3DMM) [12, 26], ei-
ther through optimization [3, 6–8, 34, 67, 80] or regression
with deep learning [16, 18, 20, 28, 29, 33, 46, 65, 66, 70,
75, 82]. Due to the lack of large-scale paired 2D-3D data,
most learning-based methods follow a self-supervised train-
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ing scheme using an analysis-by-synthesis approach [7, 75].
Although there has been a persistent improvement in the

accuracy of identity shape reconstruction, as indicated by
established benchmarks [28, 70], the majority of works fail
to capture the full range of facial expressions, including ex-
treme, asymmetric, or subtle movements which are percep-
tually significant to humans –see e.g. Fig. 1. Recent works
addressed this by augmenting the photometric error with
image-based perceptual losses based on expert networks for
emotion [18], lip reading [29], or face recognition [32], or
with a GAN-inspired discriminator [61]. However, this re-
quires a careful balancing of the different loss terms, and
can often produce over-exaggerated facial expressions.

We argue here that the main problem is the shortcomings
of the differentiable rendering loss. Jointly optimizing for
geometry, camera, appearance, and lighting is an ill-posed
optimization problem due to shape-camera [73] and albedo-
lighting [25] ambiguities. Further the loss is negatively im-
pacted by the large domain gap between natural input image
and the rendering. The commonly employed Lambertian re-
flectance model is an over-simplistic approximation of the
light-face interaction [26], and it is insufficient to account
for hard self-shadows, unusual illumination environments,
highly reflective skin, and differences in camera color pat-
terns. This, in turn, can result in sub-optimal reconstruc-
tions by providing incorrect guidance during training.

In this work, we introduce a simple but effective
analysis-by-neural-synthesis supervision to improve the
perceived quality of the reconstructed expressions. For
this, we replace the differentiable rendering step of self-
supervised approaches with an image-to-image translator
based on U-Net [68]. Given a monochromatic rendering
of the geometry together with sparsely sampled pixels of
the input image, this U-Net generates an image which is
then compared to the input image. Our key observation
is that this neural rendering provides more accurate gradi-
ents for the task of expressive 3D face reconstruction. This
approach has two advantages. First, by providing the ren-
dered predicted mesh without appearance to the generator,
the system is forced to rely on the geometry of the rendered
mesh for recreating the input, leading to more faithful re-
constructions. Second, the generator can create novel im-
ages, that modify the expression of the input. We leverage
this while training with an expression consistency / augmen-
tation loss. This renders a mesh of the input identity under
a novel expression, renders an image with the generator,
project the rendering through the encoder, and penalizes the
difference between the augmented and the reconstructed ex-
pression parameters. By employing parameters from com-
plex and extreme expressions captured under controlled lab-
oratory settings, the network learns to handle non-typical
expressions that are underrepresented in the data, promoting
generalization. Our extensive experiments demonstrate that

SMIRK faithfully captures a wide range of facial expres-
sions (Fig. 1), including challenging cases such as asym-
metric and subtle expressions (e.g., smirking). This result
is highlighted by the conducted user study, where SMIRK
significantly outperformed all competing methods.

In summary, our contributions are: 1) A method to faith-
fully recover expressive 3D faces from an input image.2)
A novel analysis-by-neural-synthesis supervision that im-
proves the quality of the reconstructed expressions. 3) A
cycle-based expression consistency loss that augments ex-
pressions during training.

2. Related Work
Over the past two decades, the field of monocular 3D face
reconstruction has witnessed extensive research and devel-
opment [26, 98]. Model-free approaches directly regress
3D meshes [4, 19, 22, 27, 43, 69, 71, 74, 87, 89, 92] or vox-
els [41], or adapt a Signed Distance Function [17, 63, 91]
for image fitting. These techniques commonly depend on
extensive 3D training data, often generated using a 3D face
model. However, this dependency can constrain their ex-
pressiveness due to limitations inherent to data creation
[4, 19, 27, 41, 43, 69, 87] and disparities between synthetic
and real images [22, 71, 92].

Many works estimate parameters of established 3D Mor-
phable Models (3DMMs), like BFM [64], FaceWarehouse
[14], or FLAME [53]. This can be achieved using direct op-
timization procedure in an analysis-by-synthesis framework
[3, 6–8, 15, 30, 34, 47, 52, 65, 67, 78–80], but this needs to
be applied on novel images every time, which is computa-
tionally expensive. Recent deep learning approaches offer
fast and robust estimation of 3DMM parameters, using ei-
ther supervised [16, 36, 46, 66, 82, 83, 94, 96, 97] or self-
supervised training, for which different types of supervision
have been proposed and used in combination, with the most
important being the following: a) 2D landmarks supervi-
sion [20, 28, 55, 70, 72, 75–77, 90] is critical for coarse fa-
cial geometry and alignment, but is limited by the sparsity
and potential inaccuracy of the predicted landmarks, partic-
ularly for complex expressions and poses. Methods that rely
on dense landmarks [4, 88] overcome the sparsity problem
but their accuracy is limited by the inherent ambiguity of
dense correspondences across different faces. b) Photomet-
ric constraints [20, 28, 33, 72, 75–77, 90] are particularly
effective for facial data, but are susceptible to alignment er-
rors and depend on the quality of the rendered image. c)
Perceptual losses have been proven beneficial in aligning
the output with human perception [93]. Several methods
make use of this by applying perceptual features losses of
expert networks for identity recognition [20, 28, 32, 33, 72],
emotion [18] or lip articulation [29, 37], but are hard to bal-
ance with other terms and can sometimes produce exagger-
ated results, particularly in terms of expressions.
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We explore an alternative approach, where an image-to-
image translation model is coupled with a simple photomet-
ric error, encouraging more nuanced details to be explained
by the geometry.

Closer to our work are methods that simultaneously train
a regressor network and an appearance model to improve
the photometric error signal. Booth et al. [10, 11] employ
a 3DMM for shape estimation coupled with a PCA appear-
ance model learned from images in-the-wild. Grecer et al.
[32] extend this idea by using a GAN to model the facial
appearance more effectively. [58, 76, 77, 84, 85] learn non-
linear models of shape and expression while training a re-
gressor in a self-supervised manner. Lin et al. [54] refine an
initial 3DMM texture while training the regressor. Several
other works learn neural appearance models for faces from
large datasets [5, 32, 48–50, 57]. In this work, we do not
learn a new appearance model, but directly use a genera-
tor for better geometry supervision, achieving significantly
improved expression estimation. Also related to this work
are approaches that train a conditional generative model that
transforms a rendering of a mesh model into a realistic im-
age, e.g. [21, 23, 24, 35, 45, 62]. While their focus is on
controllable image generation, we investigate here how a
generator of average capacity can improve supervision for
the task of 3D face reconstruction.

3. Method: Analysis-by-Neural-Synthesis
SMIRK is inspired by recent self-supervised face recon-
struction methods [18, 28, 29, 94] that combine an analysis-
by-synthesis approach with deep learning. While the ma-
jority of these works produce renderings based on linear
statistical models and Lambertian reflectance, SMIRK con-
tributes with a novel neural rendering module that bridges
the domain gap between the input and the synthesized out-
put. By minimizing this discrepancy, SMIRK enables a
stronger supervision signal within an analysis-by-synthesis
framework. Notably, this means that neural-network based
losses such as perceptual [42], identity [20, 28], or emo-
tion [18] can be used to compare the reconstructed and in-
put images without the typical domain-gap problem that is
present in most works.

3.1. Architecture

Face Model: SMIRK employs FLAME [53] to model the
3D geometry of a face, which generates a mesh of nv =
5023 vertices based on identity β and expression ψexpr pa-
rameters, extended with two blendshapes ψeye to account
for eye closure [97], as well as jaw rotation θjaw parame-
ters. Additionally, we consider the rigid pose θpose and the
orthographic camera parameters c. For brevity, we refer to
all expression parameters (i.e ψexpr,ψeye and θjaw) as ψ,
and all global transformation parameters (i.e. c and θpose)
as θ.

Encoder: The encoder E(.) is a deep neural network that
takes an image I as input and regresses FLAME parameters.
We separate E into three different branches, each consist-
ing of a MobilenetV3 [39] backbone: 1) Eψ , which predicts
the expression parameters ψ, 2) Eβ that predicts the shape
parameters β, and 3) Eθ that predicts the global transfor-
mation coefficients θ. Formally,

θ = Eθ(I), β = Eβ(I), ψ = Eψ(I). (1)

Since the main focus of this work is on improving fa-
cial expression reconstruction, we assume at train time that
Eθ and Eβ were pre-trained and remain frozen. Note that
unlike previous methods [18, 28, 29], E does not predict
albedo parameters since the neural rendering module does
not require such explicit information.
Neural Renderer: The neural renderer is designed to re-
place traditional graphics-based rendering with an image-
to-image convolutional network T . The key idea here is to
provide T with an input image where the face is masked out
and only a small number of randomly sampled pixels within
the mask remain, along with the predicted facial geometry
from the encoder E. By limiting the available relevant in-
formation from the input image, T is forced to rely on the
predicted geometry from E to accurately reconstruct it.

Formally, let S = R(θ,β,ψ) denote the output
of the differentiable rasterization step, where S is the
monochrome rendering of the reconstructed face mesh. The
masking function M(·) is applied to the input image I ,
masking out the face and retaining only a small amount of
random pixels within the mask. M(I) is then concatenated
with S, and the resulting tensor is passed through the neural
renderer T to produce a reconstruction of the original im-
age I ′ = T (S⊕M(I)), where ⊕ denotes concatenation. A
crucial property of this module is to assist the gradient flow
towards the encoder. Therefore, we adopt a U-Net archi-
tecture [40, 68, 95] for T , since the shortcuts will allow the
gradient to flow uninterrupted towards E (an ablation study
on this can be found in the Suppl. Mat.).

3.2. Optimization of the SMIRK Components

SMIRK is supervised with two separate training passes:
a reconstruction path and an augmented expression cycle
path. We alternate between these passes on each training
iteration, optimizing their respective losses. We describe
each in the following subsections.

3.2.1 Reconstruction Path

In the reconstruction path (Fig. 2), the encoder E regresses
FLAME parameters from the input image I and the result-
ing 3D face is rendered to obtain S. Next, I is masked out
using the masking function M(.), is concatenated with S,
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Figure 2. Reconstruction pass. An input image is passed to the
encoder which regresses FLAME and camera parameters. A 3D
shape is reconstructed, rendered with a differentiable rasterizer
and finally translated into the output domain with the image trans-
lation network. Then, standard self-supervised landmark, photo-
metric and perceptual losses are computed.

dilated mask of 
the inner face

initial image

rendered face random face pixels

masked-out image

Figure 3. Masking Process. An input image is masked to ob-
scure the face (upper path), then we sample random pixels to be
unmasked (lower path)

.
and fed into T to obtain a reconstruction of the input image
I ′.

Masking: To promote the reliance of T on the 3D ren-
dered face for reconstructing I , we need to mask out the
face in the input image I . We do that by using the con-
vex hull of detected 2D landmarks [13], dilated so that it
fully covers the face. However, without any information of
the face interior, training the translator becomes challenging
since texture information, such as skin color, facial hair or
even accessories (e.g., glasses) are “distractors” that com-
plicate training. To address this we randomly sample and
retain a small amount of pixels (1%) that are used as guid-
ance for the image reconstruction. Note that sampling too
many pixels makes the reconstruction overly guided and the
3D rendered face does not control the reconstruction output.
We observed a similar behavior when we tried to randomly
mask out blocks of the image, as in [38]. The masking
process is depicted in Fig. 3.
Loss functions: The reconstruction path is supervised with
the following loss functions:

Photometric loss. This is the L1 error between the input
and the output images: Lphoto = ∥I ′ − I∥1.

VGG loss. The VGG loss [42] has a similar effect to the
photometric one, but helps to converge faster in the initial
phases of training: Lvgg = ∥Γ(I ′) − Γ(I)∥1, where Γ(.)
represents the VGG perceptual encoder.

Landmark loss. The landmark loss, denoted as Llmk =

cycle loss
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Figure 4. Augmented cycle pass. The FLAME expression pa-
rameters of an existing reconstruction are modified. The resulting
modified face is then rendered using our neural renderer. The ren-
dering is then passed to the face reconstruction encoder to regress
the FLAME parameters and a consistency loss between the modi-
fied input and reconstructed FLAME parameters is computed.

∑K
i=1

∥∥k − k′∥∥2
2
, measures the L2 norm between the

ground-truth 2D facial landmarks detected in the input im-
age (k) and the 2D landmarks projected from the predicted
3D mesh (k′), summed over K landmarks.

Expression Regularization. We employ an L2 regular-
ization over the expression parameters Lreg = ∥ψ∥22, pe-
nalizing extreme, unrealistic expressions.

Emotion Loss. Finally, to obtain reconstructions
that faithfully capture the emotional content, we em-
ploy an emotion loss Lemo based on features extracted
from a pretrained emotion recognition network Pe, as in
EMOCA [18]: Lemo = ∥Pe(I

′) − Pe(I)∥22. To prevent
the image translator from adversarially optimizing the emo-
tion loss by perturbing a few pixels, for this loss we keep the
image translator T “frozen”, optimizing only the expression
encoder Eψ . Note that unlike EMOCA, our framework en-
sures that the emotion loss does not suffer from domain gap
problems, as the compared images reside in the same space.

3.2.2 Augmented Expression Cycle Path

While the reconstruction path improves 3D reconstruction
thanks to the better supervision signal provided by the neu-
ral module, it is still affected by a lack of expression diver-
sity in the training datasets - a problem shared by all previ-
ous methods. This means for example that if a more com-
plex lip structure, scarcely seen in the training data, cannot
be reproduced fast enough by the encoder, the translator T
could learn to correlate miss-aligned lip 3D structures and
images and thus multiple similar, but distinct, facial expres-
sions will be collapsed to a single reconstructed representa-
tion. Further, this may lead to the translator compensating
for the encoder’s failures during the joint optimization.

These issues are addressed with the augmented expres-
sion cycle consistency path. In this path, we start from the
predicted set β,ψ,θ, and replace the original predicted ex-
pressionψ with a new oneψaug . We then use the translator
T to generate a photorealistic image I ′aug which adheres to
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it. This process effectively synthesizes an augmented train-
ing pair of ψaug and the corresponding output image I ′aug .
Then, the image is fed into E which should perfectly re-
cover ψaug . A cycle consistency loss can now be directly
applied in the expression parameter space of the 3D model,
enforcing the predicted expression to be as close as possible
to the initial one. This concept is illustrated in Fig. 4.

The benefit of this cycle path is two-fold: 1) it reduces
over-compensation errors via the consistency loss and 2)
it promotes diverse expressions. The latter further helps
consistency by avoiding the collapse of neighboring ex-
pressions into a single parameter representation. Concern-
ing the consistency property, we can distinguish two over-
compensating factors. First, during the joint optimization
of the encoder and the translator, the latter can compensate
when the encoder provides erroneous predictions, leading to
an overall sub-par reconstruction. Second, if we discard the
consistency loss, the expression will try to over-compensate
erroneous shape/pose, since we assume the shape/pose pa-
rameters are predicted from an already trained system and
they are not optimized in our framework. As an example,
if the shape parameters do not fully capture an elongated
nose, which is an identity characteristic of the person, the
expression parameters may compensate this error. Such be-
havior is problematic because it entangles expression, shape
and pose and adds undesired biases during training.
Pixel Transfer: The masking process retains a small
amount of pixels within the face area. However, when a
new expression is introduced, the previously selected pix-
els need to be updated and transferred such that they corre-
spond with the vertices of the new expression. This opera-
tion is referred to as pixel transfer, where we sample pixels
from the initial image according to a selected set of ver-
tices, we then find the new position of the same vertices
for the updated expression, and we assign their position as
the new pixel, with the initial pixel value. This avoids in-
consistencies between the underlying structure of the pixels
(initial expression) and the new expression, which would
hinder realistic reconstructions in the cycle path.
Promoting Diverse Expressions: Ideally, in this path we
also want to promote high variations in the expression pa-
rameter space, generating shapes (and their corresponding
images) with complex, rare and asymmetric expressions
that are still plausible. To effectively augment the cycle
path with interesting variations we consider the following
augmentations:
• Permutation: permute the expressions in a batch.
• Perturbation: add non-trivial noise to the reconstructed

expression parameters.
• Template Injection: use expression templates of extreme

expressions. To obtain such parameters for FLAME
we perform direct iterative parameter fitting on the
FaMoS [9] dataset which depicts multiple subjects per-

initial 
image

expression
perturbation

batch 
permutation

template 
injection

zero 
expression

Figure 5. Neural expression augmentation. Our neural renderer
enables us to modify the expression, generating a new image-3D
training pair. We can edit the expression with random noise, per-
mutation from other reconstructions, template injection, or zero-
ing.

form extreme and asymmetric expressions.
• Zero Expression: neutral expressions help avoid biasing

the system towards complex cases.

For all expression augmentations, we simultaneously simu-
late jaw and eyelid openings/closings, with more aggressive
augmentations in the zero-expression case to avoid incom-
patible blending with intense expressions. Fig. 5 presents
visual examples of all augmentations and the corresponding
generated images from T , showcasing its ability to generate
realistic images with notable expression manipulation.

Loss functions:
Expression Consistency. The expression consistency

loss, or cycle loss for brevity, is the mean-squared error
between the given augmented expression parameters ψaug

and the predicted expressions at the end of the cycle path:

Lexp = ∥Eψ(T (R(θ,β,ψaug)⊕M(I)))−ψaug∥22 (2)

The pose/cam and shape parameters are kept as predicted by
the initial image, namely θ = Eθ(I) and β = Eβ(I). The
internal Eψ(I) operation, inside the renderer R(·), does not
allows gradients to flow through and is used as an off-the-
self frozen module.

Identity Consistency. To aid the translator in faithfully
reconstructing the identity of the person, we introduce an
additional consistency loss similar to Eq. 2, applied to the
shape parameters β. Note that since the shape encoder Eβ
is frozen, the consistency loss only affects the optimization
of the translator T .

Alternating Optimization: Overall, we alternate between
the two passes, aiming to further reduce the effect of the
translator compensating for the encoder. In more detail,
during the augmented cycle pass, we freeze alternatively the
encoder and the translator. Thus, this pass avoids the joint
optimization of the two networks in a single step, acting as
a regularizer to the other pass and enforcing consistency.
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4. Results
We now present objective and subjective evaluations of our
method, along with comparisons with recent state of the art.
Additional experimental evaluations and visualizations can
be found in our Suppl. Mat. and demo video.

4.1. Experimental Setup

Training Datasets: We use the following datasets for train-
ing: FFHQ [44], CelebA [56], LRS3 [1], and MEAD [86].
LRS3 and MEAD are video datasets, and we randomly sam-
ple images from each video during training.
SOTA Methods: We compare with the following recent
state-of-the-art methods that have publicly available imple-
mentations: DECA [28] and EMOCA v2 [18, 29], which
use the FLAME [53] model, and Deep3DFace [20] and FO-
CUS [51], which use the BFM [64] model.
Pretraining: Before the core training stage, all three en-
coders are pretrained, supervised by two losses - the land-
mark loss of the reconstruction for pose and expression and
the shape predictions of MICA [97]. After that, Eβ and Eθ
remain frozen.

4.2. Quantitative Evaluations

It has been consistently reported [2, 18, 29, 31, 60] that
evaluating facial expression reconstruction in terms of geo-
metric metrics is ill-posed. The geometric errors tend to be
dominated by the identity face shape and do not correlate
well with human perception of facial expressions. Accord-
ingly, we compare our method in a quantitative manner with
three experiments: 1) emotion recognition accuracy [18], 2)
ability of a model to guide a UNet to faithfully reconstruct
an input image, and 3) a perceptual user study.

Emotion Recognition: Following the protocol of [18],
we train an MLP to classify eight basic expressions and
regress valence and arousal values using AffectNet [59].
We report Concordance Correlation Coefficient (CCC), root
mean square error (RMSE), for both valence (V-) and
arousal (A-), and expression classification accuracy (E-
ACC). Results are found in Tab. 1. As it can be seen,
SMIRK achieves a higher emotion recognition score com-
pared to most other methods, although falling behind EMO-
CAv1/2 and Deep3DFace. It is worth noting that, although
EMOCA v1 achieves the highest emotion accuracy, it of-
ten overexaggerates expressions which helps with emotion
recognition. EMOCA v2, arguably a more accurate recon-
struction model, performs slightly worse. Our main model
is comparable with Deep3DFace and outperforms DECA
and FOCUS. We can also train a model that scores better on
emotion recognition, by increasing the emotion loss weight.
However, similarly to what was reported by Daněček et
al. [18], this leads to undesirable artifacts. We discuss the
trade-off between higher emotion recognition scores and re-
construction accuracy in more detail in Sup.Mat. Notably,

Model V-CCC ↑ V-RMSE ↓ A-CCC ↑ A-RMSE ↓ E-ACC ↑
MGCNet 0.69 0.35 0.58 0.34 0.60
3DDFA-v2 0.62 0.39 0.50 0.34 0.52
Deep3DFace 0.73 0.33 0.65 0.31 0.65
DECA 0.69 0.36 0.58 0.33 0.59
FOCUS-CelebA 0.69 0.35 0.54 0.33 0.58
EMOCA v1 0.77 0.31 0.68 0.30 0.68
EMOCA v2 0.76 0.33 0.66 0.30 0.66
SMIRK 0.72 0.35 0.61 0.31 0.64
SMIRK w/o emo 0.71 0.35 0.60 0.32 0.62

Table 1. Emotion recognition performance on the AffectNet test
set [59]. We follow the same metrics as in [18].

even without the emotion loss, the proposed model achieves
a decent emotion recognition score, indicating that our re-
construction scheme can adequately capture emotions with-
out the need for explicit perceptual supervision.

Reconstruction Loss: In order to evaluate the faith-
fulness of a 3D face reconstruction technique, we have de-
vised a protocol based on our analysis-by-neural-synthesis
method. Under this protocol, we train a UNet image-to-
image translator, but freeze the weights of the encoder so
that only the translator is trained. The motivation is sim-
ple: if the 3D mesh is accurate enough, the reconstruction
will be more faithful, due to a one-to-one appearance corre-
spondence. For each method (including ours for fairness),
we train a UNet for 5 epochs, using the masked image and
the rendered 3D geometry as input. Finally, we report the
L1 reconstruction loss and the VGG loss between the re-
constructed image and the input image on the test set of Af-
fectNet [59] which features subjects under multiple expres-
sions. The results can be seen in Table 2. We observe here
that using the information for the rendered shape geometry
of SMIRK, the trained UNet achieves a more faithful re-
construction of the input image when compared to DECA
and EMOCAv2. Particularly for EMOCAv2, we observe
that although it can capture expressions, the results in many
cases do not faithfully represent the input image, leading to
an overall worse image reconstruction error. In terms of L1
loss, SMIRK is on par with Deep3DFace and FOCUS and
has a small improvement in terms of VGG loss.

DECA EMOCAv2 FOCUS Deep3DFace SMIRK

L1 Loss ↓ 0.10 0.11 0.09 0.09 0.09
VGG Loss ↓ 0.80 0.84 0.78 0.78 0.76

Table 2. Image reconstruction performance on the AffectNet
test set [59]. SMIRK achieves better reconstruction and perceptual
scores compared to other methods.

User Study: Arguably, the perception of the recon-
structed facial expressions is the most important aspect in
3D face reconstruction, as it directly influences how well
the reconstructed model captures the emotions and nuances
of the original face. Considering this, we also designed a
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Figure 6. Visual comparison of 3D face reconstruction. From left to right: Input, Deep3DFaceRecon[20], FOCUS[51], DECA[28],
EMOCAv2[18], and SMIRK. Many more examples can also be found in the Suppl. Mat. and the demo video in our webpage.

user study to assess the perception of the reconstructed fa-
cial expressions from human participants. We randomly se-
lected 80 images from the AffectNet [59] test set (using the
split from [81]) and 80 images from our MEAD test set (un-
seen subjects) and performed 3D face reconstruction with
both SMIRK and its competitors. To mitigate bias w.r.t.
the identity component for the FLAME-based methods, for
DECA and EMOCAv2 we used the same identity parame-
ters as our method (which itself was distilled from MICA).
In the user study, participants were shown an image of a hu-
man face alongside two 3D face reconstructions, either from
our method or the others, and were asked to choose the one
with the most faithful facial expression representation. The
order was randomized for each question, and each user an-
swered a total of 32 questions, equally distributed among
the different methods.

A total of 85 users completed the study, and the re-
sults in Table 3 show that our method was significantly
preferred over all competitors, confirming the performance
of SMIRK in terms of faithful expressive 3D reconstruc-
tion. The results were statistically significant (for all pairs,
p < 0.01 with binomial test, adjusted using the Bonfer-

roni method). EMOCAv2, which also uses an emotion loss
for expressive 3D reconstruction, was the closest competi-
tor to our method, followed by FOCUS and Deep3D, while
DECA was the least selected.

DECA EMOCAv2 Deep3D FOCUS

SMIRK 603/77 461/219 510/170 534/146

Table 3. User study results: “a/b” indicates Ours (left) was pre-
ferred a times, while the competing method was chosen b times.
SMIRK is overwhelmingly preferred over all other methods.

4.3. Visual Examples

In Fig. 6 we present multiple visual comparisons with
the four other methods. As it can be visually assessed,
our method can more accurately capture the facial expres-
sions across multiple diverse subjects and conditions. Fur-
thermore, the presented methodology can also capture ex-
pressions that other methods fail to capture, such as non-
symmetric mouth movements, eye closures, and exagger-
ated expressions.
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4.4. Ablation Studies

Ablation on the effect of landmarks: We first assess the
effect of the landmark loss. To do that, we calculate for dif-
ferent versions of our model the L1 loss, VGG Loss, and
Cycle loss after manipulation of expressions using the same
protocol we performed in Sec. 4.2. Note that this time,
we also evaluate performance by considering the cycle loss.
That is, we also manipulate the predicted expressions, re-
generate a new image, and expect that the method can suc-
cessfully predict the same parameters. We consider three
different versions of our model: 1) Protocol 1 - no land-
marks loss, 2) Protocol 2 - training some epochs with land-
marks loss and then removing it, 3) Protocol 3 - full training
with landmarks loss. We present these results in Table 4.

As we can see, completely omitting landmarks leads to
degraded results. However, if we first train for a few epochs
with landmarks and then set the loss weight to 0, the model
achieves very similar performance with the original model
which uses the loss throughout the full training. These re-
sults suggest that, in contrast with previous works [18, 28],
the landmarks loss in SMIRK acts more as a regularizer dur-
ing training, helping to guide the model towards good solu-
tions, but in the later stages it may somewhat constrain its
flexibility. We plan to explore this balance in more depth in
future work.

L1 Loss ↓ VGG Loss ↓ Cycle Loss ↓
P1 0.111 0.757 0.588
P2 0.093 0.713 0.487
P3 0.093 0.714 0.544

Table 4. Ablation study on the effect of landmark loss. P1: no
landmark loss, P2: landmark loss removed after a few epochs, P3:
landmark loss throughout whole training.

Impact of Cycle Path: Here we also present exam-
ples on how the cycle path affects the reconstruction per-
formance. First, we show an example result in Fig. 7,
where we see that using the proposed augmentations pro-
vides more detailed expressions. For example, template
injection augmentation considerably helps the reconstruc-
tion of the mouth structure. Secondly, we have also ob-
served that the cycle path makes the model more robust,
especially w.r.t. mouth closures (e.g. zero jaw opening).
We show such indicative cases in Figure 8. Such artifacts
can be seen when using the no-cycle variant, acting as a vi-
sual confirmation of the aforementioned numerical results.
Here, the mouth is not properly closed in the 3D recon-
structed face, since it was miss-corresponded to a properly
closed mouth in the image reconstruction space. The cycle
path can solve such instances by providing tweaked expres-
sions that are enforced to be recognized correctly, avoiding
“misalignments” between expected expressions and recon-
structed images.

Figure 7. Impact of cycle augmentations. From left to right:
input image, no cycle loss, cycle loss with all augmentations.

Figure 8. Impact of the Cycle Path. Artifacts can appear when
not training with the cycle path. From left to right: input image,
3D reconstruction and image reconstruction without cycle path,
3D reconstruction and image reconstruction with cycle path.

4.5. Limitations

Despite the effectiveness of SMIRK, there are limitations
to be addressed. It is sensitive to occlusions, as the train-
ing datasets do not include them, and assumes more intense
expressions when parts are missing instead of extrapolating
from available information. In addition, SMIRK has been
trained on single images, and the temporal aspect is not yet
explored. Also note that while SMIRK does not need to pre-
dict albedo and lighting, this can be limiting for specific ap-
plications in 3D facial animation and video editing. Please
refer to the Suppl. Mat. for a more detailed discussion.

5. Conclusion
We have presented SMIRK, a new paradigm for accurate
expressive 3D face reconstruction from images. Instead of
the traditional graphics-based approach for self-supervision
which is commonly used for monocular 3D face reconstruc-
tion in-the-wild, SMIRK employs a neural image-to-image
translator model, which learns to reconstruct the input face
image given the rendered predicted facial geometry. Our ex-
tensive experimental results show that SMIRK outperforms
previous methods and can faithfully reconstruct expressive
3D faces, including challenging complex expressions such
as asymmetries, and subtle expressions such as smirking.
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tian Theobalt, and Matthias Nießner. Facevr: Real-time fa-
cial reenactment and eye gaze control in virtual reality. arXiv
preprint arXiv:1610.03151, 2016.

[80] Justus Thies, Michael Zollhöfer, Marc Stamminger, Chris-
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