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Figure 1. Existing perceptual metrics, commonly used to evaluate texture synthesis algorithms, typically fail to account for tileability.
Such weakness is depicted in this figure where, for each column, we show tiled versions of textures with (top) and without (bottom) tiling
artifacts. For each column, we highlight using saturated color dots the preferred image (i.e., higher score) according to different metrics. It
can be seen that there is no correlation across existing methods (i.e., saturated dots distributed over top and bottom rows), while our method
TexTile consistently prefers seamless tiled textures (i.e., saturated green dots on the bottom for all columns).

Abstract

We introduce TexTile, a novel differentiable metric to
quantify the degree upon which a texture image can be con-
catenated with itself without introducing repeating artifacts
(i.e., the tileability). Existing methods for tileable texture
synthesis focus on general texture quality, but lack explicit
analysis of the intrinsic repeatability properties of a tex-
ture. In contrast, our TexTile metric effectively evaluates the
tileable properties of a texture, opening the door to more in-
formed synthesis and analysis of tileable textures. Under the
hood, TexTile is formulated as a binary classifier carefully
built from a large dataset of textures of different styles, se-
mantics, regularities, and human annotations. Key to our
method is a set of architectural modifications to baseline
pre-train image classifiers to overcome their shortcomings
at measuring tileability, along with a custom data augmen-
tation and training regime aimed at increasing robustness
and accuracy. We demonstrate that TexTile can be plugged
into different state-of-the-art texture synthesis methods, in-
cluding diffusion-based strategies, and generate tileable tex-
tures while keeping or even improving the overall texture
quality. Furthermore, we show that TexTile can objectively

evaluate any tileable texture synthesis method, whereas the
current mix of existing metrics produces uncorrelated scores
which heavily hinders progress in the field.

1. Introduction

The appearance of 3D digital objects plays a fundamental
role in the overall realism of a virtual environment. To
create realistic textures, many strategies have been widely
explored, including procedural algorithms [19, 28], scan-
ning [22, 45] and, more recently, text-to-image generative
pipelines [7–9]. Among the different properties that we wish
for the synthesized textures (e.g., photorealism, variety in
detail, high resolution), the ability to seamlessly repeat or
tile itself without noticeable artifacts ––its tileability–– is es-
pecially important in the frequent case of applying a texture
to a large surface. For example, when texturing the facade
of a building or a field of grass.

Many methods exist that focus on the specific case of
tileable texture synthesis [1, 11, 36, 45, 48, 53, 54]. This has
been achieved, for example, by manipulating image borders
[36], maximizing stationary image properties [45], or condi-
tioning generative models on structured patterns [74]. How-
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ever, despite such significantly diverse methodologies used
in existing methods, they typically rely on evaluation us-
ing common metrics based on general texture quality which,
unfortunately, do not explicitly account for the intrinsic re-
peatability properties of a texture.

To address this shortcoming, we introduce TexTile, a
novel metric for texture tileability. TexTile is a data-driven
metric that brings two key novel functionalities into tex-
ture synthesis methods: first, it computes a human-friendly
score that captures the intrinsic repeatability of any texture;
and second, it provides a differentiable metric that can be
used as an additional data term in any learning-based or test-
time optimization method for tileable texture synthesis. We
demonstrate that TexTile enables a factual analysis of state-
of-the-art methods for tileable texture synthesis, while pre-
vious metrics often result in uncorrelated evaluations (i.e., a
good tileable texture might have low SSIM [66] score, or a
poor tileable texture might have a high SSIM), as illustrated
in Figure 1. Furthermore, we demonstrate that TexTile can
be used off-the-shelf as an additional loss term in state-of-
the-art methods for texture synthesis, including diffusion-
based models, to output tileable textures while preserving
or even improving the overall image quality.

Under the hood, we formulate TexTile as a binary clas-
sifier built using a carefully designed architecture with an
attention-enhanced convolutional network. The convolu-
tional filters can detect local discontinuities –which are com-
mon in borders that are not seamlessly tileable– and can
deal with images of arbitrary sizes, but they struggle with
global understanding to detect artifacts and repeating pat-
terns. Therefore, we introduce Self-Attention layers into our
architecture, which is known to capture a global understand-
ing of the input. This, combined with a custom data aug-
mentation policy designed for tileability detection, enables
us to train a novel neural classifier to unleash a new func-
tionality for the state-of-the-art texture synthesis methods.

In summary, we introduce the following contributions:

• A novel learning-based metric for texture analysis that ac-
curately quantifies tileability.

• An attention-enhanced convolutional classifier, and a
training configuration aimed at maximizing robustness
and accuracy.

• A differentiable loss function which can be plugged into
texture synthesis algorithms to generate tileable textures.

• Open-source code and trained weights for our metric. We
believe this will open the door to quantitative benchmarks
on tileable textures, which is currently not possible due to
the lack of a specific metric for such task.
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Figure 2. Our model takes as input a texture image I, which we
tile to form Itiled, and returns an estimation of its tileability. This
metric can be used as a loss function TexTile to allow synthesis al-
gorithms to generate tileable textures. Our model,  architecture
is comprised of ConvNext [39] and residual self-attention blocks.
2. Related Work
2.1. Image Quality Assessment

Image Quality Assessment (IQA) algorithms can be cat-
egorized into three different groups. Reference-based
IQA methods compare an input and a reference image,
which is the most widely studied strategy for IQA. These
methods have traditionally leveraged pixel-wise differences
(e.g., PSNR, 𝓁1 or 𝓁2 distances) or image statistics (e.g.,
SSIM [66] or FSIM [69]) to compute the similarity be-
tween the images. Neural reference-based IQA, which lever-
age the stronger correlation of deep neural networks with
human perception [71], have been also proposed. These
strategies either leverage features from untrained [3] or pre-
trained convolutional neural networks [20], or use direct su-
pervision from human judgments, as in LPIPS [71], PIE-
APP [51], DISTS [14], Si-FID [56], or DreamSIM [18].
These methods introduce powerful and differentiable met-
rics, however, they require a reference image and are thus
not suitable for measuring global properties, like tileability.

Instead of comparing an input and a reference image,
distribution-based IQA methods compare statistics of two
sets of reference images and generated images. These meth-
ods are commonly used to evaluate the perceptual qual-
ity of generative models, typically using metrics based on
neural networks activations [6, 27, 57, 67], nearest neigh-
bors [33], spectral [61], or geometric distances [31]. While
these methods are useful for evaluating the performance of
generative models, they struggle as loss functions [57], and
also require reference images.

Finally, no-reference IQA methods compute the over-
all quality score of an input image without requiring an ex-
plicit reference. These methods rely on image statistics,
as in BIQI [44] amd BRISQUE [43]; or on training deep
neural networks on human judgments of image quality, like
HyperIQA [59], MANIQA [68], VCRNet [49], or CLIP-
IQA [64]. Despite competitive results in image quality as-
sessment, these methods do not incorporate tileabilty anal-
ysis. SeamlessGAN [53] leverages the discriminator of a
single-image generative model to find artifacts in the bor-
ders of generated textures. However, the discriminator only
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measures seamlessness, ignoring other factors that influence
tileability and, most importantly, it cannot generalize to any
image outside of its single-image dataset.

Our metric is most closely related to no-reference IQA
methods, as it takes a single image as input. However, in
contrast to existing methods, we assess the image quality
based on tilebility instead of general image quality. We
demonstrate that, when combined with existing IQA met-
rics, our metric successfully captures overall quality and
tileability. To the best of our knowledge, our metric is the
first no-reference tileability metric.
2.2. Tileable Texture Synthesis

Non-parametric tileable texture synthesis methods gener-
ate new tileable images by maximizing image stationar-
ity [45], by manipulating the images with border transfor-
mations using Graphcuts [36], or by patch-based synthe-
sis with histogram-preserving blending [11]. Parametric
alternatives typically leverage deep neural networks in di-
verse ways. Rodriguez-Pardo et al. [54] look for repeating
patterns in images using deep features in pretrained CNNs,
then synthesize tileable images by blending the borders.
Tileability can be also achieved with specific image param-
eterizations and neural network design, as in Neural Cellu-
lar Automata [48], or in the Periodic Spatial GAN [5]. By
manipulating latent spaces in pre-trained GANs, Seamless-
GAN [53] achieve tileability without specific model modi-
fications. Tileable image generation has also been explored
with the goal of material capture, by means of models con-
ditioned on structured patterns [74], or through rolled dif-
fusion [62]. Specialized methods have been proposed for
tileable vector image generation [1]. For a review on tex-
ture synthesis, we refer the reader to the survey in [2].

These methods typically provide quantitative evaluation
using reference-based IQA. As mentioned in Section 2.1,
these metrics measure the perceptual similarity between
generated and input images, however, they do not account
for tiling. To the best of our knowledge, there is no available
metric that can be used to compare these methods in terms
of tileability, hindering the progress of the field and limiting
evaluation to qualitative analyses. Our metric aims to solve
this gap. Being fully differentiable, it can be leveraged as a
loss function to enable existing synthesis algorithms to pro-
duce seamlessly tileable outputs.

3. TexTile
3.1. Introduction

Our goal is to develop a differentiable no-reference image
metric that measures texture tileability, that is, a single-
image metric that does not require a second image for com-
parison purposes. To achieve this, we leverage a convolu-
tional neural network as our differentiable function, which

Input Image

𝐴𝑈𝐺𝑇→𝐹

Positive 
Examples

Figure 3. From a tileable texture (left), our data augmentation can
generate tileable (top row) and non-tileable (bottom) variations.

we train on a dataset of textures on a binary classification
task. Our model learns to classify between tileable and non-
tileable textures, by means of a comprehensive data augmen-
tation policy and custom architecture design choices. We
explain our model design choices in Sec. 3.2, validate them
using ablation studies in Sec. 4.1, and explain the model pre-
dictions in Sec. 4.3. We show examples of results of TexTile
as a loss function (Sec. 5.1), as a means of benchmarking
image synthesis algorithms (Sec. 5.2), and applications for
alignment and repeating pattern detection (Sec. 5.3).

3.2. Model Design and Training

Network Design

A model that can measure texture tileability should have at
least three properties. First, it must be able to detect local
discontinuities, which happen when borders are not seam-
lessly tileable. Second, the model should be able to han-
dle images of any dimension or aspect ratios. Finally, it
should have a global understanding of the image, in order
to detect artifacts and repeating patterns. The first two prop-
erties can be achieved by fully-convolutional architectures,
which are strongly biased towards textures [26]. However,
problems that require global understanding of images are
typically tackled using attention-based Vision Transform-
ers [23], which are more biased towards shape [46] and are
less flexible in terms of input dimensionality.

We propose an architecture that can benefit from the
properties of both convolutional and attention-based mod-
els. Because of the limited size of our training dataset,
we also want to leverage ImageNet pretraining [12]. We
thus use a state-of-the-art pretrained ConvNext [39] fully-
convolutional model. We further introduce Linear Self-
Attention modules [65] to allow it to learn global patterns in
the images, while keeping a limited computational cost. We
design them as residual layers 𝑥 ← 𝑥 + 𝜆𝑓att(𝑥), multiplied
by a learnable parameter 𝜆, which we initialize at 1𝑒−6. We
illustrate this module in Figure 2. This way, we can modify
the internal model architecture without disrupting the per-
formance of the pre-trained backbone during early training
iterations. We only use two of such modules, which we place
on the deeper layers of the ConvNext model. Previous work
on texture estimation and synthesis also benefit from adding
attention to fully-convolutional backbones [21, 55].
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Data Augmentation for Tileable Textures

We leverage a comprehensive data augmentation policy, to
train the model to detect repeating artifacts in images.

Our policy contains several operations which we divide
into: Tileability-preserving policies, which generate vari-
ations of textures without reducing their tileability. These
include global color and gamma changes, random flipping
(horizontal and vertical), translations, equalization, blurs or
noise, or rescaling the images with different scale factors
across each dimensions. We also introduce an operation
named UnFold, which mirrors the input image horizontally
and vertically. Tileability-breaking policies include rota-
tions, shears, random cropping, or thin-plate spline warp-
ing [4]. We apply tileability-preserving policies to tileable
examples, and both kinds of operations to non-tileable ex-
amples. Finally, our last operation is random tiling, by
which we tile the textures a random number of times (1-5),
followed by a random rescaling, and random cropping. With
this policy, we allow the model to detect tileability regard-
less on the number of repetitions in the input images.

We introduce two additional data augmentation poli-
cies. With 𝐴𝑈𝐺𝑇→𝐹 , we generate non-tileable textures
from tileable textures. We do this by applying a tileability-
breaking operation to a tileable texture. With 𝐴𝑈𝐺𝐹→𝐹 ′ ,
we create repetition-free texture examples by applying ev-
ery data augmentation operation except random tiling to
non-tileable examples, and assign these textures a positive
tileability label. These two policies are needed to reduce
the distribution shift between tileable and non-tileable train-
ing datasets, as they come from different sources and their
semantics, feature scales, and contents may differ. With
𝐴𝑈𝐺𝑇→𝐹 and 𝐴𝑈𝐺𝐹→𝐹 ′ , we force the model to learn pat-
terns exclusively related to tileability, ignoring other texture
properties. We illustrate some of these policies in Figure 3,
including example of UnFolding on the top right image.
3.3. Model Inference

We illustrate the inference process in Figure 2. We tile the
input image I once across each spatial dimension Itiled ←
𝑡𝑖𝑙𝑒(I, (2, 2)). We observe that this limited number of repe-
titions is enough to accurately detect tileability. We use this
process both in texture evaluation and when we use TexTile
as loss function. Itiled is fed to our model , which outputs
an unbounded prediction, which can be transformed into the
desired (0, 1) range with a Logistic function. However, do-
ing this typically leads to predictions very close to 0 or 1,
making our metric less useful for comparing different tex-
tures. We mitigate this issue by introducing 𝜆, which con-
trols how far the predicted values are from the boundaries:

TexTile = 1
1 + exp

(

−𝜆 ⋅(Itiled)
) (1)
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Figure 4. Influence on the neural architecture type and size on
its quantitative performance (Cross-entropy error on the validation
dataset). Convolutional architectures are marked with ■, attention-
based models with ∙, and our versions of convolutional networks
with embedded attention with ✚.

We set 𝜆 = 0.25, which preserves discrimination be-
tween clearly tileable and non-tileable samples while am-
biguous cases sit closer to 0.5. This is a strictly monotonic
function, so relative tileability orders are maintained.
3.4. Dataset

Our goal is to make our model robust to textures of any se-
mantics, regularity, stochasticity, and homogeneity. We also
want our model to work with both natural and synthetic tex-
ture maps. To achieve this, we collect a dataset of tileable
and non-tileable textures from a variety of sources.

We gather a novel dataset of 4276 tileable textures, com-
prised of high-resolution photographs of materials, turned
into tileable textures by artist labor. We extend this data
with publicly-available tileable textures, including 285 im-
ages from [63], 186 CC-BY images from Julio Sillet, includ-
ing both albedo and surface normal maps, and 290 royalty-
free textures from ManyTextures. These images, being cu-
rated by human experts, ensure the tileability property.

We also create an additional dataset of non-tileable tex-
tures, for which examples are comparably easier to ob-
tain. To this end, we gather 3922 synthetic high-quality
from [13], 1187 photographs of a wide variety of tex-
ture types from [10], 506 facade photographs from [29],
7265 images taken under different illumination conditions
from [72], 760 from [73], and 93 from [45]. We extend this
dataset with 8675 images from [16, 32, 34, 41], and 86 non-
stationary textures from [75]. While we can create nega-
tive examples from tileable textures using 𝐴𝑈𝐺𝑇→𝐹 , this
dataset is important for generalization. We use 504 tileable
images and 504 non-tileable examples for validation, and the
rest is left for training. We have approximately 5 times more
non-tileable examples than tileable images, which may hin-
der the task of learning an unbiased classifier. We overcome
this with our training and data augmentation policies.

In Section 4 we evaluate the performance of our model,
measuring average binary cross-entropy error on our test set,
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Configuration Error ↓ Accuracy ↑ 𝐹1 ↑ AUC ↑

Tr
ai

ni
ng W/out Pretraining 0.459 0.808 0.804 0.886

W/out NAdam [15] 0.096 0.965 0.966 0.992
W/out Look-Ahead [70] 0.082 0.971 0.971 0.992

D
at

a
A

ug
m

en
ta

tio
n

W/out Negative Samples 0.319 0.905 0.909 0.943
W/out Color Aug. 0.119 0.956 0.957 0.992
W/out Rescales 0.105 0.960 0.968 0.990
W/out Flips 0.087 0.972 0.972 0.993
W/out Distortions 0.094 0.966 0.966 0.987
W/out 𝐴𝑈𝐺𝑇→𝐹 0.121 0.960 0.961 0.990
W/out 𝐴𝑈𝐺𝐹→𝐹 ′ 0.087 0.969 0.966 0.991
W/out UnFold 0.082 0.970 0.971 0.992
Final Model 0.064 0.982 0.983 0.997

Table 1. Ablation study on different configurations of model train-
ing configurations and data augmentation policies.
as well as classification metrics, like accuracy, 𝐹1-Score and
Area Under the Curve (AUC). We provide more details of
our datasets in the supplementary material.

3.5. Implementation Details

We train our models for 100 epochs using NAdam [15]
Lookahead [70], Automatic Gradient Scaling and Mixed
Precision Training [42], with an initial learning rate of
0.002, halved every 33 epochs. We use PyTorch [50] for
training, and Kornia [52] for data augmentation. We use
batch sizes of 24 samples, composed of balanced number of
positive and negative examples. This process takes approx-
imately 6 hours on a single Nvidia RTX 3060 GPU. We use
images of (384, 384) pixels for training and (512, 512) for
inference. Hyperparameters are tuned using Bayesian opti-
mization on a validation dataset containing 1000 images.

4. Evaluation

4.1. Ablation Study

Network Architecture Design In Figure 4, we show
the impact of the neural network architecture design on
generalization performance. We evaluate different fully-
convolutional backbones, including ResNet [24], VGG [58]
and ConvNext [39]; as well as transformer-based Swin
V2 [38], on different model sizes. We also show the re-
sults of our variations of the fully-convolutional backbones,
where we introduce linear Self-Attention [65] modules in
the last layers of the models. Every network is pre-trained
on ImageNet [12], then fine tuned in our task, and evaluated
on a validation dataset. As shown, larger networks typically
perform better, with the exception of Swin, which interest-
ingly benefits from fewer parameters. Further, ConvNexts
strongly outperform ResNets and VGGs. By introducing
self-attention into these fully-convolutional models, we sig-
nificantly improve their generalization capabilities. In the
rest of our experiments, we will use our custom ConvNext-
Base-Att model, as it achieves the lowest error overall.

Distance Error ↓ Accuracy ↑ 𝐹1 ↑ AUC ↑
FID [27] 0.568 0.703 0.699 0.764
GS [31] 0.694 0.507 0.533 0.510
MSID [61] 0.797 0.582 0.544 0.503
TexTile 0.064 0.982 0.983 0.997

Table 2. Comparison of our metric with distribution-based dis-
tances, on a downstream classification task.
Data Augmentation and Training Configuration

In Table 1, we show an ablation study of our data augmenta-
tion and optimization setups. From our final model configu-
ration, we remove different components to its training policy
to study their impact on generalization. We report different
classification metrics measured on our test set, which con-
tains a balanced number of positive and negative examples.

First, we show that the model strongly benefits from pre-
training on ImageNet. The model performance can be en-
hanced by introducing Nesterov momentum [15] into the
optimizer, and further with Lookahead training [70]. We
observe that these results are consistent across architec-
tures, and that other optimizers, such as RAdam [37] or
AdamW [40], performed worse than NAdam or Adam.

Regarding data augmentation, we first tested a model
trained without negative examples, relying on synthetic non-
tileable textures from tileable ground truths. However,
this yielded limited generalization. Traditional augmenta-
tions (color, geometry, noise, blurs, elastic transformations)
provided incremental improvements. Our custom policies,
which generate negative samples from tileable images and
vice versa, further enhanced model performance. By in-
troducing random unfolding, we achieve small gains. This
comprehensive data augmentation policy mitigates model
and dataset limitations and makes TexTile more robust to
important factors like color variations, sharpness, or scales.
4.2. Comparison with Distribution-Based Metrics

In this experiment, we compare our metric with off-the-shelf
distribution-based metrics. To achieve this, we compute the
latent features of both our tileable and non-tileable training
datasets, using 2x2 tilings as in our setup. Then, for ran-
domly selected subsets from our test set, we compare their
latent features to those of both training datasets. Finally, we
classify the set according to the which of both distributions
is closest. We show the results on Table 2, where we find
that these metrics fail to capture important characteristics
that influence the tileability of textures. Directly supervising
for tileability is unsurprisingly more effective. Interestingly,
the GS [31] and MSID [61] metrics perform only marginally
better than random, whereas FID [27] better captures the dif-
ferences between the distributions.
4.3. Qualitative Evaluation

We leverage Axion-Based Class-Activation Mappings [17]
to visualize which features are most relevant to our model.
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Figure 5. On top, textures samples (tiled 2 × 2) with increasing predicted tileability. Below them, model saliency maps and TexTile values.
In Figure 5, we show saliency maps and predicted TexTile
values for a few representative textures with increasing de-
grees of tileability. As shown on the first two examples,
our model predicts low tileability values for textures with-
out seamless borders. In the next three examples, which are
seamless only on one of their axes, the model outputs higher
tileability values. On the last five examples, which are all
seamlessly tileable, the model is leveraging other features,
like uneven shadings, unusual artifacts, or repeating objects.
These results show that our model can exploit patterns other
than border discontinuity for its prediction, and that it can in-
tegrate distant information for finding repeating elements.

5. Results
5.1. TexTile as a Loss Function

Because TexTile is a fully-differentiable metric, it can be
leveraged as a loss function for synthesizing tileable tex-
tures. We explore this on two different types of algorithms.

First, we extend an optimization-based neural texture
synthesis algorithm [25] to generate tileable textures. To
do so, we simply optimize a joint loss function  =
𝜆stylestyle + 𝜆TexTileTexTile, where 𝜆style and 𝜆TexTile con-
trol the weight of the each component of the loss and are
selected empirically to 𝜆style = 𝜆TexTile = 1. We observed
little sensitivity to these weightings as long as they are on
the same order of magnitude. We show end-to-end synthe-
sis results in Figure 8. We can also generate tileable textures
in this fashion by optimizing only the texture borders using
outpainting, as we illustrate in Figure 6.

Relatedly, we can also extend single image diffusion
models so they can generate tileable textures. While the
goal of these methods is more general image or video syn-
thesis, we leverage them as powerful texture synthesis al-
gorithms. To do so, we use SinFusion models [47] without
any modifications in the training process. During inference,
after each diffusion step, we perform a single optimization
step to the noisy image on the direction that maximizes Tex-
Tile. We show qualitative results in Figure 8.

With these simple modifications, we can transform these
methods –and potentially any texture generative model–
into tileable texture synthesis algorithms, without signifi-
cant loss in the perceptual quality of the generated textures.

Figure 6. Image outpainting for tileable texture synthesis. On the
left, non-tileable input images with the area to be outpainted in a
solid color; on their sides, outpainted results, obtained by maxi-
mizing tileability, shown in a 2x2 tile composition.
Importantly, this can be achieved without re-training the
generative models. Further implementation details and re-
sults are included in the supplementary material.
5.2. Benchmarking Texture Synthesis Algorithms

In Table 3, we show a quantitative comparison between
different texture synthesis algorithms and generative mod-
els, on the 14-texture dataset used in [53], using reference
and no-reference metrics. For [25, 47], we show results of
their baseline methods and our modifications that generate
tileable textures. The qualitative results on the complete
dataset is present in the supplementary material.

Besides, we observe that powerful generative models
like [47, 53] do not consistently beat non-parametric alter-
natives like [11, 36] across either reference or no-reference
metrics. In terms of tileability, introducing Textile as a
loss function to [25, 47] not only significantly improves the
tileability of their outputs but it does it without reducing
their perceptual quality. Unsurprisingly, methods that per-
form border blending [11, 54] achieve lower tileability val-
ues across different metrics, than methods that synthesize
the textures in a more holistic way, like [5, 45, 48, 53]. These
results confirm that there are more constituent factors in tex-
ture tileability than simply seamless borders.

A correlation matrix between these metrics is shown in
Figure 7. Learned reference metrics (LPIPS, DISTS and
PieAPP) correlate strongly between each other but poorly
with other measures. Si-FiD and SSIM are not closely re-
lated with any other metric, while TexTile is slightly corre-
lated with BRISQUE and CLIP-IQA. As we also illustrate
in Figure 1, there is no consensus across metrics on which
algorithm is outperforming the others, showing that percep-
tual evaluation for texture synthesis remains a challenge.
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Reference-Based Metrics No Reference
SSIM [66] ↑ Si-FID [56] ↓ LPIPS [71] ↓ DISTS [14] ↓ PieAPP [51] ↓ BRISQUE [43] ↓ CLIP-IQA [64] ↑ TexTile ↑

Deloit et al. [11] 0.138 1.707 0.595 0.372 2.289 49.43 0.407 0.639
Li et al. [36] 0.149 0.981 0.559 0.341 1.672 45.84 0.437 0.707
Rodriguez-Pardo et al. [54] 0.171 0.969 0.594 0.361 1.890 43.14 0.661 0.403
Bergmann et al. [5] 0.148 0.981 0.579 0.359 1.789 44.13 0.638 0.675
Niklasson et al. [48] 0.146 0.819 0.623 0.446 2.292 53.99 0.435 0.731
Rodriguez-Pardo et al. [53] 0.166 0.694 0.540 0.336 1.542 51.10 0.452 0.729
Heitz et al. [25] w/out TexTile 0.140 1.741 0.575 0.329 1.687 49.05 0.376 0.431
Heitz et al. [25] with TexTile 0.152 1.764 0.555 0.327 1.653 48.49 0.392 0.781
Nikankin et al. [47] w/out TexTile 0.172 1.314 0.591 0.386 1.963 55.96 0.408 0.388
Nikankin et al. [47] with TexTile 0.189 1.415 0.569 0.387 1.926 56.99 0.396 0.798

Table 3. Quantitative evaluation between different tileable texture synthesis algorithms across a variety of metrics, including reference and
no-reference measures, and TexTile. Best two results for each columns are marked in bold.

Previous Methods Neural Texture Synthesis [25] Diffusion Models [47]
Input Blending [11] SeamlessGAN [53] Self-Org [48] W/out TexTile With TexTile W/out TexTile With TexTile

Figure 8. Comparisons of different texture synthesis algorithms. On the leftmost column, we show the input texture, on the right, 2x2 tilings
of the outputs of different methods. For [25] and [47], we show the original versions our the modifications for tileable texture synthesis.

SSIM Si-FID LPIPS DISTS PieAPP BRISQUE CLIP-IQA TexTile

SSIM

Si-FID

LPIPS

DISTS

PieAPP

BRISQUE

CLIP-IQA

TexTile

1.00 -0.22 -0.20 0.14 -0.15 0.42 0.10 0.21
-0.22 1.00 -0.04 -0.29 0.08 0.11 -0.53 -0.10
-0.20 -0.04 1.00 0.81 0.88 0.11 0.17 -0.27
0.14 -0.29 0.81 1.00 0.83 0.52 -0.01 0.24
-0.15 0.08 0.88 0.83 1.00 0.31 -0.06 0.03
0.42 0.11 0.11 0.52 0.31 1.00 -0.71 0.55
0.10 -0.53 0.17 -0.01 -0.06 -0.71 1.00 -0.40
0.21 -0.10 -0.27 0.24 0.03 0.55 -0.40 1.00

Figure 7. Pearson correlation matrix between different metrics.

5.3. Alignment and Repeating Pattern Detection

Besides benchmarking and enabling tileable texture synthe-
sis, our metric enables additional applications.

Previous work on texture analysis used the Radon Trans-
form [30, 54] for automatically aligning images with the 𝑥𝑦-

axes. Similarly, we can find the optimal rotation angle 𝜃
for an image I by argmax𝜃 TexTile(Rotate(I, 𝜃)), maximiz-
ing the tileability of the input image. In Figure 9, we show
the scores of our metric, for the same image, to which we
apply different rotation angles. Our metric provides high
scores for rotation angles which provide seamless borders,
and lower values for misalignments. Interestingly, there is a
small peak at ±35◦, in which the lines in the image connect
with each other, but their colors do not match in the bor-
ders. These results indicate that TexTile not only measures
seamlessness, but also color continuity, and axis alignment.

We can also leverage TexTile to compute the size of the
repeating pattern in images. Given an axis-aligned im-
age I, we can find the size ℎ,𝑤 of the repeating pattern in
the image by finding the crop that maximizes its tileability:
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Figure 9. On the left, TexTile under different rotation angles.
On the right, samples of rotated images on different local peaks.
Scores below 0.5, as the red peak, depict non-tileable textures with
highly-noticeable artifacts. A local maxima for a non-tileable tex-
ture is found at ±35◦, in blue, while highly tileable textures are
found at the gray and green insets.
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Figure 10. On the left, input image. In the middle, TexTile values
for different crop sizes. The optimal crop is highlighted on both
images with a green inset. On the right, the optimal crop, tiled
many times for visualization.
argmaxℎ,𝑤 TexTile(Crop(I, (ℎ,𝑤))). We show a result in
Figure 10, where this algorithm finds the optimal crop size at
the minimum repeatable pattern, as well as three lower peaks
at different discrete scale factors of this crop size. Note that
we limit the crops to ℎ,𝑤 ≥ 64 and perform the crop at
the center of the image. Previous work [35, 54] found these
repeating patterns in the activations of pre-trained CNNs.
Because internal neural activations operate at lower reso-
lutions that those of the original image, these methods are
limited in precision. Our method, in contrast, operates at the
resolution of the original image and may thus be more pre-
cise. More results on these two applications are present in
the supplementary material.
5.4. Failure Cases

As shown in Table 1, our model predictions are accurate,
however, some errors occur. We show some examples of
misclassified textures in Figure 11. On the left, we show a
texture labeled as non-tileable in our test dataset, that our
model predicts as tileable despite it showing discontinuities
in the borders. On the right, we show a texture that is la-
beled as tileable, which our model classifies as non-tileable.
Both examples are edge cases and highlight the ambiguity
in what constitutes a tileable texture. Besides, when used as
a loss for synthesis models, TexTile cannot compensate for
the limitations of the generative backbone. If a model cannot

TexTile: 0.569

True label: 0

TexTile: 0.482

True label: 1

Figure 11. Examples of misclassifications done by our model. On
the top, ground truth labels, on the bottom, the predicted TexTile
value. For the example on the left, we show an inset of the central
crop of the texture, to highlight that it is not seamlessly tileable.
adequately synthesize textures that match the appearance of
the input, adding TexTile helps reduce discontinuities in the
borders but will not improve its perceptual quality, as can be
seen in the textures generated with [25] in Figure 8.

6. Conclusions
We have presented TexTile, the first differentiable metric for
texture tileability. While it is trained on a simple classifi-
cation task, we design custom data augmentation, training
regimes, and neural architectures, all specifically tailored
to accurately measure tileability. We validated our design
choices with comprehensive ablation studies, and leveraged
saliency maps for model understanding. We showed dif-
ferent applications of our differentiable metric, including
benchmarking texture synthesis algorithms, detecting repe-
titions and misalignment in images, and transforming image
generative models into tileable texture synthesis algorithms.
We will provide code and model weights upon acceptance.

Limitations and Future Work We could extend our work
in several ways. While our method accurately measures
tileability in textures, it is does not quantify their percep-
tual quality, limiting its scope. Combining perceptual met-
rics with TexTile, to measure both perceptual quality and
tileability, is an important research avenue for a more in-
tegrated analysis of texture quality. Besides, our model is
pre-trained on a ImageNet, then fine-tuned on a manually-
curated dataset, and thus may inherit biases. While we be-
lieve the datasets we used were comprehensive, it is possible
that some type of texture is underrepresented and the model
may not perform accurately. Using synthetic data [18] may
help alleviate this issue. Finally, there is no solid under-
standing of human perception of texture repetitiveness [60],
and, while human perceptual validation is out of the scope
of this work, its apparent higher correlation with TexTile,
might add new insights to the elements identified so far.
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