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Figure 1. (Left) Schematic illustration of our method: we extract a cyclic path C on the surface of 3D shape X , and match C to the 3D
target shape Y . (Middle) If C covers the whole source shape X (not shown for clarity, see Sec. 4.1 for details), our method can be used
to compute globally optimal results for dense non-rigid and geometrically consistent 3D shape matching. (Right) We show runtimes
w.r.t. shape resolution and compare to Roetzer et al. [55] (which is the only existing method that achieves geometric consistency while
having a global flavour and being initialization-free) and Cao et al. [14] (which does not provide any geometric consistency guarantees).
Ours solves all instances to global optimality (with geometric consistency), while in addition being much faster than Roetzer et al.

Abstract

Finding shortest paths on product spaces is a pop-
ular approach to tackle numerous variants of matching
problems, including the dynamic time warping method for
matching signals, the matching of curves, or the matching
of a curve to a 3D shape. While these approaches admit
the computation of globally optimal solutions in polynomial
time, their natural generalisation to 3D shape matching is
widely known to be intractable. In this work we address
this issue by proposing a novel path-based formalism for
3D shape matching. More specifically, we consider an al-
ternative shape discretisation in which one of the 3D shapes
(the source shape) is represented as a SpiderCurve, i.e. a
long self-intersecting curve that traces the 3D shape sur-
face. We then tackle the 3D shape matching problem as
finding a shortest path in the product graph of the Spider-
Curve and the target 3D shape. Our approach introduces
a set of novel constraints that ensure a globally geometri-
cally consistent matching. Overall, our formalism leads to
an integer linear programming problem for which we ex-
perimentally show that it can efficiently be solved to global

optimality. We demonstrate that our approach is compet-
itive with recent state-of-the-art shape matching methods,
while in addition guaranteeing geometric consistency.1

1. Introduction
The 3D shape matching problem refers to finding corre-
spondences between given 3D shapes and has a high rele-
vance across the broad field of visual computing. Examples
of applications include texture transfer in graphics, statisti-
cal shape analysis in medical imaging, or 3D reconstruction
or shape completion in computer vision. While the state
of the art in 3D shape matching relies on data-driven deep
learning methods [14], respective methods have the strong
shortcoming that they lack guarantees about structural prop-
erties of obtained matchings. One crucial example, which
is the main focus of our work, is geometric consistency:
a matching between a given pair of 3D shapes is geomet-
rically consistent if the neighbourhood between shape el-
ements (e.g. triangles) is preserved under the matching.

1https://github.com/paul0noah/spider-match
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Loosely, geometric consistency (in the discrete domain) can
be seen analogously to diffeomorphisms in the continuous
domain [77].

Achieving geometric consistency in learning-based
shape matching solutions is extremely challenging, since
it requires to impose complex structural constraints on the
prediction. While there are some optimisation-based works
that explicitly aim for geometric consistency, they require
initial pre-matchings to handle the severe non-convexity of
respective optimisation problems [23, 24, 43, 61, 62, 64, 66,
69, 75], or they employ heuristics and only find approximate
solutions [55, 78]. To date, there do not exist any 3D shape
matching methods that are able to find globally optimal so-
lutions while guaranteeing geometric consistency.

In this work we make a first step towards filling this
gap. More specifically, motivated by recent advances in
(polynomial-time solvable) matching problems between a
curve and a 3D shape [37, 56], we propose to represent
the source 3D shape as a SpiderCurve, i.e. a long self-
intersecting curve that traces the 3D surface, loosely analo-
gous to a spider web covering the shape surface. We then
find a shortest path in the product graph of the SpiderCurve
and the target 3D shape, while respecting geometric con-
sistency constraints. We cast this as an integer linear pro-
gram, for which we experimentally demonstrate that it can
efficiently be solved to global optimality in all considered
problem settings. Overall, we summarise our main contri-
butions as follows (also cf. Tab. 1):
• For the first time we enable to find globally optimal solu-

tions for geometrically consistent 3D shape matching.
• To achieve this, we introduce a novel integer linear pro-

gramme (ILP) that consistently matches our SpiderCurve
3D shape representation to the target 3D shape.

• Although ILP solvers employ branch and bound proce-
dures that have exponential worst-case runtime in general,
we experimentally demonstrate that our formalism allows
to efficiently find solutions for problems with practically
relevant sizes (e.g. we use the off-the-shelf ILP solver
Gurobi to match shapes with 1000 triangles in ⇡100s.).

Geometrically Globally Keypoint Pruning
Method Consistent Optimal Free Free

SIGMA [26] 7 (3) 7 7
MINA [10] 7 (3) 7 7
PMSDP [47] 7 7 3 7
Roetzer et al. [55] (3) 7 3 3
Ours 3 3 3 3

Table 1. Comparison of properties of shape matching methods.
Ours is the only one that finds geometrically consistent and glob-
ally optimal solutions. Moreover, our method does not require the
definition of keypoints, nor does it exploit any search space prun-
ing scheme to solve the resulting integer linear program.

2. Related Work
In the following we discuss works that are most relevant to
our method. For a broad overview on 3D shape matching
and registration we refer interested readers to the survey pa-
pers [17, 70, 73].

Deep Shape Matching. Data-driven deep learning
methods constitute the state of the art in 3D shape match-
ing, as they can predict high-quality correspondences in
short time. Most of these methods are based on the pop-
ular functional map framework [49], as it offers a conve-
nient way to regularise the high-dimensional shape match-
ing problem via a low-dimensional representation. Re-
spective methods were trained both in a supervised man-
ner [28, 40, 42, 72, 76], and in an unsupervised man-
ner [5, 6, 12–14, 18, 19, 30, 33, 39, 46, 51, 57, 65, 68, 71].
A major leap forward was achieved with the introduction
of DiffusionNet [68], which builds upon a simple diffusion
process to perform learning on 3D surfaces. The method
[14] builds on top of DiffusionNet while coupling func-
tional maps with point maps, and thereby achieves state-
of-the-art shape matching performance in very challenging
scenarios (e.g. partial shapes and topological noisy shapes).
Despite the astonishing performance of recent learning-
based shape matching methods, they have the major short-
coming that the produced matchings are not geometrically
consistent, see e.g. [21] for a recent demonstration.

Geometrically Consistent Shape Matching. We argue
that geometric consistency is an essential property of 3D
shape matching. Geometric consistency is generally hard
to achieve since it leads to challenging non-convex optimi-
sation problems, see e.g. [77]. Thus, there exists many lo-
cal methods that require given correspondences between a
sparse set of points [64] (e.g. often user-defined). Among
them is the work [66] based on heat diffusion, and the
work [75] in which given matchings are smoothed with the
so-called product manifold filter. Furthermore, the works
[23, 24] also consider the refinement of an initial set of
matchings. The works [61, 62, 69] solve for geometri-
cally consistent intrinsic triangulations [67] via local op-
timisation. Many of these methods are parameterisation-
based, i.e. they rely on mappings of given 3D shapes to
simple parametric surfaces, such as planes [1, 2, 34, 43,
44, 48, 79] or spheres [1, 3, 4, 50, 61]. One shortcom-
ing of parameterisation-based methods is that they are only
applicable for matching shapes with a fixed genus. Fur-
thermore, respective methods involve highly non-convex
optimisation problems that depend on good initialisations
(e.g. user-provided sparse matchings).

Globally Optimal Shape Matching. While the
polynomial-time solvable linear assignment problem (LAP)
could in principle be used for 3D shape matching, it com-
pletely disregards geometric relations, so that neighbouring
points may be matched to arbitrarily far away points. While
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the LAP matches vertices, the quadratic assignment prob-
lem (QAP) matches pairs of vertices (edges), so that neigh-
bourhood relations can be better preserved. Yet, the QAP
is NP-hard [54] so that shape matching instances with prac-
tically relevant sizes cannot efficiently be solved. Several
attempts to tackle the QAP have been presented, including
convex relaxations [9, 20, 36, 59], and heuristics based on
local optimisation [31, 38, 74].

Other attempts towards global shape matching are of-
ten based on some low-dimensional (or low-rank) rep-
resentation, e.g. functional maps in the continuous do-
main [22, 27, 47, 49], functional maps coupled to point
maps [53], or sparse matching representations in the dis-
crete domain [10, 26]. Yet, functional map-based methods
do not take geometric consistency into account, and sparse
discrete models are typically slow and heavily rely on an
aggressive pruning of the search space [10, 26, 47].

A different class of global shape matching approaches is
based on finding shortest paths in product graphs. These in-
clude the matching of signals in the popular dynamic time
warping algorithm [58], the matching of 2D shapes to im-
ages to address shape-based image segmentation [16, 25,
63], or the matching of 2D shapes to each other [60]. Re-
cently, a similar framework has been presented to match a
2D shape (a cyclic curve) to a 3D shape [37, 56]. All of
these approaches have in common that solutions can effi-
ciently be computed in polynomial time based on a shortest
path algorithm (or some variant thereof). While product
space formalisms have been generalised for the matching
of 3D shapes [55, 77, 78], the respective problem is sub-
stantially harder and does not admit a solution via finding
a shortest path – this is because in this case the matching
cannot be represented as a one-dimensional path, but forms
a two-dimensional surface in a four-dimensional product
space. In this work we consider an alternative view that
builds upon a different shape discretisation and thus allows
to tackle 3D shape matching from a path-based perspective.

3. Background on 2D-3D Shape Matching

In the following section, we summarise the important prod-
uct graph formalism introduced in [37] for 2D-3D shape
matching. It forms the foundation of our SpiderCurve-
based 3D shape matching approach.

Lähner et al. [37] aim to find correspondences between
a 2D shape C = (V C , EC) (a cyclic curve discretised as
a cyclic chain graph, i.e. a graph with circular topology.)
and a 3D shape Y = (V Y , EY) (interpreted as the undi-
rected graph of a surface mesh). The matching between
C and Y is found as a shortest path in the product graph

Figure 2. The product graph P is structured into layers (individ-
ual colours), where each layer corresponds to the product of a spe-
cific vertex vC 2 V C of the 2D shape C and the entire 3D shape Y .
P contains intra-layer edges (edges within a layer) and inter-layer
edges (edges connecting neighbouring layers). To avoid clutter,
we only show the inter-layer connections for one vertex in the red
and yellow layers. Like C, the product graph P is also cyclic.

P = (V P , EP), where

V P = V C ⇥ V Y ,

EP = {
�
eC , eY

�
2 V P ⇥ V P | eC 2 V C ⇥ V C ,

eY 2 V Y ⇥ V Y , eC or eY non-deg.}.
(1)

In Eq. (1), degenerate edges mean that they consist of the
same vertex twice. This is necessary to handle different dis-
cretisations of the shapes. In Fig. 2 we show the structure
of the product graph: P is oragnised into layers, where each
layer corresponds to the product of a specific vertex of the
2D shape C and the entire 3D shape Y . Thus, every ver-
tex v = (vC , vY) 2 V P consists of a vertex vC 2 V C

from the 2D shape C, and a vertex vY 2 V Y from the
3D shape Y . Any cyclic path in the product graph P that
goes through all layers represents a (geometrically consis-
tent) matching between C and P . By defining appropriate
edge costs (e.g. based on shape feature similarity, or by pe-
nalising deformations), one can find a globally optimal and
geometrically consistent matching between the 2D shape C
and the 3D shape Y via a (cyclic) shortest paths algorithm.
The works [37, 56] propose custom algorithms that exploit
the special structure of the product graph in order to effi-
ciently find such matchings. Overall, our main idea is to
generalise such 2D-3D shape matching formalisms towards
3D-3D shape matching with the help of a SpiderCurve rep-
resentation.

14545



ILP Solver

(Gurobi)

SpiderMatch ILP

3D Shape Matching

SpiderCurve
Extraction

Deep Feature
Computation
(pretrained )

(CYC)
(CON)
(PES)
(ANS)

Figure 3. Overview of the pipeline of our method. We consider two 3D surface meshes X and Y for which we compute vertex-wise
features with a pretrained feature extractor. After discretising X into a SpiderCurve representation C, we construct our cyclic shortest path
ILP using constraints that ensure geometric and global 3D consistency of the matching. Solving the ILP (e.g. using Gurobi [29]) results in
a globally optimal 3D shape matching represent as a shortest cyclic path in the product graph.

4. SpiderCurve-based 3D Shape Matching

We aim to find geometrically consistent correspondences
between two non-rigidly deformed 3D shapes X and Y
(with same genus and potentially having boundaries) repre-
sented as tuples of vertices and edges X = (V X , EX ) and
Y = (V Y , EY), respectively. Our notation is summarised
in Tab. 2. Our main idea is to discretise the 3D shape X
using a long self-intersecting curve C that traces the 3D sur-
face X – due to the resemblance to a spider web we call
this representation SpiderCurve, cf. Fig. 4. With that, we
match C to the 3D shape Y while ensuring that (i) existing
self-intersections of C are maintained, and that (ii) no addi-
tional self-intersections are introduces by the matching. We
visualise our overall pipeline in Fig. 3.

In the following subsections we first discuss how to ex-
tract our SpiderCurve on X , followed by the presentation of
our integer linear programming (ILP) formulation.

4.1. SpiderCurve Extraction

To ensure that our SpiderCurve C = (V C , EC) is a faithful
discretisation of the 3D shape V X , we impose that C covers
all vertices of V X . Moreover, the start and end points of C
are equal, so that it forms a cycle. We explicitly strive for
self-intersections in C in order to consider geometric consis-
tency in multiple directions along the shape surface (this is
achieved by imposing that intersections are maintained by
the matching, see Sec. 4.2). We have found that using an
approximation algorithm for the (metric) travelling sales-
person problem (TSP), i.e. the Christofides algorithm [15],
leads to reasonable SpiderCurves for our purposes. We note
that for technical reasons it is convenient to duplicate ver-
tices in the SpiderCurve C at the intersection points (so that
|V C | � |V X |). In Fig. 4, we visualise extracted Spider-
Curves on different shapes.

Symbol Description
X = (V X , EX ) 3D surface shape X
|V X |, |EX | Number of vertices and edges
V X 2 R|V X |⇥3 Vertices of shape X
EX 2 N|EX |⇥2 Edges of shape X
FX 2 R|V X |⇥128 Features of shape X
Y = (V Y , EY) 3D surface shape Y
. . . (analogous to X )
C = (V C , EC) Cyclic path on X (Spider Curve)
P = (V P , EP) Product graph
x 2 {0, 1}|E

P | Indicator representation of EP

c 2 R|EP |
+ Cost vector

x? Cyclic shortest path in P
(CYC) Cyclic path constraints
(CON) Path continuity constraints
(PES) Preservation of exist. self-inters. constraints
(ANS) Avoidance of new intersections constraints

Table 2. Summary of the notation used in this paper.

Figure 4. Visualisation of SpiderCurves on various types of 3D
shapes including humanoid shapes and animals. We can see that
our SpiderCurves cover the whole surface and thus pose a faithful
discretisation of the respective 3D shape.
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Cyclic Path Path-Continuity Preserv. of Existing Self-Inters. Avoid. of New Self-Inters.

Figure 5. Illustration of our four constraints. (Left) The sum of all xi that involve edges connecting two layers (e.g. the set of red or blue
edges) should be equal to one, so that the cyclic path x? goes through all layers. (Middle-Left) The sum of all incoming edges (blue) of
a product vertex (yellow) must be equal to the sum of all outgoing edges (red). This ensures that the path is continuous. (Middle-Right)
Coupling of layers ensures that self-intersections of C are preserved on Y under the matching. Coupling can be implemented by ensuring
that the sum of outgoing edges (blue) of a product vertex on the bottom layer is equal to the sum of outgoing edges for a product vertex
on the top layer (for corresponding vertices across layers, see yellow line). (Right) Self-intersections (other than the ones present in C, see
Middle-Right) can be avoided by allowing the cyclic path to only visit each vertex on Y once, i.e. the sum of outgoing product edges (red)
must be less than or equal 1 (this does not include vertical inter-layer product edges, i.e. product edges that do not leave the vertex on Y).

4.2. Our SpiderMatch Integer Linear Program

For finding a globally optimal matching, we construct the
product graph P of the SpiderCurve C (a cyclic chain graph)
and the 3D target shape Y . Then, we find a cyclic shortest
path in P in such way that the path goes through each layer
of P (cf. Fig. 2). In addition, we impose additional con-
straints that ensure geometric consistency in multiple direc-
tions along the shape surface.

Contrary to [37, 56] that find shortest paths based on (a
variant of) Dijkstra’s algorithm, we formulate our optimi-
sation problem as an ILP, so that we can directly integrate
additional constraints. Most importantly, we impose that
(i) self-intersections in C are preserved under the matching,
and that (ii) additional self-intersections are avoided. To
formulate our optimisation problem, we introduce for each
edge ei 2 EP in the product graph P a binary indicator
variable xi 2 {0, 1}. The value xi = 1 means that product
edge ei is part of our matching path, and xi = 0 means that
ei is not contained in the matching. Our overall objective
is to find the optimal matching x? in the space of geomet-
rically consistent matchings (to be defined in the following
paragraphs) that minimises matching costs. We note that a
product edge ei = (vk, vl) 2 EP consists of two product
vertices vk, vl 2 V P , where each product vertex consists of
a vertex vC 2 V C of the cyclic path C and a vertex vY 2 V Y

of 3D surface shape Y .
In the following we introduce the constraints of our ILP

that define the space of geometrically consistent matchings.

We visualise all types of constraints in Fig. 5.
Cyclic Path. We want to ensure that every vertex of C is

matched at least once, i.e. the optimal cyclic path x? goes
through all layers. This can be achieved by ensuring that
the sum over all xi between any pair of adjacent layers (cf.
Fig. 5 left) is equal to one. Formally, this is expressed as

8 (vC1 , vC2 ) 2 EC :
X

i:ei=((vC
1 ,•),(vC

2 ,•))2EP

xi = 1.

(CYC)
Path Continuity. Furthermore, we have to ensure that

every product vertex vl 2 V P with an active (xi = 1)
incoming product edge ei = (vk, vl) also has an active
(xj = 1) outgoing product edge ej = (vl, vm), i.e. the path
must be continuous (cf. Fig. 5 middle-left). This property
can be formalised as

8 vl 2 V P :
X

i:ei=(•,vl)2EP

xi =
X

j:ej=(vl,•)2EP

xj .

(CON)
Preservation of Existing Self-Intersections. To en-

sure geometric consistency, i.e. neighbourhoods between
shape elements2 are preserved by the matching, every self-
intersection of the SpiderCurve C must result in a self-
intersection that involves the same vertices when C is
matched to Y . We can ensure this by incorporating cou-
pling constraints between product vertices that involve self-

2In our formalism we can interpret polygons that are formed by our
SpiderCurve as shape elements.
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intersections. To be precise, we couple those product ver-
tices vCp and vCq on (different) layers p and q that belong to
the same vertex vY on Y (cf. Fig. 5 middle-right). Formally,
this can be written as

8 vCp 2 V C , vCq 2 V C , vY 2 V Y , p 6= q, vCp = vCq :
X

i:ei=((vC
p ,v

Y),•)2EP

xi =
X

j:ej=((vC
q ,v

Y),•)2EP

xj .

(PES)
Avoidance of New Self-Intersections. Lastly, we forbid

that new self-intersections are introduced by the matching.
This can be ensured by constraining the matching path in
such a way that every vertex vY 2 V Y can only be visited
at most once. In other words, the sum (across all layers)
over all outgoing edges of product vertices that contain a
given vY 2 V Y must be smaller than or equal to one. In
this constraint, we do not sum over inter-layer edges whose
source and target product vertex contain the same vertex vY

on Y (since these edges can be interpreted as ‘staying’ in
the same vertex vY on Y). The respective constraints are
explained in Fig. 5 right. Mathematically, they read

8 vYk , v
Y
l 2V

Y , vYk 6=vYl :
X

i:ei=((vC
k ,v

Y
k ),(vC

l ,v
Y
l ))2EP

xi  1

(ANS)
with vCk , v

C
l 2 V C . Note that the sum will not include prod-

uct vertices on layers which belong to coupling constraints,
i.e. whenever vCk or vCl belong to a self-intersection of C we
do not include respective product edge ei in the sum.

Matching Costs. We consider a cost vector c 2 R|EP |

based on vertex-wise 3D shape features FX and FY . The
entry at the i-th position is given by

ci = c(ei) =  (F
X
p � FY

r ) + (FX
q � FY

s ), (2)

where ei = ((vXp , vYr ), (v
X
q , vYs )), vXp , vXq 2 V C and

vYr , v
Y
s 2 V Y . Furthermore,  (·) is the robust loss func-

tion presented in [8].
Our SpiderMatch ILP. Putting our cost function and

constraints together yields our final 3D shape matching for-
malism:

min
x2{0,1}|EP|

cTx s.t (CYC), (CON), (PES), (ANS). (3)

Essentially, Problem (3) can be seen as a cyclic shortest path
problem (over product edges encoded in x, cf. Sec. 4.2) that
involves the additional constraints (PES), (ANS).

5. Experiments
In this section we evaluate the performance of our method.
First, we explain the considered evaluation metric and the

competing methods. Subsequently, we evaluate the non-
rigid shape matching performance of our method and com-
pare it to other approaches. We conclude this section with
ablation studies.

We solve Problem (3) with the off-the-shelf ILP solver
Gurobi [29] (Version 10.0.3) on an Intel Core i9 12900K
with 64 GB DDR5 RAM. We decimate all shapes to
1000 triangles using the mesh decimation algorithm pro-
vided in [32]. We also compute matchings for methods
Cao et al. [14], Ren et al. [53], and Eisenberger et al. [22]
on 1000 triangles. Only for Roetzer et al. [55] we deci-
mate shapes to 450 triangles so that runtimes are acceptable
(cf. Fig. 1 right). For our robust loss function  (·) [8] we
choose parameters ↵ = 2 and c = 0.3 and instead of a
quadratic bowl we use a cubic bowl so that small differ-
ences in features are less relevant. We empirically observe
that our method can solve all instances to global optimality
in less than 200s.

5.1. Evaluation Metric

We evaluate all shape matching methods using geodesic er-
rors. Geodesic errors allow us to measure the correctness
of the resulting matching w.r.t. to a ground-truth matching,
i.e. how far is the resulting matching from the ground-truth
matching. We follow the Princeton protocol [35] to com-
pute geodesic errors which are normalised by the square-
root of the area of a shape (see [35, Sec. 8.2]).

5.2. Methods

We compare our method to four other methods:
Cao et al. [14] is a recent functional map-based deep

learning method which achieves state of the art performance
by coupling functional maps with point maps during learn-
ing. We use this method as our feature extractor and thus
consider it as our baseline. Moreover, the extensive eval-
uation in [14] confirms that it is indeed the state-of-the-art
learning-based approach, so that we consider it as a repre-
sentative for the broad body of learning-based shape match-
ing methods.

Ren et al. [53] is a functional map-based method which
associates a functional map with a point wise map as a hard
constraint.

Eisenberger et al. [22] is a functional map-based it-
erative alignment scheme of shapes, which incrementally
refines the geometrical information used to perform the
matching.

Roetzer et al. [55] implements a combinatorial solver to
solve a triangle-matching based ILP presented in [77]. This
is the only competing approach that guarantees geometric
consistency.
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Figure 6. Qualitative Results on the datasets FAUST, SMAL, DT4D-H (intra class and inter class). The state-of-the-art learning based
method by Cao et al. produces matches with local geometric inconsistencies (cf. columns 3�, 9�). Ren et al. yields visually the worst
results due to large mismatches (cf. columns 4�, 10�). Obvious large mismatches are not produced by Eisenberger et al., which however
produces left-right flips (cf. columns 2�, 8�) as well as local mismatches (cf. column 10�). Due to the geometric consistency of our method
we produce smooth matchings for all shapes. Note that we show the lower-resolution matchings of Roetzer et al. in the appendix.

5.3. Non-Rigid Shape Matching

In this section we evaluate our method on three different
datasets: FAUST [11, 18, 52], SMAL [80], DT4D-H [45]
(in intraclass and interclass settings). We show qualitative
results in Fig. 6. We can see that our geometrically con-
sistent formalism yields better matchings than Cao et al.,
since our approach does not produce local mismatches. Fur-
thermore, we observe severe mismatches and geometric in-
consistencies in the matchings by Eisenberger et al. and
Ren et al.

FAUST. We test on the (more challenging) remeshed
version [18, 52] of the FAUST dataset [11]. The dataset
consists of 100 near-isometric human shapes (we randomly
sample 100 pairs from the test set). In Fig. 7 left, we show
geodesic errors on FAUST. Our geometrically consistent
approach helps to resolve local missmatches (cf. Fig. 6)
which yields improved geodesic error scores compared to
Cao et al. The method by Ren et al. results in left-right flips
due to intrinsic symmetries of human shapes of FAUST,
which increases geodesic errors drastically.

0 0.05 0.1 0.15 0.2 0.25
0

20

40

60

80

100

Geodesic Error Threshold

%
C

or
re

ct
M

at
ch

in
gs
!

% of Correct Points (FAUST)

Cao et al.: 0.031
Ren et al.: 0.379
Eisenberger et al.: 0.110
Roetzer et al.: 0.042
Ours: 0.029

0 0.05 0.1 0.15 0.2 0.25
0

20

40

60

80

100

Geodesic Error Threshold

%
C

or
re

ct
M

at
ch

in
gs
!

% of Correct Points (SMAL)

Cao et al.: 0.048
Ren et al.: 0.376
Eisenberger et al.: 0.268
Roetzer et al.: 0.054
Ours: 0.044

Figure 7. Geodesic errors on FAUST and SMAL datasets. Num-
bers in the legends are mean geodesic errors (#). Our method
yields best results w.r.t. to mean geodesic errors on both datasets.

SMAL. Next, we evaluate on the remeshed version of
the SMAL dataset [80]. This dataset consists of 49 non-
isometric deformed animal shapes of eight species (we ran-
domly sample 100 pairs from the test set). In Fig. 7 right,
we show geodesic errors on SMAL. Again, ours is the best
among all methods. For this dataset, shapes are unaligned,
which harms the performance of Eisenberger et al. since it
has to heuristically find a pre-alignment necessary for the
method.
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Figure 8. Geodesic errors on DT4D-H dataset in the intra-class
and inter-class setting. Numbers in the legends are mean geodesic
errors (#). In the intra-class settings our method produces best
results among all competitors. In the inter-class setting ours is on
par with Cao et al.

DT4D-H. Finally, we test on DT4D-H [45], which
consist of 9 different classes of humanoid/game character
shapes in different poses. These shapes are taken from De-
formingThings 4D [41]. We sample 100 random intra-class
pairs, i.e. near-isometric deformed shape pairs. We also
sample 100 random inter-class pairs, i.e. non-isometric de-
formed shape pairs. In Fig. 8, we show geodesic errors for
both settings. In the intra-class setting our method outper-
forms all methods. For inter-class shapes our method is on
par with Cao et al. The method by Eisenberger et al. suffers
from the unaligned shapes in both settings, while Ren et al.
produces a significant amount of left-right flips. In Sec. 8 in
the supp. material we provide additional geometric consis-
tency comparisons among the methods.

5.4. Ablations
In Tab. 3, we summarise results of our ablation study. For
that, we sample 25 random pairs of the FAUST dataset,
downsample them to 500 triangles and compute matchings
in the different settings reported in Tab. 3. We can see that
constraints (PES), (ANS), and the robust loss function  (·)
contribute to the performance of our method. We also re-
place FX and FY with wave kernel signatures (WKS) fea-
tures [7] and compare this setting to our method where we
extract FX and FY with [14]. In Sec. 11 in the supp. mate-
rial we study our method under different resolutions.

Method Mean Geo. Err.

Ours w/o (PES), (ANS) 0.036
Ours w/o (ANS) 0.035
Ours w/o (PES) 0.035
Ours with  = k · k2 0.036
Ours with WKS features 0.213
Ours 0.034

Table 3. Ablation studies of our method.

6. Discussion and Limitations
Time complexity. We have introduced the first geometri-

cally consistent and globally optimal method for 3D shape

matching. Our problem instances involve up to 2·106 bi-
nary variables. Nevertheless, we experimentally demon-
strate that we can find globally optimal solutions in all con-
sidered matching instances within about 100s, which indi-
cates that our search space has a benign structure (likely
stemming from the underlying shortest path-based motiva-
tion) that can effectively be exploited by off-the-shelf ILP
solvers. Still, our proposed formalism belongs to the (gen-
erally difficult) class of integer programming problems. We
observe that our constraints do not lead to a totally uni-
modular matrix, so that in general we may have exponential
worst-case runtime. We leave a theoretical analysis of the
time complexity of our proposed approach, and the question
whether there may exist polynomial time algorithms that
solves our problem (or related variants) for future work.

SpiderCurve extraction. The focus of this work was
on presenting a novel framework that generalises path-
based shape matching formalisms for 3D shape matching.
Although our TSP-based SpiderCurve extraction leads to
promising matchings in all conducted experiments, we be-
lieve that there may be potential using alternative curve-
based shape discretisations. An in-depth analysis and com-
parison of different approaches was not our main focus and
is an interesting direction for follow-up works.

Feasibility. In theory, our SpiderMatch ILP (3) might
be infeasible, which may for example stem from discretisa-
tion artefacts in low-resolution settings. Yet, our method is
able to operate on (relatively) high resolution shapes so that
we expect these cases to be rare (we found all of the 400
instances considered in our experiments to be feasible).

7. Conclusion

We present a fresh view on geometrically consistent 3D
shape matching. Our key insight is to discretise one of
the shapes using a SpiderCurve, i.e. a long self-intersecting
curve that traces the 3D shape surface. This allows to utilise
ideas and concepts from shortest path-based formalisms
that have so far not been applicable to the matching of 3D
shapes. More specifically, our work is motivated by the re-
cent shortest path-based curve to 3D shape matching for-
malism by Lähner et al. [37], which we augment with addi-
tional self-intersection constraints that allows to ensure ge-
ometric consistency in multiple directions along the shape
surface. Experimentally we showcase the great potential of
our novel approach, which on the one hand leads to state-
of-the-art shape matching performance. Furthermore, at
the same time we achieve both geometric consistency and
global optimality – the latter two properties are highly de-
sirable but have so far not been reached by any previous 3D
shape matching method. Overall, we believe that our ap-
proach may be insightful and may inspire follow-up works
in geometrically consistent shape matching and beyond.
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Schröder. An image processing approach to surface match-
ing. In Symposium on Geometry Processing, pages 207–216,
2005. 2

[44] Marco Livesu. Scalable mesh refinement for canonical
polygonal schemas of extremely high genus shapes. IEEE
transactions on visualization and computer graphics, 27(1):
254–260, 2020. 2

[45] Robin Magnet, Jing Ren, Olga Sorkine-Hornung, and Maks
Ovsjanikov. Smooth non-rigid shape matching via effective
dirichlet energy optimization. In International Conference
on 3D Vision (3DV), 2022. 7, 8, 1

[46] Riccardo Marin, Marie-Julie Rakotosaona, Simone Melzi,
and Maks Ovsjanikov. Correspondence learning via linearly-
invariant embedding. In NeurIPS, 2020. 2

[47] Haggai Maron, Nadav Dym, Itay Kezurer, Shahar Kovalsky,
and Yaron Lipman. Point registration via efficient convex
relaxation. ACM Transactions on Graphics (TOG), 35(4):
73, 2016. 2, 3

[48] Alexander Naitsat, Yufeng Zhu, and Yehoshua Y Zeevi.
Adaptive block coordinate descent for distortion optimiza-
tion. In Computer Graphics Forum, pages 360–376. Wiley
Online Library, 2020. 2

[49] Maks Ovsjanikov, Mirela Ben-Chen, Justin Solomon, Adrian
Butscher, and Leonidas Guibas. Functional maps: a flexible
representation of maps between shapes. ACM Transactions
on Graphics (TOG), 31(4):30, 2012. 2, 3

[50] Chao Peng and Sabin Timalsena. Fast mapping and morph-
ing for genus-zero meshes with cross spherical parameteri-
zation. Computers & Graphics, 59:107–118, 2016. 2

[51] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. NIPS, 2017. 2

[52] Jing Ren, Adrien Poulenard, Peter Wonka, and Maks Ovs-
janikov. Continuous and orientation-preserving correspon-
dences via functional maps. ACM Transactions on Graphics
(ToG), 37:1–16, 2018. 7

[53] Jing Ren, Simone Melzi, Peter Wonka, and Maks Ovs-
janikov. Discrete optimization for shape matching. In Com-
puter Graphics Forum, pages 81–96. Wiley Online Library,
2021. 3, 6

[54] F Rendl, P Pardalos, and H Wolkowicz. The Quadratic As-
signment Problem: A Survey and Recent Developments. In
DIMACS workshop, 1994. 3

[55] Paul Roetzer, Paul Swoboda, Daniel Cremers, and Florian
Bernard. A scalable combinatorial solver for elastic geo-
metrically consistent 3d shape matching. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 428–438, 2022. 1, 2, 3, 6

[56] Paul Roetzer, Zorah Lähner, and Florian Bernard. Conjugate
product graphs for globally optimal 2d-3d shape matching.
In IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2023. 2, 3, 5

[57] Jean-Michel Roufosse, Abhishek Sharma, and Maks Ovs-
janikov. Unsupervised deep learning for structured shape
matching. In ICCV, 2019. 2

[58] David Sankoff and Joseph B Kruskal. Time warps, string
edits, and macromolecules: the theory and practice of se-
quence comparison. Addison-Wesley Publishing Company,
1983. 3

[59] Christian Schellewald and Christoph Schnörr. Probabilistic
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