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Abstract
While recent 3D instance segmentation approaches show

promising results based on transformer architectures, they
often fail to correctly identify instances with similar appear-
ances. They also ambiguously determine edges, leading to
multiple misclassifications of adjacent edge points. In this
work, we introduce a novel framework, called EASE, to
overcome these challenges and improve the perception of
complex 3D instances. We first propose a semantic guid-
ance network to leverage rich semantic knowledge from a
language model as intelligent priors, enhancing the func-
tional understanding of real-world instances beyond rely-
ing solely on geometrical information. We explicitly instruct
the basic instance queries using text embeddings of each in-
stance to learn deep semantic details. Further, we utilize the
edge prediction module, encouraging the segmentation net-
work to be edge-aware. We extract voxel-wise edge maps
from point features and use them as auxiliary information
for learning edge cues. In our extensive experiments on
large-scale benchmarks, ScanNetV2, ScanNet200, S3DIS,
and STPLS3D, our EASE outperforms existing state-of-the-
art models, demonstrating its superior performance.

1. Introduction
Understanding 3D scenes is a fundamental task within 3D
computer vision. Given 3D point cloud scenes, identifying
and perceiving instances on sparse points, along with as-
signing semantic class labels, play a crucial role in a com-
prehensive understanding of the entire spatial environment.

In real-world 3D scenarios, significant occlusion and
truncation often occur, especially when objects are over-
lapped or hidden by others. To address these issues, con-
ventional works [3, 7, 8, 16, 18, 40, 43, 44] in 3D instance
segmentation (3DIS) primarily focus on accurately gener-
ating region proposals (top-down) [16, 43, 44] or effec-
tively grouping points with clustering algorithms (bottom-
up) [3, 7, 8, 18, 40]. Inspired by the remarkable sensation
of Mask-RCNN [14], the former (proposal-based) meth-
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Figure 1. Examples of 3DIS for two challenging cases. (a) Se-
mantic failure cases: the baseline [35] confuses seat-shaped ob-
jects as chair or toilet (Scene1) and also misclassifies large cuboid
blocks as desk (Scene2). And (b) Instance misinterpretation cases:
baseline erroneously segments a single object into multiple parts
(Scene3) or merges multiple objects into one instance (Scene4).

ods initially detect instances as bounding boxes and predict
masks within each proposed region. However, these strate-
gies are susceptible to the quality of the detection results.
On the other hand, the latter (grouping-based) methods use
clustering algorithms to group closely related points and ag-
gregate point-wise class labels and instance features. While
they show great advancements in 3DIS, these methods re-
quire additional manually tuned processing, such as point
grouping [18] or voting mechanisms [31], to determine spe-
cific geometric properties (e.g., centers, occupancy).

Recently, transformer-based 3DIS frameworks [22, 26,
35, 36] have tackled several limitations of traditional ap-
proaches by introducing a fully end-to-end pipeline. They
directly predict masks from 3D points without resource-
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exhaustive processing. These methods have achieved high
performance and quickly become predominant in the 3DIS
domain. However, despite these breakthroughs, they still
face challenges in accurately masking everyday 3D in-
stances relying solely on geometrical information. Specifi-
cally, they frequently suffer from cases where each instance
appears similarly, but their semantic roles differ, as illus-
trated in Fig. 1 (a). Thus, gaining insight into the semantic
properties of instances beyond mere appearance or position
is crucial for effectively addressing complex real-world 3D
scenarios. From this observation, we consider leveraging
semantic knowledge along with the geometry information.

Built upon the classic structure of the transformer-based
framework [22, 35, 36], which trains queries that encode
instance-specific knowledge for direct mask prediction, we
introduce a carefully designed semantic guidance network.
One of the most promising ways to utilize semantic infor-
mation is through visual language models [17, 32]. They
learn generous visual-linguistic knowledge from large-scale
image-text pairs, which empowers them to achieve out-
standing progress in various 2D or 3D vision tasks [9, 11,
23, 29]. In this work, motivated by the success of these
works, we explicitly instruct the transformer-based network
to learn contextual variations among instances using text
embeddings. Specifically, we strengthen the basic instance
queries with profound semantic clues of text embeddings
representing each instance. Here, the context details can
serve as discriminative semantic priors for perceiving com-
plex 3D instances adequately. Through our extensive exper-
iments, we found that our semantic-guided approach effec-
tively overcomes the challenges of existing methods.

Different from the human vision system, which easily
distinguishes boundaries between instances, we empirically
observe that most 3DIS models [21, 22, 35, 36, 42] strug-
gle with precisely capturing the boundaries in the 3D space.
These methods often misinterpret the spatial range of in-
stances and ambiguously determine their edges, leading
to numerous misclassifications of adjacent edge points, as
shown in Fig. 1 (b). We consider that these issues arise due
to the absence of detailed guidance on inter-object bound-
aries, resulting in fuzzy edges. To tackle these challenges,
we advocate for leveraging the edge prediction module to
pilot the whole network to exploit edge-advanced features.
We predict edge points across point cloud scenes and oper-
ate them as auxiliary information for learning practical edge
cues, which encourages accurate recognition of the 3D spa-
tial scope. Note that we supervise this module using dy-
namically generated point-wise pseudo edge labels.

Given landmark datasets for 3DIS, ScanNetV2 [4],
ScanNet200 [33], S3DIS [1], and STPLS3D [2], we vali-
date the effectiveness and robustness of our framework. Our
method outperforms the existing state-of-the-art methods.
To summarize, our main contributions are listed as follows:

• We propose EASE, a novel 3D instance segmentation
framework that utilizes the rich semantic clues from the
language model. Specifically, context details of text em-
beddings serve as smart semantic priors, effectively en-
hancing the functional comprehension of 3D instances.

• We introduce the edge prediction module guiding the en-
tire network to take advantage of edge-aware features.
Also, we utilize the module’s output as auxiliary knowl-
edge for learning edge cues, boosting 3DIS performance.

• We analyze the effectiveness of our proposed method on
multiple challenging benchmarks, including ScanNetV2,
ScanNet200, S3DIS, and STPLS3D. Extensive experi-
ments on various 3D scenarios validate that our method
achieves new State-of-the-Art performance on 3DIS.

2. Related Work
3D Instance Segmentation. The 3D Instance Segmenta-
tion (3DIS) task aims to identify individual instances and
assign semantic classes to each point within a 3D point
scene. Traditional approaches in 3DIS are primarily cat-
egorized into three groups: proposal-based [16, 43, 44],
grouping-based [3, 7, 8, 18, 40], and transformer-based
methods [22, 35, 36]. The proposal-based approaches ini-
tially detect object proposals, such as 3D bounding boxes,
and then estimate corresponding per-point semantic classes
and instance masks. One of the grouping-based approaches,
PointGroup [18], conducts point-wise clustering to group
points into instances using dual point sets, which comprise
original and shifted coordinates. Recently, transformer-
based approaches predict instance queries that represent in-
dividual objects and decode them into per-point categories
and instance labels directly. Mask3D [35] refines queries
using masked cross-attention with hierarchical point fea-
tures, leading the queries to focus on particular instances.
SPFormer [36] updates instance queries via transformer de-
coder utilizing pre-computed superpoints, which can reduce
the whole computational cost of the network. MAFT [22],
on the other hand, recognizes representational limitations
in the initial mask and replaces the masking process with
object-localizing position queries. Based on the core idea
of transformer-based methods, our novel approach incorpo-
rates a semantic guidance network and an auxiliary edge
network to improve instance mask segmentation.
Semantic Guided 3D Scene Understanding. Recent re-
search in 3D scene understanding focuses on comprehend-
ing large-scale, real-world 3D environments. Conven-
tional studies in this field are broadly categorized into two
strategies: closed-set 3D scene understanding, a preva-
lent approach in diverse tasks [19, 27, 33, 34], and open-
vocabulary methods [12, 29, 37], which focus on recog-
nizing unseen categories within datasets. More recently,
there has been significant progress in integrating pre-trained
visual-language models like CLIP [32] or ALIGN [17] into
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Figure 2. An overview of our framework EASE. Built upon the classic architecture of the transformer-based 3DIS model, our model takes
3D scenes and directly infers instance masks. Our model consists of four main modules: (1) Sparse Convolutional Backbone, (2) Semantic
Network, which strengthen the queries to learn contextual variations of instances with rich semantic embeddings from the pre-trained
language model CLIP, (3) Mask Transformer Decoder with Mask Module and Query Refinement blocks, and (4) Edge Prediction Module,
where our edge extraction head is trained to predict a voxel-wise edge map, encouraging the network to utilize edge-advanced features.

these methodologies to enhance semantic understanding.
Building on this idea, for instance, [33] utilizes a closed-set
framework and enhances 3D feature learning by aligning
it with CLIP text embedding space for semantic classifica-
tion. In this work, we employ contextual semantic priors to
improve the comprehension of complex 3D instances, en-
hancing the overall 3D instance segmentation performance.

3. Method

In this section, we introduce a novel 3D Instance Segmen-
tation (3DIS) framework EASE leveraging the rich seman-
tic guidance from the language model. Furthermore, we
propose the edge prediction module, which encourages the
pipeline to use edge-aware features for effectively perceiv-
ing instance boundaries. We provide an overview of the en-
tire pipeline (Sec. 3.1, Fig. 2, and Alg. 1) and then elaborate
on the details of our method: (i) Intelligent Semantic Prior
(Sec. 3.2) and (ii) Edge-Aware 3DIS Framework (Sec. 3.3).

3.1. Overview

Our end-to-end 3DIS framework, as illustrated in Fig. 2 and
Alg. 1, aims to enhance the comprehension of various in-
stances across 3D point cloud scenes. Based on the clas-
sic transformer-based architecture [22, 35], which operates
standard transformer building blocks, we directly infer in-
stance masks from 3D point clouds. Our model consists

of four main modules: (1) Sparse Convolutional Backbone,
(2) Semantic Network, which provide the deep semantic
cues of diverse real-world instances, (3) Mask Transformer
Decoder with Mask Module and Query Refinement blocks,
and (4) Edge Prediction Module, which benefits the whole
network to take advantage of edge-aware features.
Mask Transformer. First, the Sparse Convolutional U-Net
Backbone takes a colored point cloud P P RNpˆ6 as in-
put and voxelizes P into X0 voxels V P RX0ˆ3 to extract
a multi-resolution hierarchical feature maps Fi P RXiˆD,
where i P t0, 1, 2, 3, 4u. Following [28, 35], we set zero-
initialized non-parametric instance queries Q P RNqˆD, re-
ferring to point positions sampled with furthest point sam-
pling (FPS) [30]. Given the Fi and Q, the mask trans-
former decoder layer iteratively enhances the queries us-
ing the Mask Module (MM) and Query Refinement (QR)
blocks. In the MM, as shown in Fig. 3 (a), we classify the
category ci for i “ t1, 2, . . . , Ncu of each query via linear
classification head fclass using following cross-entropy loss:

Lcls “ ´Ec,wc„D

«

ÿ

rPNc

wcrrs log fclasspQqrrs

ff

(1)

where wc denotes one-hot encoded category labels and D
represents (input) data distribution. Also, the Q are fed
through the query head fquery to project them to the same
feature space as F0 for mask prediction. Afterwards, we
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Algorithm 1: Overview of our framework EASE.

Input: Colored point cloud P P RNpˆ6 .
Result: Binary 3DIS mask M̂f P t0, 1uXˆNq .
Procedure:
# Sparse Convolutional Backbone.

1 Extract multi-resolution feature maps Fi from P .
# Edge Prediction Module (EPM).

2 Predict edge map Ê using full-resolution feature F0.
3 Supervise Ê with pseudo edge label E.
4 Encourage the network to learn edge-aware features.

# Mask Transformer Decoder.
5 for l P Nl do
6 for i P t1, 2, 3, 4u do
7 Update queries Q using Mattn and Fi.

# Semantic Network.
8 Match the set of classes with text labels.
9 Encode text into text embeds T using CLIP.

10 Reinforce Q to contain semantic clues of T .
11 end
12 end

compute the similarity between the projected query features
Q1 and F0 using the dot product operation, then calculate
the probability of the instance mask employing the sigmoid
function as follows.

Mattn “ tmi,j “ rσpF0 ¨ fquerypQqT qi,j ą 0.5su (2)

where the threshold value is 0.5 for binary mask. Further, to
refine the query representation, we leverage the QR block,
including masked cross-attention and self-attention mecha-
nisms. Here, we utilize Mattn as the foreground mask for
the masked cross-attention layer, where Q iteratively attend
to each multi-scale feature (F1-F4, i ě 1) as follows:

Q “ softmaxpQKT {
?
D ` MattnqV (3)

where K and V are linearly projected from each point fea-
ture, and Q are from Q. Hence, the transformer focuses
more on valuable instances instead of the unessential back-
ground. Subsequently, in the self-attention layer, the keys,
values, and queries are all linear projections of Q from the
cross-attention layer. Finally, the transformer decoder layer
is recurrently applied for multiple iterations Nl and feature
scales i, ultimately producing the final set of refined queries.

3.2. Intelligent Semantic Prior

It is important to highlight that precise geometric proper-
ties (e.g., locations, distances and orientations) from 3D
points significantly enhance 3DIS accuracy. While previous
studies [22, 35, 36] benefit from the generous geometric po-
tential of physical information, they are still limited in per-
ceiving intricate real-world 3D instances. Hence, we pro-
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Figure 3. Detailed architecture of (a) Transformer Decoder Layer:
consists of Mask Module and Query Refinement blocks. And (b)
Semantic Network: we first map the categories of queries Q with
the corresponding text description for text embeddings T from
CLIP [32]. Then, we explicitly strengthen the Q with T using
the Semantic Fusion network to learn semantic details.

pose to utilize semantic knowledge of individual instances
as smart priors, effectively addressing the challenges.
Deep Semantic Knowledge for 3D Instances. Recently,
visual language models [17, 32] have highlighted the bene-
fits of their capability to provide general embedded knowl-
edge from large-scale image-text multimodal data. In this
work, we explicitly instruct the transformer-based 3DIS net-
work to learn contextual variations among instances by uti-
lizing the power of the prevalent language model CLIP [32].
To achieve this goal, we utilize a carefully designed Seman-
tic Network, as shown in Fig. 3 (b). Specifically, with the
refined query Q from each QR block, we first categorize
each query following the linear classification head fclass in
the MM. Given the set of category candidates, we map the
category number ci for i “ t1, 2, . . . , Ncu with the corre-
sponding text descriptions (e.g., “Cabinet”, “Bookshelf”).
Next, these text labels go through the large-scale pre-trained
language model, which outputs text embedding vectors T .
We then concatenate Q with T and strengthen the basic in-
stance queries with deep semantic clues from text embed-
dings using the Semantic Fusion network as follows:

Q “ SigmoidpW2 ¨ ϕpW1 ¨ pQ ‘ T qqT q (4)

where ‘ indicates channel-wise concatenation, Wi denotes
the learnable parameters of the i-th linear layer, and ϕ is
the non-linear activation function. We apply this process
for each iteration of the QR. Ultimately, we consider these
explicitly guided queries with contextual variations as dis-
criminative semantic priors for the practical perception of
complex 3D instances, enhancing 3DIS accuracy.

3.3. Edge-Aware 3DIS Framework

In real-world 3D scenarios, instances are commonly posi-
tioned in diverse arrangements without following standard
rules or patterns. Especially when instances are closely ad-
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Figure 4. Pseudo edge label calculation using KNN algorithm.
We collect k neighboring points of each point (red border) and
compare their instance labels. If the count of different label points
(blue and purple) among its surroundings surpasses a predefined
threshold τ , we annotate the central point as an edge point (green).

jacent or overlapping, it becomes increasingly challenging
for the model to define the edges precisely. Therefore, even
with significant progress in technical strategies, most con-
ventional methods [22, 35, 36] often misinterpret the spa-
tial extent of each instance and ambiguously estimate their
edges as illustrated in Fig. 1. To this end, we introduce an
edge-aware 3DIS framework with an edge prediction mod-
ule, enabling the network to utilize edge-advanced features.
Pseudo Edge Label Calculation. To optimize the edge
prediction module, we first compute point-wise pseudo
edge labels for all 3D point scenes. We operate a tradi-
tional k-Nearest Neighbors (KNN) classification algorithm
based on the KD-tree data structure to explore the k near-
est points. Here, we utilize point-wise instance labels from
datasets. For all points in a 3D scene, we set each point
as a central point and compare their instance labels with
those of k neighbor points. As shown in Fig. 4, if the count
of distinct label points among its surroundings exceeds a
predefined threshold τ , we identify the central point as a
boundary point. We finally generate pseudo-binary edge
maps E1 P t0, 1uNpˆ1, where points on the edges are 1 and
internal points are 0 for the entire set of points P . Then,
we voxelize the point-wise edge labels into the voxel-wise
edge labels E P t0, 1uX0ˆ1 to supervise the edge extraction
head. Note that we precompute the pseudo edge labels for
every 3D scene in the datasets before training.
Learning Edge Cues. With dynamically generated pseudo
edge labels E, we aim to enrich regular features to recog-
nize the accurate spatial scope of 3D instances with pre-
cise boundaries. Specifically, we introduce an Edge Predic-
tion Module, which predicts a voxel-wise dense edge map
Ê P p0, 1qX0ˆ1 to interactively guide the network in cap-
turing edges of various instances. Given a full-resolution
feature map F0 from the backbone network, our edge ex-
traction head, which consists of multiple shared MLPs, es-
timates the probabilities of edges for each voxel as follows:

Ê “ MLPedgepF0q “ SigmoidpW2 ¨ ϕpW1 ¨ F0qT q (5)

where Wi denotes the learnable parameters of the i-th lin-
ear layer, and ϕ indicates the non-linear activation function.

Following [6, 10], as edge voxels constitute a small portion
of the entire voxel set, we formulate weighted binary cross
entropy loss to train the edge extraction head as follows:

Ledge “ ´

X0
ÿ

i“1

pw ¨ Ei log Êi ` p1 ´ Eiq logp1 ´ Êiqq (6)

where w represent the weight value used to balance the sub-
stantial difference between the numbers of edge points and
others. Then, we propagate the edge cues of prediction as
auxiliary information for the backbone network, improving
3D instance understanding with edge-aware features. Fur-
thermore, we train our edge network jointly in an end-to-
end manner with low computational costs.
Loss Function We finally predict instance mask M̂f using
the final set of queries in the MM. For training, we compute
the following loss Lmask as a sum of the two losses:

Lmask “ λBCELBCEpMf , M̂f q ` λdiceLdicepMf , M̂f q (7)

where Mf denotes the ground-truth instance mask, and
Ldice represents the Dice loss [5]. Ultimately, our model is
trained end-to-end by minimizing the following loss Ltotal:

Ltotal “ λmaskLmask ` λclsLcls ` λedgeLedge (8)

where each λ is a hyperparameter derived from grid
searches to handle the strength of respective loss term.

4. Experiments
4.1. Experimental Setup

Datasets. In this study, we train and evaluate the over-
all performance using four landmark datasets for 3D in-
stance segmentation: ScanNetV2 [4], ScanNet200 [33],
S3DIS [1], and STPLS3D [2]. These four datasets pro-
vide 3D point cloud scan data collected in various scenarios.
Note that detailed descriptions of each dataset and all imple-
mentation details are provided in the supplemental material.
Evaluation Metrics. To evaluate the 3D instance segmen-
tation accuracy, we operate Average Precision (AP), a typ-
ical metric for various computer vision tasks. We report
mean average precision (mAP), which represents an aver-
age score with IoU thresholds ranging from 50% to 95%
with a step size of 5%. Also, we provide mAP50 and mAP25,
indicating the scores with IoU thresholds of 50% and 25%,
respectively. Further, we estimate mean precision (mPrec)
and mean recall (mRec) on the S3DIS [1] dataset.

4.2. Performance Comparison with SOTA Methods.

ScanNetV2. We quantitatively compare our proposed net-
work EASE with existing state-of-the-art methods. These
methods demonstrate significant capabilities, but they still
rely on geometric information from 3D points and often
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ScanNet Val ScanNet Test

Method mAP mAP50 mAP mAP50

GSPN [44] 19.3 37.8 – 30.6
3D-SIS [16] – 18.7 16.1 38.2
MASC [25] – – 25.4 44.7
3D-Bonet [43] – – 25.3 48.8
MTML [20] 20.3 40.2 28.2 54.9
3D-MPA [8] 35.5 59.1 35.5 61.1
DyCo3D [15] 35.4 57.6 39.5 64.1
PointGroup [18] 34.8 56.7 40.7 63.6
MaskGroup [45] 42.0 63.3 43.4 66.4
OccuSeg [13] 44.2 60.7 48.6 67.2
SSTNet [24] 49.4 64.3 50.6 69.8
HAIS [3] 43.5 64.1 45.7 69.9
SoftGroup [39] 46.0 67.6 50.4 76.1
Mask3D [35] 55.2 73.7 56.6 78.0
QueryFormer [26] 56.5 74.2 58.3 78.7
MAFT [22] 59.9 76.5 59.6 78.6

EASE (Ours) 60.2 77.2 59.8 78.9

Table 1. Comparison of 3D Instance Segmentation performance
with state-of-the-art approaches on the ScanNetV2 [4] dataset. We
evaluate mean average precision (mAP) with different IoU thresh-
olds over 18 classes on the ScanNetV2 validation / hidden test set.

face challenges in effectively comprehending 3D instances.
To address these limitations, we present a novel edge-aware
framework featuring a semantic guidance network. As re-
ported in Tab. 1, EASE generally outperforms other meth-
ods, achieving new state-of-the-art accuracy in terms of
mAP and mAP50 on both validation (60.2 / 77.2) and hidden
test (59.8 / 78.9) sets. These results confirm that our edge
cues and smart semantic prior benefits the entire network,
leading to high precision in 3D instance segmentation.

S3DIS. In Tab. 2, we evaluate 3DIS performance on Area
5 and 6-fold cross-validation of the S3DIS [1] dataset. For
Area 5 evaluation, we employ data from Area 5 for valida-
tion and the other areas for training. Also, for 6-fold cross-
validation, we assess validation scores across six other ar-
eas and compute the average. In both evaluations, EASE
demonstrates significant performance improvements up to
+2.4 / 2.5 (Area 5) and +0.8 / 0.9 (6-fold) for mAP / mAP50.

ScanNet200. We also demonstrate considerable perfor-
mance on the ScanNet200 validation set (see Tab. 3). Our
method EASE precisely segments 3D instances for various
categories compared to current state-of-the-art approaches.

STPLS3D. Remarkably, our EASE network also achieves
higher scores on the STPLS3D [2] dataset, which con-
sists of outdoor 3D point cloud scenes. EASE exceeds the
second-best results with +1.1 / 1.6 / 1.3 margins in mAP /
mAP50 / mAP25. These results highlight the effectiveness
of our method in understanding diverse real-world 3D in-
stances, both from indoor and outdoor environments.

S3DIS Area 5 S3DIS 6-fold CV

Method AP AP50 Prec50 Rec50 AP AP50 Prec50 Rec50

ASIS [41] – – 55.3 42.4 – – 63.6 47.5
3D-Bonet [43] – – 57.5 40.2 – – 65.6 47.6
3D-MPA [8] – – 63.1 58.0 – – 66.7 64.1
PointGroup [18] – 57.8 61.9 62.1 – 64.0 69.6 69.2
DyCo3D [15] – – 64.3 64.2 – – – –
MaskGroup [45] – 65.0 62.9 64.7 – 69.9 66.6 69.6
SSTNet [24] 42.7 59.3 65.5 64.2 54.1 67.8 73.5 73.4
SoftGroup [39] 51.6 66.1 73.6 66.6 54.4 68.9 75.3 69.8
Mask3D [35] 56.6 68.4 68.7 66.3 64.5 75.5 72.8 74.5
MAFT [22] – 69.1 – – – – – –
QueryFormer [26] 57.7 69.9 70.5 72.2 62.0 73.3 72.7 73.4

EASE (Ours) 59.0 71.6 69.4 68.7 65.3 76.4 73.6 74.6

Table 2. Comparison of 3D Instance Segmentation performance
with state-of-the-art approaches on the S3DIS [1] Area 5 and 6-
fold cross validation set. We evaluate mAP across different IoU
thresholds, along with mean precision (mPrec) and mean recall
(mRec) at a 50% IoU threshold over 13 classes of the S3DIS.

Method mAP mAP50 mAP25

SPFormer [36] 25.2 33.8 39.6
Mask3D [35] 27.4 37.0 42.3
QueryFormer [26] 28.1 37.1 43.4
MAFT [22] 29.2 38.2 43.3
EASE (Ours) 29.9 38.8 44.7

Table 3. Comparison of 3D Instance Segmentation performance
with state-of-the-art approaches on the ScanNet200 [33] val set.

Method mAP mAP50 mAP25

PointGroup [18] 23.3 38.5 48.6
HAIS [3] 35.1 46.7 52.8
SoftGroup [39] 47.3 63.1 71.4
Mask3D [35] 63.4 79.2 85.6
EASE (Ours) 64.5 80.8 86.9

Table 4. Comparison of 3D Instance Segmentation performance
with state-of-the-art approaches on the STPLS3D [2] test dataset.

4.3. Ablation Studies

Effect of Semantic and Edge Modules. In Tab. 5, we eval-
uate the variants of our method w/ and w/o the Semantic
Network (SN) and Edge Prediction Module (EPM). The ad-
dition of two modules improves 3DIS accuracy across all
experiments. The SN especially underscores the signifi-
cance of incorporating rich semantic knowledge for effec-
tive segmentation, achieving +1.3 / 0.7 and + 1.5 / 1.7 im-
provements on mAP / mAP50 for ScanNetV2 and S3DIS,
respectively. EPM further enhances performance via the
auxiliary edge information for edge-aware features, result-
ing in gains of +0.9 / 0.8 and +1.9 / 0.9. Notably, integrating
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Method ScanNet Val S3DIS Area 5

Baseline Semantic Edge mAP / mAP50 mAP / mAP50

✓ - - 58.4 / 75.9 56.6 / 68.4

✓ ✓ - 59.7 / 76.6 58.1 / 70.1

✓ - ✓ 59.3 / 76.7 58.5 / 69.3

✓ ✓ ✓ 60.2 / 77.2 59.0 / 71.6

Table 5. Ablation study to see the effect of our proposed two main
modules: Semantic Network and Edge Prediction Module.

Method ScanNet Val S3DIS Area 5

Usage E-wise Sum Concat mAP / mAP50 mAP / mAP50

- - - 58.4 / 75.9 56.6 / 68.4

fcls ✓ - 58.9 / 76.0 57.8 / 68.5

fcls - ✓ 59.3 / 76.5 58.3 / 70.1

S¨F ✓ - 59.6 / 76.9 58.6 / 69.6

S¨F - ✓ 60.2 / 77.2 59.0 / 71.6

Table 6. Ablation study of leveraging text embeddings to pro-
vide semantic details. fcls represents the classification head in the
Mask Module, and S¨F stands for the Semantic Fusion network.

SN and EPM leads to considerable advances (+1.8 / 1.3 and
+2.4 / 3.2), confirming the effectiveness of each module.
Applications of Text Embeddings. In Tab. 6, we analyze
various applications of text embeddings to determine the
most effective strategy for the functional understanding of
complex 3D instances. We utilize text embeddings for cat-
egory classification from fcls of the Mask Module to boost
classification accuracy. Also, we strengthen basic queries
using the Semantic Fusion (S¨F) network as described in
Sec. 3.2. For experiments with the E-wise Sum, we map
the text embeddings to the same feature space as the basic
queries through MLPs and sum together. While incorporat-
ing semantic cues via element-wise sum enhances 3DIS ac-
curacy, it exhibits limited improvements compared to con-
catenation. By comparison, applying the semantic knowl-
edge across the entire transformer decoder through the S¨F
outperforms using them only for the classification head.
Weight Value of Edge Prediction Loss. To encourage the
network to learn practical edge cues, we utilize an edge pre-
diction network. In particular, we compute the weighted bi-
nary cross-entropy loss to effectively train the edge extrac-
tion head from sparse edge points. Here, we explore the im-
pact of the coefficient value w of Ledge on 3DIS accuracy.
First, as shown in Fig. 5, we empirically find that w influ-
ences the thickness of edges in a 3D scene. In Tab. 7, for
the ScanNet [4] consisting of relatively small-scale scenes,
a smaller value of w (e.g. 2), resulting in thin edges, leads to
higher performance. However, for the vast-scale scenes of

𝜔 = 2 𝜔 = 10 Pseudo Edge Label

Figure 5. Visualization of edge prediction results (red) for dif-
ferent weight values w in the weighted binary cross-entropy loss
Ledge, along with corresponding pseudo-edge label (green).

Feature map w in Ledge

ScanNet Val S3DIS Area 5

mAP / mAP50 mAP / mAP50

F0 2 59.3 / 76.7 56.9 / 68.6

F4 2 59.0 / 76.1 56.7 / 68.5

F0 6 58.9 / 76.3 58.4 / 68.9

F4 6 58.5 / 76.0 58.2 / 68.6

F0 10 58.4 / 75.8 58.5 / 69.3
F4 10 58.5 / 75.7 58.2 / 69.0

Table 7. Ablation study to investigate the impact of varying weight
values w in the weighted binary cross-entropy Ledge, using high
(F0) and low (F4) resolution feature maps for edge prediction.

the S3DIS [1], a higher value of w (e.g. 10) leads to better
performance with thicker edges. We finally observe the cor-
relation between the scene scale and the weight value w; the
optimal value for edge learning is proportional to the scale.
Besides, methods using high-resolution feature maps (e.g.
F0) for edge prediction generally perform better than those
using low-resolution features maps (e.g. F4).

4.4. Qualitative Analyses

Visual Comparison. In this section, we qualitatively con-
firm the usefulness of our novel framework EASE. We visu-
alize the predicted semantic and instance masks of the base-
line model [35] and ours on the ScanNetV2 [4] validation
set, in Fig. 6. We emphasize the key differences using green
and yellow boxes. As shown in the semantic results (Sem.),
ours accurately classifies instances with similar apearances
(e.g., desk and bed, door and cabinet) instead of the base-
line, which incorrectly recognizes them. Also, as illustrated
in the instance mask results (Inst.) of Scene1 and Scene2,
ours segments a single object as one, unlike the baseline,
which splits it into multiple parts. Further, in Scene 3 (Inst.),
ours correctly distinguishes multiple objects (door and cab-
inet) in contrast to the baseline model. These qualitative
results demonstrate that our method provides more detailed
and robust segmentation results than the baseline method.
Impact of Utilizing Semantic Priors. To verify the effec-
tiveness of the Semantic Network, we present t-SNE [38]
visualizations of query features for instances with similar
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Figure 6. Qualitative comparison of 3D Instance Segmentation performance on the ScanNetV2 [4] validation set. We visualize semantic
(Sem.) and instance (Inst.) masks of the baseline model and ours with Ground Truth (GT) masks. The critical differences are emphasized
using green and yellow-colored boxes. Note that the color map (top right) represents semantic labels. Best viewed in color.
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Figure 7. Category probability map (spatial distribution) for
queries with high confidence. The x-axis denotes queries, the y-
axis represents categories, and the z-axis (right) is probabilities.

appearances, which pose challenges for 3DIS models. As
shown in Fig. 8, the baseline (MAFT [22]) model exhibits
disorganized clusters, whereas ours shows relatively distinct
feature space for challenging instances. Further, in Fig. 7,
we visualize the spatial distribution of category probabil-
ity for instance queries. The baseline tends to confuse per-
query categories and predicts multiple categories for each
query with low probability, causing semantic misclassifi-
cations. However, our model EASE overcomes this prob-
lem using semantic priors, providing clearer insight. These
qualitative findings confirm that our semantic network ef-
fectively prompts the network to learn instance-specific se-
mantic knowledge from intelligent text embedding priors.

5. Conclusion
Current 3D instance segmentation approaches often face
challenges in understanding real-world 3D instances rely-
ing solely on geometrical information. Specifically, (i) these
methods suffer from identifying instances with similar ap-
pearances, and (ii) they often misinterpret the spatial ex-
tent of instances, resulting in unclear edges. To tackle these

Sofa Desk Refrigerator Cabinet

Baseline BaselineOurs Ours

Figure 8. t-SNE [38] visualization of query features representing
each instance. Compared to the baseline [22], which produces
disorganized clusters, ours creates more distinct clusters.

challenges, EASE, our novel framework, focuses on con-
text details of text embeddings from the language model as
smart priors, enhancing practical semantic understanding.
Also, we employ the edge prediction module, guiding the
network to reduce misclassifications near edges with edge-
aware features. Our extensive experiments verify the effec-
tiveness of EASE, achieving new state-of-the-art scores.
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