
Making Vision Transformers Truly Shift-Equivariant

Renan A. Rojas-Gomez1 Teck-Yian Lim1 Minh N. Do1,2 Raymond A. Yeh3

1Department of Electrical Engineering, UIUC 2VinUni-Illinois Smart Health Center, UIUC
3Department of Computer Science, Purdue University

{renanar2, tlim11, minhdo}@illinois.edu rayyeh@purdue.edu

Abstract

In the field of computer vision, Vision Transformers (ViTs)
have emerged as a prominent deep learning architecture.
Despite being inspired by Convolutional Neural Networks
(CNNs), ViTs are susceptible to small spatial shifts in the
input data – they lack shift-equivariance. To address this
shortcoming, we introduce novel data-adaptive designs for
each of the ViT modules that break shift-equivariance, such
as tokenization, self-attention, patch merging, and positional
encoding. With our proposed modules, we achieve perfect
circular shift-equivariance across four prominent ViT ar-
chitectures: Swin, SwinV2, CvT, and MViTv2. Additionally,
we leverage our design to further enhance consistency un-
der standard shifts. We evaluate our adaptive ViT models
on image classification and semantic segmentation tasks.
Our models achieve competitive performance across three
diverse datasets, showcasing perfect (100%) circular shift
consistency while improving standard shift consistency.1

1. Introduction

Vision Transformers (ViTs) [11, 12, 20, 24, 25, 48] have
become a strong alternative to convolutional neural networks
(CNNs) in computer vision, superseding their dominance in
image classification and becoming the state-of-the-art model
on ImageNet [9]. Unlike the original Transformer [44] pro-
posed for natural language processing (NLP), ViTs incorpo-
rate suitable inductive biases for computer vision. Consider
image classification, where an input shift does not change
the underlying image label, i.e., the task is shift-invariant.

Several ViTs accredited shift-invariance as the motiva-
tion for the proposed architecture. Wu et al. [48] state that
their ViT model brings “desirable properties of CNNs to the
ViT architecture (i.e. shift, scale, and distortion invariance).”
Similarly, Liu et al. [24] found that “inductive bias that en-
courages certain translation invariance is still preferable for
general-purpose visual modeling.” While existing ViTs in-

1Project website: https://renanrojasg.github.io/shifteq_vit.

corporate such design elements, they still exhibit sensitivity
to spatial input shifts. This motivates us to explore design
principles towards shift-invariance and equivariance in ViTs.

This work delves into the core building blocks of ViTs
and introduces a novel framework that guarantees perfect
circular shift-equivariance within each module. This encom-
passes redesigned versions of the tokenization, self-attention,
patch merging, and positional encoding modules. Our ap-
proach involves performing an input-dependent alignment,
meaning each module’s behavior adapts to the input. Conse-
quently, we denote our modules as (A)daptive. We rigorously
show that our adaptive modules are provably circularly shift-
equivariant and realizable in practical scenarios.

The proposed data-adaptive design enables the construc-
tion of truly circularly shift-invariant ViTs for image classifi-
cation and truly circularly shift-equivariant ViTs for seman-
tic segmentation, achieving 100% circular shift consistency.
Furthermore, it fosters improvements in standard shift con-
sistency while maintaining competitive performance on both
image classification and semantic segmentation tasks.

To demonstrate the practical value of our framework,
we conduct experiments across various ViT architectures
and datasets. These include well-established benchmarks
for image classification (CIFAR-10/100 [18] and ImageNet)
and semantic segmentation (ADE20K [56]). We empirically
show that our design improves shift consistency and achieve
competitive performance on four prominent ViT architec-
tures: Swin [24], SwinV2 [25], CvT [48], and MViTv2 [20].
Our contributions are as follows:
• We introduce a data-adaptive design for key ViT modules –

tokenization, self-attention, patch merging, and positional
encoding – provably achieving circular shift-equivariance.

• By leveraging our adaptive modules, we construct ViT
models that achieve perfect (100%) end-to-end circular
shift consistency, while also improving standard shift con-
sistency, as shown on four established architectures.

• Extensive image classification and semantic segmenta-
tion experiments showcase the effectiveness of our data-
adaptive design in achieving improved consistency and
accuracy under both circular and standard shifts.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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(a) Original tokenization (token). (b) Proposed adaptive tokenization (A-token).

Figure 1. Re-designing ViT’s tokenization towards shift-equivariance: (a) The original patch embedding is sensitive to small input shifts
due to the fixed grid used to split an image into patches. (b) Our adaptive tokenization A-token is a generalization that consistently selects
the group of patches with the highest energy, despite circular input shifts.

2. Related Work

Vision transformers. Originally designed for NLP tasks,
Transformers [44] combine tokenization, positional encod-
ing, and attention mechanisms in a novel architecture. This
was later adapted for computer vision by incorporating in-
ductive biases like shift equivariance, giving rise to the area
of Vision Transformers. Seminal works include: ViT [11],
which splits images into 16 × 16 tokens; Swin [24, 25],
which uses localized attention; CvT [48], which integrates
convolutional layers; and MViT [12, 20], with its multi-scale
pyramid structure. Our work re-examines ViTs’ modules
and presents a novel design that achieves perfect circular
shift-equivariance and enhances standard shift-equivariance.

Recent work proposes an anchoring method [10] to
achieve circularly shift-invariant ViTs for classification. Sim-
ilar to CNN techniques [3], it relies on the polyphase decom-
position to align images before feeding them to a ViT. In con-
trast, we redesign all modules that break shift-equivariance,
obtaining an end-to-end circularly shift-equivariant ViT. Our
design achieves improved circular and linear shift consis-
tency in both classification and semantic segmentation tasks.
Equivariant and invariant CNNs. Prior work [1, 55] have
shown that modern CNNs [14, 19, 39, 42] are not shift-
equivariant due to the usage of pooling layers. To improve
shift-equivariance, Zhang [55] and Zou et al. [57] propose
using lowpass filters (LPF) for anti-aliasing purposes [46].

While anti-aliasing improves shift consistency, the overall
CNN remains not shift-equivariant. To address this, Chaman
and Dokmanic [3] propose Adaptive Polyphase Sampling
(APS), which leverages the input’s polyphase decomposi-
tion to achieve circular shift-equivariance. Rojas-Gomez
et al. [34] improve on APS by proposing a Learnable
Polyphase Sampling (LPS) layer that imposes circular shift-
equivariance. In contrast, our adaptive modules improve
shift-equivariance in ViTs. Notice that CNN methods are not
applicable to ViTs due to their distinct architectures.

Beyond shift-equivariance, broader research studies gen-

eral equivariance [2, 4, 17, 28, 31, 32, 36, 37, 40, 43, 45, 47,
52]. Equivariant networks extend to sets [13, 27, 30, 33, 50,
54], graphs [7, 8, 16, 22, 23, 26, 29, 41, 51], among others.

3. Preliminaries
We review the basics before introducing our approach,
including the aspects of current ViTs that break shift-
equivariance. For readability, the concepts are described in
1D. In practice, these are extended to multi-channel images.
Equivariance. Conceptually, equivariance describes a func-
tion’s input and output relation under predefined transforma-
tions. For example, in image segmentation, shift equivariance
means that shifting the input results in shifting the output
mask. Following previous work [3, 34], our analysis focuses
on shift equivariance under circular shifts, denoted as:(

SNx
)
[n] = x[(n+ 1) mod N ],x ∈ RN . (1)

This ensures that a shifted signal x remains within its support.
Following Rojas-Gomez et al. [34], we say a function f :
RN 7→ RM is SN , {SM , I}-equivariant or shift-equivariant
iff ∃ S ∈ {SM , I} s.t.

f(SNx) = Sf(x) ∀x ∈ RN , (2)

where I denotes the identity mapping. This definition care-
fully handles the case where N > M . For instance, when
downsampling by a factor of two, an input shift by one
should ideally induce an output shift by 0.5, which is not
realizable on the integer grid. This 0.5 has to be rounded up
or down, hence a shift SM or a no-shift I , respectively.
Invariance. For classification, a label remains unchanged
when the image is shifted, i.e., it is shift-invariant. A function
f : RN 7→ RM is SN , {I}-equivariant or shift-invariant iff:

f(SNx) = f(x) ∀x ∈ RN . (3)

A common way to design a shift-invariant function under
circular shifts is via global spatial pooling [21], defined as
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(a) Window-based self-attention (WSA) (b) Proposed adaptive window-based self-attention (A-WSA)

Figure 2. Re-designing window-based self-attention towards shift-equivariance: (a) The window-based self-attention WSA breaks shift
equivariance by selecting windows without considering their input properties. (b) Our proposed adaptive window-based self-attention selects
the best grid of windows based on their average energy, obtaining windows comprised of the same tokens despite circular input shifts.

g(x) =
∑

m x[m]. Given a shift-equivariant function f :∑
m

f(SNx)[m] =
∑
m

Sf(x)[m] =
∑
m

f(x)[m]. (4)

However, ViTs using global spatial pooling after extracting
features are not shift-invariant, as layers such as tokenization,
self-attention, and patch merging break shift-equivariance.
Tokenization (token). ViTs split an input x ∈ RN into
non-overlapping patches of length L and project them into a
latent space to generate tokens. This operation is defined as:

token(x) =XE ∈ R
N
L ×D, (5)

where X = reshape(x) =
[
X0 . . . XN

L −1

]⊤
∈

RN
L ×L is comprised by non-overlapping patches of x:

Xk = x[Lk : L(k + 1)− 1] ∈ RL, (6)

and E ∈ RL×D. Note that token lacks shift-equivariance,
since patches are extracted based on a fixed grid. So, different
patches are obtained from shifted inputs, as shown in Fig. 1a.
Self-Attention (SA). In ViTs, self-attention is defined as:

SA(T ) = softmax(QK⊤/
√
D′)V ∈ RM×D′

, (7)

where T =
[
T0 . . . TM−1

]⊤ ∈ RM×D denotes input
tokens, and softmax is the softmax normalization along
rows. Queries Q, keys K and values V correspond to:

Q = TEQ, K = TEK , V = TEV , (8)

with linear projections EQ/K/V ∈ RD×D′
. The term

softmax
(
QK⊤/

√
D′

)
∈ [0, 1]M×M ensures that the out-

put token is a convex combination of the computed values.
Window-based self-attention (WSA). A crucial limitation of
self-attention is its quadratic computational cost with respect
to the number of input tokens M . To alleviate this, window-
based self-attention [24] groups tokens into local windows
and then performs self-attention within each window. Given

input tokens T ∈ RM×D and a window size W , window-
based self-attention WSA(T ) ∈ RM×D′

is defined as:

WSA(T ) =
[
SA

(
T̄

(0)
W

)
; . . . ; SA

(
T̄

(M
W −1)

W

)]
, (9)

where T̄ (k)
W =

[
TWk . . . TW (k+1)−1

]⊤ ∈ RW×D is the kth

window comprising nearby tokens (W consecutive rows of
T ). Notice that Eq. (9) use semicolons (;) as row separators.

Swin architectures [24, 25] take advantage of WSA to
decrease the computational cost while adopting a shifting
scheme (at the window level) to allow long-range connec-
tions. We note that WSA is not shift-equivariant, e.g., any cir-
cular shift that is not a multiple of the window size changes
the tokens within each window, as illustrated in Fig. 2a.
Patch merging (PMerge). Given a patch length P and input
tokens T =

[
T0 . . . TM−1

]⊤ ∈ RM×D, patch merging
is defined as a linear projection of vectorized token patches:

PMerge(T ) = T̃ Ẽ ∈ R
M
P ×D̃, (10)

with T̃ =
[
vec(T̄ (0)

P ) . . . vec(T̄
(M

P −1)

P )

]⊤
.

Here, vec(T̄ (k)
P ) ∈ RPD is the vectorized version of the

kth patch T̄
(k)
P =

[
TPk . . . TP (k+1)−1

]⊤ ∈ RP×D, and
Ẽ ∈ RPD×D̃ is a linear projection. PMerge reduces the
number of tokens while increasing their length, i.e., D̃ > D.
This follows the CNN strategy of increasing the number
of channels using convolutional layers while decreasing the
spatial resolution via pooling. Since patches are also selected
using a fixed grid, PMerge breaks shift-equivariance.
Relative position embedding (RPE). As self-attention is
permutation equivariant, spatial information must be explic-
itly incorporated. Typically, RPE adds a position matrix rep-
resenting the relative distance between queries and keys:

SA(rel)(T ) = softmax

(
QK⊤
√
D′

+E(rel)
)
V , (11)

with E(rel)[i, j] =B(rel)[p
(Q)
i − p

(K)
j ]. (12)
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Here, E(rel) ∈ RM×M is built from an embedding lookup
table B(rel) ∈ R2M−1 and the index [p

(Q)
i − p

(K)
j ] denotes

the distance between the ith query token at position p
(Q)
i and

the jth key token at position p
(K)
j . By relying on the relative

token distance, RPE allows ViTs to capture spatial relation-
ships, e.g., knowing if two tokens are spatially nearby.

4. Circularly Shift-equivariant ViT
To achieve circular shift-equivariance, we redesign ViT’s to-
kenization, self-attention, patch merging, and positional em-
bedding modules. As equivariance is preserved under compo-
sitions, resulting ViTs become end-to-end shift-equivariant.
Adaptive tokenization (A-token). Token splits an input
into patches in a fixed manner, breaking shift-equivariance.
We propose a data-dependent alternative that selects patches
that maximize a shift-invariant function, resulting in the same
tokens regardless of input shifts. Given an input x ∈ RN

and a patch length L, our adaptive tokenization is defined as:

A-token(x) =X(m⋆)E ∈ R
N
L ×D, (13)

with m⋆ = argmax
m∈{0,...,L−1}

F (X(m)E). (14)

Here, X(m) = reshape(Sm
N x) ∈ RN

L ×L is the reshaped
version of the input circularly shifted by m samples, E ∈
RL×D is a linear projection and F : RN

L ×D 7→ R is a shift-
invariant function. Notice that m ∈ {0, . . . , L− 1} since the
token representation of an input is only affected by circular
shifts up to the patch size L. For any shift greater or equal
than L, there is a shift smaller than L that generates the same
tokens. So, an input can be represented in L distinct ways.
Fig. 1b shows our circularly shift-equivariant tokenization.

A-token maximizes a shift-invariant function to ensure
the same token representation regardless of circular input
shifts. Next, we analyze a core property of X(m)E to prove
that our adaptive tokenization is circularly shift-equivariant.

Lemma 1. L-periodic shift-equivariance of tokenization.
Let input x ∈ RN have a token representation

X(m)E ∈ R⌊N/L⌋×D. If x̂ = SNx (a shifted input),
then its token representation X̂(m)E corresponds to:

X̂(m)E = S⌊(m+1)/L⌋
⌊N/L⌋ X((m+1) mod L)E. (15)

This implies that x and x̂ are characterized by the same
L token representations, up to a circular shift along the
token index (row index of X((m+1) mod L)E).

Proof. By definition, X̂(m) = reshape(Sm+1
N x). Ex-

pressing m+1 as quotient and remainder for divisor L, the re-
mainder indicates matching token representations (represen-
tations of x and x̂ comprised of the same tokens), while the
quotient indicates the one-to-one correspondence between
their tokens. The proof is deferred to Appendix Sec. A1.

Lemma 1 shows that, for any index m̂, there exists m =
(m̂+ 1) mod L such that X̂(m̂) and X(m) are equal up to a
circular shift. In Claim 1, we use this property to demonstrate
the shift-equivariance of our proposed adaptive tokenization.

Claim 1. Shift-equivariance of adaptive tokenization.
If F in Eq. (14) is shift-invariant, then A-token is

shift-equivariant, i.e., ∃ mq ∈ {0, . . . , L− 1} s.t.

A-token
(
SNx

)
= Smq

⌊N/L⌋A-token(x). (16)

Proof. Given m⋆ in Eq. (14) and Lemma 1, ∃ m̂ such that
X̂(m̂)E is a circularly shifted version of X(m⋆)E. Since x
and SNx have the same L token representations and given
a shift-invariant F , we show m̂ maximizes F (X̂(m)E).
So, A-token(SNx) is a circularly shifted version of
A-token(x). See Appendix Sec. A1 for the full proof.

Adaptive window-based self-attention (A-WSA). WSA’s
window partitioning is shift-sensitive, as different windows
are obtained when the input tokens are circularly shifted by a
non-multiple of the window size. We propose an adaptive to-
ken shifting method to obtain a consistent window partition.
By selecting the offset based on the energy of all possible
window partitions, our method generates the same windows
regardless of circular shifts in the input tokens.

Given tokens T =
[
T0 . . . TM−1

]⊤ ∈ RM×D and
a window size W , let vW ∈ R⌊M

W ⌋ consist of the average
ℓp-norm or energy of each window (W adjacent tokens):

vW [k] =
1

W

W−1∑
l=0

∥T(Wk+l) mod M∥p. (17)

Then, the energy of the windows resulting from circularly
shifting the input tokens by m indices corresponds to v

(m)
W ∈

R⌊M
W ⌋, where v

(m)
W [k] is the energy of the kth window:

v
(m)
W [k] =

1

W

W−1∑
l=0

∥(Sm
MT )(Wk+l) mod M︸ ︷︷ ︸
= T(Wk+m+l) mod M

∥p. (18)

Based on the window energy in Eq. (18), we define the
adaptive window-based self-attention as:

A-WSA(T ) = WSA
(
Sm⋆

M T
)
∈ RM×D′

, (19)

with m⋆ = argmax
m∈{0,...,W−1}

G
(
v
(m)
W

)
, (20)

where G : R⌊M
W ⌋ 7→ R is a shift-invariant function. By

choosing windows based on m⋆, A-WSA generates the same
group of windows despite input shifts, as shown in Claim 2.

Claim 2. If G in Eq. (19) is shift invariant, then A-WSA
is shift-equivariant.

5571



Proof. Given two groups of tokens related by a circular shift,
and a shift-invariant function G, shifting each group by its
maximizer in Eq. (19) induces an offset that is a multiple of
W . So, both groups are partitioned in the same windows up
to a circular shift. Fig. 2b illustrates this consistent window
grouping. The proof is deferred to Appendix Sec. A1.

Adaptive patch merging (A-PMerge). As shown in Sec. 3,
PMerge consists of a vectorization of P neighboring tokens
followed by a projection from RPD to RD̃. So, it can be
expressed as a strided convolution with D̃ output channels,
stride factor P and kernel size P . We use this property to pro-
pose a circularly shift-equivariant patch merging.

Claim 3. PMerge corresponds to a strided convolution
with D̃ output channels, striding P and kernel size P .

Proof. Expressing the linear projection Ẽ as a convolutional
matrix, PMerge is equivalent to a convolution sum with
kernels comprised by columns of Ẽ. Let the input tokens
be expressed as T =

[
t0 . . . tD−1

]
∈ RM×D, where

tj ∈ RM corresponds to the jth element of every input token.
Then, PMerge(T ) ∈ RM

P ×D̃ can be expressed as:

PMerge(T ) = D(P )(
[
y0 . . . yD̃−1

]
), (21)

with yk =

D−1∑
j=0

tj ⊛ h(k,j) ∈ RM , (22)

where D(P ) ∈ RM
P ×M is a striding operator of factor P , ⊛

denotes circular convolution and {h(k,j)}k,j are kernels of
length P . Proof is deferred to Appendix Sec. A1.

Following Claim 3, to attain circular shift-equivariance,
we adopt APS [3] + LPF [55] as the striding operator. Let
APS(P ) denote the polyphase sampling layer of striding fac-
tor P . Then, A-PMerge(T ) ∈ RM

P ×D̃ corresponds to:

A-PMerge(T ) = APS(P )(
[
y0 . . . yD̃−1

]
). (23)

Specifically, APMerge achieves circular shift-equivariance
by adaptively choosing M

P tokens based on their ℓ2 norm.
Adaptive RPE. While the original relative distance matrix
E(rel) is computed by taking into account linear shifts, this
does not match our circular shift assumption; See Fig. 3 for
a visualization. To obtain circular shift-equivariance, relative
distances must consider the periodicity induced by circu-
lar shifts. Hence, we propose the adaptive relative position
matrix E(adapt) ∈ RM×M , where each entry is defined as:

E(adapt)[i, j] =B(adapt)
[
(p

(Q)
i − p

(K)
j ) modM

]
, (24)

to encode the distance between the ith query token at po-
sition p

(Q)
i and the jth key token at position p

(K)
j . Here,

B(adapt) ∈ RM is the trainable lookup table comprised by rel-
ative positional embeddings. Notice that B(adapt) is smaller

than the original B(rel) ∈ R(2M−1), since relative distances
are now measured in a circular fashion between M tokens.
Segmentation with equivariant upsampling. Segmentation
models with ViT backbones still rely on CNN decoders,
e.g., Swin [24] uses UperNet [49] as segmentation head.
As shown in previous work [34], achieving circular shift-
equivariance in CNN decoders requires keeping track of the
pooling indices to put features back to their original positions
during upsampling. Unlike CNNs, our ViT models also use
an adaptive window selection. So, keeping track of window
indices and accounting for their shifts becomes crucial to
obtain circularly shift-equivariant ViT-based segmenters.

5. Experiments
We conduct experiments on image classification and se-
mantic segmentation on four ViT architectures: Swin [24],
SwinV2 [25], CvT [48], and MViTv2 [20]. We evaluate their
performance under circular and standard shifts. For circu-
lar shifts, the experiments match our theory, so our models
achieve 100% circular shift consistency (up to numerical er-
rors). We further run experiments on standard shifts to study
our method’s performance under this theory-to-practice gap,
where there is loss of information at the image boundaries.

As detailed in Section 4, A-token and A-WSA use shift-
invariant functions F and G, respectively, to ensure consis-
tent token representations under circular shifts. After exten-
sive benchmarking, in both cases, we selected the ℓp-norm as
shift-invariant function. This allows a fast energy computa-
tion and diminishes problems caused by seemingly identical
energy values due to numerical precision limitations.

5.1. Image classification under circular shifts

Experiment setup. We conduct experiments on CIFAR-
10/100 [18], and ImageNet [9]. In all cases, images are re-
sized to the resolution used by each model’s original imple-
mentation (224× 224 for Swin-T, CVT-13, and MViTv2-T;
256 × 256 for SwinV2-T). This allows us to use the same
architecture across all datasets, i.e., everything follows the
original number of layers and blocks. To avoid boundary con-
ditions, circular padding is used in all convolutional layers,
and circular shifts are used for evaluating shift consistency.

On CIFAR-10/100, all models were trained for 100
epochs on two GPUs with batch size 48. The scheduler set-
tings of each model were scaled accordingly. On ImageNet,
all models were trained for 300 epochs on eight GPUs using
their default batch sizes. Refer to Sec. A3 for full experi-
mental details. For CIFAR-10/100, we report average and
standard deviation metrics over five seeds. Due to computa-
tional limitations, we report on a single seed for ImageNet.
Evaluation metric. We report the top-1 classification accu-
racy on the original dataset without any shifts. To quantify
shift-invariance, we report the circular shift consistency (C-
Cons.), which counts how often the predicted labels are
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(a) Shifted tokens (b) Original relative distance (c) Proposed relative distance

Figure 3. Shift consistent relative distance: (a) Circularly shifted queries and keys (M = 4). (b) Original relative distance used to build the
RPE matrix: p(Q)[i]− p(K)[j]. Since it does not consider the periodicity of circular shifts, relative distances are not preserved. (c) Proposed
relative distance: (p(Q)[i]− p(K)[j])mod M . Our proposed distance is consistent with circular shifts, leading to a shift equivariant RPE.

Method
Circular Shift Standard Shift

CIFAR10 CIFAR-100 CIFAR10 CIFAR-100
Top-1 Acc. C-Cons. Top-1 Acc. C-Cons. Top-1 Acc. S-Cons. Top-1 Acc. S-Cons.

Swin-T 90.15± .18 83.30± .61 71.01± .27 65.32± .69 90.11± .21 86.35± .25 71.12± .14 69.39± .52
A-Swin-T (Ours) 93.39± .12 99.99± .01 75.11± .10 99.99± .01 93.50± .19 96.00± .08 75.12± .28 87.70± .57

SwinV2-T 89.08± .21 89.16± .08 69.78± .22 75.23± .20 89.08± .21 91.68± .25 69.67± .32 80.42± .41
A-SwinV2-T (Ours) 91.64± .21 99.99± .01 72.73± .23 99.96± .01 91.91± .12 95.81± .17 72.98± .13 88.74± .40

CvT-13 90.06± .23 75.80± 1.2 66.61± .33 50.29± 1.68 90.05± .20 84.66± 1.26 66.06± .39 63.03± .73
A-CvT-13 (Ours) 93.87± .14 100± .00 76.19± .32 100± .00 93.71± .10 96.47± .21 73.04± .23 86.96.± .55

MViTv2-T 96.00± .06 86.55± 1.2 80.18± .34 74.82± .73 96.14± .06 91.34.± 1.26 80.28± .38 77.92.± .93
A-MViTv2-T (Ours) 96.41± .22 100± .00 81.39± .11 100± .00 96.61± .11 98.36.± .16 81.17± .18 92.95.± .16

Table 1. CIFAR-10/100 classification results: Top-1 accuracy and shift consistency (%) under circular and standard shifts. Bold numbers
indicate improvement over the corresponding baseline architecture. Mean and standard deviation reported over five random seeds.

identical under two different circular shifts. Given a dataset
D = {I}, C-Cons. computes:

1

|D|
∑
I∈D

E∆1,∆2

[
1
[
ŷ(S∆1(I)) = ŷ(S∆2(I))

]]
, (25)

where 1 denotes the indicator function, ŷ(I) the class pre-
diction for I , S the circular shift operator, and ∆1 =
(h1, w1),∆2 = (h2, w2) horizontal and vertical offsets.
Results. We report performance in Tab. 1 and Tab. 2 for
CIFAR-10/100 and ImageNet, respectively. Overall, we ob-
serve that our adaptive ViTs achieve near 100% shift con-
sistency in practice. The remaining inconsistency is caused
by errors inherent in numerical precision and tie-breaking
that can lead to a wrong selection of tokens or windows. Be-
yond consistency improvements, our method also improves
classification accuracy across all scenarios.

5.2. Image classification under standard shifts

Experiment setup. To study the boundary effect on shift-
invariance, we further conduct experiments using standard
shifts. As these are no longer circular, the image content
may change at its borders, i.e., perfect shift consistency
is no longer guaranteed. For CIFAR-10/100, input images
were resized to the resolution used by each model’s original
implementation. Default data augmentation and optimizer
settings were used for each model while training epochs and
batch size followed those used in the circular shift settings.
Evaluation metric. We report top-1 classification accuracy
on the original dataset (without any shifts). To quantify

Method
Circular Shift Standard Shift

Top-1 Acc. C-Cons. Top-1 Acc. S-Cons.

Swin-T 78.5 86.68 81.18 92.41
A-Swin-T (Ours) 79.35 99.98 81.6 93.24

SwinV2-T 78.95 87.68 81.76 93.24
A-SwinV2-T (Ours) 79.91 99.98 82.10 94.04

CvT-13 77.01 86.87 81.59 92.80
A-CvT-13 (Ours) 77.05 100 81.48 93.41

MViTv2-T 77.36 90.03 82.21 93.88
A-MViTv2-T (Ours) 77.46 100 82.4 94.08

Table 2. ImageNet classification results: Top-1 accuracy and shift
consistency (%) under circular and standard shifts. Bold numbers
indicate improvement over the corresponding baseline architecture.

shift-invariance, we report the standard shift consistency
(S-Cons.), which follows the same principle as C-Cons
in Eq. (25), but uses a standard shift instead of a circular
one. For CIFAR-10/100, we use zero-padding at the bound-
aries due to the small image size. For ImageNet, follow-
ing Zhang [55], we perform an image shift followed by a
center-cropping of size 224 × 224. This produces realistic
shifts and avoids a particular choice of padding.
Results. Tabs. 1 and 2 report performance under standard
shifts on CIFAR-10/100 and ImageNet, respectively. Due
to boundary conditions, our method does not achieve 100%
shift consistency. However, our adaptive models consistently
outperform their baselines in terms of S-Cons. Our models
also achieve higher classification performance in all settings
except for CvT on ImageNet. Results highlight the practical
value of our data-adaptive approach despite the gap in theory.
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Figure 4. Consistent token representations. Shifting inputs by a small offset leads to large deviations (non-zero errors) in the representations
when using default ViTs (e.g., CvT-13). In contrast, our proposed models (e.g., A-CvT-13) achieve an absolute zero-error across all blocks.

Model # Params
Throughput
(images/s)

Relative
change (%)

Swin-T 28M 704.07 −
A-Swin-T (Ours) 28M 633.35 10.04

SwinV2-T 28M 470.81 −
A-SwinV2-T (Ours) 28M 405.01 13.98

CvT-13 20M 535.5 −
A-CvT-13 (Ours) 20M 492.12 10.69

MViTv2-T 24M 439.5 −
A-MViTv2-T (Ours) 24M 352.06 19.9

Table 3. Inference throughput: Absolute inference throughput
(images/s) of our adaptive ViTs and their default versions. Relative
change shows the throughput decrease w.r.t. the default models.

Module Abs. runtime (ms) Delta (ms)

Tokenization 8.37 −
A. Tokenization (Ours) 35.89 +27.52

Patch Merging {S2, S3, S4} 0.47, 0.45, 0.45 −
A. Patch Merging (Ours) 7.68, 4.47, 3.09 +7.21, +4.02, +2.64

Window Selection Not applied −
A. Window Selection (Ours) 7.63 +7.63

RPE 2.84 −
A. RPE (Ours) 9.91 +7.07

Table 4. Runtime of adaptive ViT modules: Inference runtime of
our adaptive ViT modules and their default versions. Delta indicates
the absolute time difference w.r.t. the default modules.

5.3. Consistency of tokens to input shifts

We evaluate the effect of small circular input shifts in the to-
kens obtained by our adaptive models. We verify the stability
of our A-CvT-13 model by applying a circular shift of 1 row
and 1 column to the input image, computing its tokens, and
calculating their absolute difference to those of the unshifted
image. Fig. 4 shows the absolute token difference of an Im-
ageNet test sample at all three blocks of A-CvT-13, each
with a different resolution. Similar to previous work [3], we
illustrate errors for the channels with the highest energy.

In contrast to the large deviations of the default CvT-
13 caused by the input shift, the tokens generated by our
proposed A-CvT-13 model remain unaltered, as theoretically
shown, leading to a circularly shift-equivariant ViT model.

5.4. Throughput and runtime analysis

We evaluate the inference throughput, measured in processed
images per second, of our adaptive ViTs and modules over
100 forward passes (batch size 128, default image size per

Backbone
Circular Shift Standard Shift

mIoU mASCC mIoU mASSC

Swin-T 42.93 87.32 44.2 93.37
A-Swin-T (Ours) 43.44 100 44.43 93.48

SwinV2-T 43.86 88.16 44.26 93.23
A-SwinV2-T (Ours) 44.42 100 46.11 93.59

Table 5. Semantic segmentation performance: Segmentation ac-
curacy and shift consistency (%) of our adaptive UperNet model
equipped with A-Swin and A-SwinV2 backbones.

model) on a single NVIDIA Quadro RTX 5000 GPU.
Model inference. We report the throughput of our adaptive
ViTs and their default versions. We also measure the relative
change, which corresponds to the throughput decrease with
respect to the default ViT models.

Tab. 3 shows our adaptive models exhibit less than a
20% decrease in throughput w.r.t. the default models, while
improving in shift consistency and classification accuracy
without increasing the number of trainable parameters.
Modules runtime. We compare the runtime of our adaptive
modules to that of the default ones. Tokenization, patch
merging and window selection are evaluated on A-Swin,
while RPE is evaluated on A-MViTv2 (A-Swin windows are
comprised of the same tokens, so its RPE remains unaltered).

Tab. 4 shows the runtime of our adaptive modules, which
slightly increases over the default runtime. This is particu-
larly true for the adaptive RPE, where the main difference
lies in the distance interpretation (circular vs. linear). While
our adaptive tokenization has the largest increase by operat-
ing on full-size images, subsequent patch merging modules
operate on smaller representations and are more efficient.

5.5. Semantic segmentation under circular shifts

Experiment setup. We conduct semantic segmentation ex-
periments on the ADE20K dataset [56] using A-Swin and
A-SwinV2 models as backbones and compare them against
their default versions. Following previous work [24], we use
UperNet [49] as the segmentation decoder. Similar to our
classification settings under circular shifts, all convolutional
layers in the UperNet model use circular padding to avoid
boundary conditions, and circular shifts are used to measure
shift consistency. Models are trained for 160K iterations on
a total batch size of 16 using the default augmentation.
Evaluation metric. For segmentation performance, we re-
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Image Shifted Image SwinV2 + UperNet Predictions A-SwinV2 + UperNet Predictions (Ours)

Figure 5. Segmentation under standard shifts: Our A-SwinV2 + UperNet model improves robustness to input shifts over the original
model, generating consistent predictions while improving accuracy. Examples of prediction changes due to shifts are highlighted in red.

port the mean intersection over union (mIoU) on the original
dataset (without any shifts). For shift-equivariance, we re-
port the mean-Average Segmentation Circular Consistency
(mASCC) which counts how often the predicted pixel la-
bels (after shifting back) are identical under two different
circular shifts. Given a dataset D = {I}, mASCC computes

1

|D|
∑
I∈D

E∆1,∆2

[
1

HW

H,W∑
u=1,v=1

1
[

S−∆1 ŷ(S∆1(I))[u, v] = S−∆2 ŷ(S∆2(I))[u, v]
]]

, (26)

where H,W correspond to the image height and width, and
[u, v] indexes the class prediction at pixel (u, v).
Results. Tab. 5 shows classification accuracy and shift con-
sistency for UperNet segmenters using Swin-T and SwinV2-
T backbones. Following the theory, our adaptive models
achieve 100% mASCC (perfect circular shift consistency),
while improving on segmentation accuracy.

5.6. Semantic segmentation under standard shifts

Experiment setup. As in the circular shift scenario, mod-
els are trained for 160K iterations with a total batch size of
16 using the default data augmentation. To evaluate shift-
equivariance under standard shifts, we report the mean-
Average Semantic Segmentation Consistency (mASSC),
which counts how often the predicted pixel labels (after
shifting back) are equal under two different standard shifts.
Notice that mASSC ignores the boundary pixels in its compu-
tation as standard shifts lead to changes in boundary content.
Results. Tab. 5 shows results on the standard shift scenario.
As anticipated, changes at image boundaries prevent perfect
shift-equivariance. Regardless, our models improve segmen-
tation accuracy and shift consistency, with a notable improve-
ment on SwinV2-T. See Fig. 5 for segmentation results.

5.7. Ablation study

We study the impact of our adaptive ViT framework by
systematically removing individual modules. Ablations are
conducted on our A-Swin-T model trained on CIFAR-10

Configuration Top-1 Acc. C-Cons.

A-Swin-T (Ours) 93.39± .13 100
(i) No A-token 93.66± .19 96.29± .20
(ii) No A-WSA 93.24± .15 95.62± .54

(iii) No A-PMerge 91.67± .10 94.62± .11

Swin-T (Default) 90.15± .18 83.30± .61

Table 6. Ablation study: Effect of our shift-equivariant ViT mod-
ules on classification accuracy and shift consistency (%). Configu-
rations progressively evaluated on Swin-T under circular shifts.

under circular shifts. Accuracy and circular shift consistency
mean and standard deviation are computed over five seeds.

Results are reported in Tab. 6. Our full model improves
circular shift consistency by more than 3.5% over A-Swin-T
without A-token, while slightly decreasing classification
accuracy by 0.27%. The use of A-WSA improves both classi-
fication accuracy and shift consistency. Finally, A-PMerge
improves classification accuracy by approximately 1.7% and
shift consistency by more than 5%. Overall, all adaptive mod-
ules are needed to achieve 100% circular shift consistency.

6. Conclusion
We propose a family of ViTs that are circularly shift-
invariant and equivariant. We redesigned four ViT modules:
tokenization, self-attention, patch merging, and relative
position embedding to guarantee circular shift-invariance
and equivariance theoretically. Leveraging these modules,
we construct data-adaptive versions of prominent ViTs,
making them end-to-end circularly shift-equivariant. When
matching our theoretical setup, these models exhibit
perfect (100%) circular shift consistency and outperform
their baselines on image classification and segmentation.
Furthermore, under standard shifts where image boundaries
deviate from our assumptions, our adaptive models remain
more resilient to input shifts. Notably, they maintain
task performance on par with or exceeding the baselines,
highlighting the practical value of our design.
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