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Figure 1. Concept-context structure of the ConCon-Chi dataset. Excerpt from the dataset structure (see Fig. 4). Each row represents
images of a concept (concept name in Color) and each column images of a context (context kind in Black and context in Grey). The caption
for an image is formed by the composition of the context with the concept (replacing X/Y with the concept textual identifier).

Abstract

While recent Vision-Language (VL) models excel at
open-vocabulary tasks, it is unclear how to use them with
specific or uncommon concepts. Personalized Text-to-
Image Retrieval (TIR) or Generation (TIG) are recently in-
troduced tasks that represent this challenge, where the VL
model has to learn a concept from few images and respec-
tively discriminate or generate images of the target con-
cept in arbitrary contexts. We identify the ability to learn
new meanings and their compositionality with known ones
as two key properties of a personalized system. We show
that the available benchmarks offer a limited validation of
personalized textual concept learning from images with re-
spect to the above properties and introduce ConCon-Chi

*Equal Contribution.

as a benchmark for both personalized TIR and TIG, de-
signed to fill this gap. We modelled the new-meaning con-
cepts by crafting chimeric objects and formulating a large,
varied set of contexts where we photographed each ob-
ject. To promote the compositionality assessment of the
learned concepts with known contexts, we combined dif-
ferent contexts with the same concept, and vice-versa. We
carry out a thorough evaluation of state-of-the-art meth-
ods on the resulting dataset. Our study suggests that fu-
ture work on personalized TIR and TIG methods should fo-
cus on the above key properties, and we propose principles
and a dataset for their performance assessment. Dataset:
https://doi.org/10.48557/QJ1166 and code:
https://github.com/hsp-iit/concon-chi_
benchmark.
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1. Introduction

Recent Vision-Language (VL) models for discriminative
and generative tasks [18, 25, 26] excel at associating textual
descriptions with images. This resulted in a paradigm shift
from closed to open-vocabulary versions of several com-
puter vision tasks. In these settings, the model is not bound
to a closed set of predetermined classes but can operate on
free-form textual descriptions. However, it can be difficult
for a user to formulate a description such that the VL model
returns the expected output [22, 32]. The problem boils
down to finding a text input whose encoding is close to the
visual embedding of the target concept. Since this mapping
is typically learned from Web-scale data, crafting effective
descriptions for uncommon, novel or specific concepts, is
challenging, thus hampering performance of VL models.

To represent this challenge, the “personalized” versions
of Text-to-Image Retrieval [5] (TIR) and Text-to-Image
Generation [6] (TIG) have been recently proposed. The
tasks consist of learning a user-specific concept using a few
images and then performing retrieval (TIR) or generation
(TIG) of such concept in a known context. Another similar
task recently proposed is Zero-Shot Composed Image Re-
trieval (ZS-CIR) [2, 30], the retrieval of a reference image
modified according to a relative caption [35].

Due to lack of benchmarks for personalization tasks,
many works proposed their method alongside a new dataset.
However, most of these benchmarks lack two key properties
necessary for a thorough evaluation of personalized concept
learning: novel concepts and compositional structure.

Existing datasets use, as concepts, instances of com-
mon objects (e.g., in PerVL, clothing items from Deep-
Fashion2 [8]). However, these allow to evaluate the learn-
ing of new words for known concepts (closely related to
synonym matching, or instance identification), rather than
new concepts. To simulate a realistic personalization set-
ting, inspired by [17], we introduce chimeric concepts: ob-
jects created by the union of two unrelated existing concepts
(see Fig. 2).

The number and variability of contexts in which a
concept appears is also underrepresented in personalized
TIR/TIG benchmarks and this hampers the compositional-
ity assessment of the newly learned concept with known
contexts. Conversely, in a personalized TIR dataset mul-
tiple concepts should also appear in a same context, to pre-
vent a method from attaining high performance by just at-
tending to the context and disregarding the concept in the
query (“context bias”, pointed out also in ZS-CIR bench-
marks [2, 30]). To avoid both these problems, we formu-
lated a large, varied, set of contexts for each concept, while
also ensuring that each context can be composed with sev-
eral concepts. As a result, the dataset has a concept-context
matrix structure (Fig. 1).

Our contributions are as follows:

• We highlight two key properties of personalized textual
concept learning from images: learning new meanings
and composing them with known ones; we propose the
design of ConCon-Chi to model this problem.

• By evaluating on ConCon-Chi we show the limitations of
state-of-the-art methods with respect to these properties.

• We release the dataset as a twofold benchmark for per-
sonalized TIR and TIG.
In the remainder of the paper, we compare related

datasets in Sec. 2; we present ConCon-Chi in Sec. 3; we
present our study for personalized TIR in Sec. 4 and for per-
sonalized TIG in Sec. 5. We report conclusions in Sec. 6.

2. Related Work

Learning Out Of Vocabulary (OOV) words. Learning
textual concept representations from images can be seen as
the multi-modal version of the NLP task of learning OOV
word embeddings from a few examples [1] or the word def-
inition [10, 11, 29]. We took inspiration from the Chimera
dataset [17], which differentiates the problem of learning to
associate new words with existing meanings (named enti-
ties, synonyms, aliases) from the one of learning new mean-
ings, and models the latter with chimeric words that incor-
porate two unrelated concepts in a single one.

Personalized Text-to-Image Retrieval (TIR). Cohen
et al. [5] introduced “Personalized Vision & Language”
(PerVL), a setting where the vocabulary of a VL model
is expanded with pseudo-tokens whose embeddings are
learned from few images of user-specific concepts. The
benchmark includes a retrieval and an instance segmen-
tation dataset obtained by re-annotating images respec-
tively from DeepFashion2 [8] and YouTube-VOS [38] with
concept-context captions. PerVL includes many concept in-
stances, which are however restricted to fashion or common
items; moreover, it counts very few contexts per concept
and a single concept per context, suffering from context
bias. To tackle the proposed benchmark the authors pro-
pose PALAVRA, which we evaluate in this study.

The setting of personalized retrieval has been extended
to videos [12, 39]. Recent work [24] proposed a similar ap-
proach to transfer CLIP [25] to a downstream image classi-
fication task by optimizing the class names.

Zero-Shot Composed Image Retrieval (ZS-CIR). This
task can be seen as one-shot personalized TIR, where the
reference image is the concept, and the relative caption
the context. Thus personalization methods as PALAVRA
have been evaluated for ZS-CIR [2]. Similarly, we consider
methods as Pic2Word [30] and SEARLE [2] for evaluation
on the proposed personalized TIR benchmark. However,
we remark that the two settings are different. In recent ZS-
CIR datasets (e.g., CIRR [20] and CIRCO [2]), images are
drawn from an open domain (respectively NLVR2 [33] and
COCO [19]), thus concepts are defined at a semantic cat-
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CONCEPT CONCEPT CONCEPTS IMAGES CONTEXTS CONCEPTS
TASK DATASET

INSTANCES TYPE /QUERY /QUERY
SPLIT QUERIES POOL CONCEPTS CONTEXTS

/CONCEPT /CONTEXT

pers TIR

pers TIG

CONCON-CHI yes chimeric  3 6.07 val 42 165 3 20 14.34 2.15
& common test-unseen 986 4008 17 101 50.53 8.50

test 1084 4008 20 101 46.65 9.24

pers TIR
PERVL DF2 yes fashion 1 1 val 229 229 50 229 5.58 1.00

test 221 221 50 221 4.42 1.00

pers TIG
DREAMBOOTH yes common 1 0 test 750 0 30 35 25 21.43

CC101 yes common  2 0 test 3232 0 101 597 36.36 6.15

ZS-CIR

FASHIONIQ no fashion 1 1 val (avg) 2005 5179 1442 1994 1.39 1.00
test (avg) 2039 5179 1454 2030 1.40 1.00

CIRR no open 1 1 val 4184 2297 2165 4157 1.93 1.00
test 4148 2315 2178 4135 1.90 1.00

CIRCO no open 1 4.53 val 220 123403 220 220 1 1
test 800 123403 798 796 1.00 1.00

Table 1. Comparison of related datasets. PerVL DF2: PerVL DeepFashion2; CC101: CustomConcepts101. For FashionIQ we report the
average number of images per split (shirt, dress, toptee). Dataset aspects that fulfill the criteria discussed in Sec. 3 are in Bold. ZS-CIR
datasets reported to show the setting difference with personalized TIR/TIG.

egory level. Moreover, the reference image typically con-
tains multiple elements. This aspect poses the additional
challenge of understanding to which image element the rel-
ative caption refers to (see, e.g., [4]), and whether an image
actually represents the same concept or not. Differently,
in the considered personalization setting, concepts are typ-
ically instances, clearly identifiable in the provided image
examples. FashionIQ [37] is another CIR dataset focusing
on kinds of fashion items.

Personalized Text-to-Image Generation (TIG). This
task was proposed in [6] and is the generative counter-
part of personalized TIR. The authors presented Textual
Inversion [6], a method that expands the vocabulary of a
frozen text-to-image model (Latent Diffusion [26]) with
user-specific concept embeddings learned from few images.
In [27] the authors present DreamBooth, a method that se-
lects a rarely-used token and binds it to the concept by fine-
tuning the text-to-image model on the concept images. Sub-
sequent methods propose improvements over these two [7,
14, 34]. The datasets introduced by these works (see, e.g.,
DreamBooth and CustomConcepts101 [14, 15]), are consti-
tuted by concept training images and a list of prompts for
evaluation, but do not contain any real image representing
such prompts. The validation is thus carried out by com-
paring a generated image with the training images (to mea-
sure concept fidelity) and with the context in the prompt
(to measure context fidelity). Differently, typical valida-
tion metrics for generative models measure a distance be-
tween the population of real and generated samples (see,
e.g., [9, 16, 23]. Since in ConCon-Chi a set of real image
realizations is provided for each prompt, we show how the
application of these distance measures can improve the val-
idation of personalized TIG methods.

3. Concept-Context Chimera Benchmark

We present ConCon-Chi and compare with existing datasets
in Sec. 3.1, then describe its acquisition process in Sec. 3.2.

3.1. Dataset overview

Since personalized TIR/TIG are few-shot tasks, we com-
pare in Tab. 1 with related benchmarks in terms of valida-
tion/test splits.

ConCon-Chi test split includes 1084 queries and a pool
of 4008 images which are treated as ground-truth images for
TIR and image realizations for TIG (⇠6 per query). Each
query was generated by composing up to 3 concepts and a
context from a set of 20 concepts and 101 contexts. The
average number of contexts associated to each concept is
indicated under CONTEXTS/CONCEPT and gives an idea of
the variety of situations in which a concept is required to be
retrieved or generated.

In Tab. 1 we also highlight the difference between per-
sonalization and ZS-CIR datasets. These latter do not
explicitly deal with concepts and contexts, but each ref-
erence image and relative caption that compose a query
are counted as a different concept and context. Thus
their number of concepts and context is higher than in
personalized tasks and the ratios CONCEPTS/CONTEXT
and CONTEXTS/CONCEPT are close to 1. Differently,
to evaluate the capability of personalization methods
to combine the learned concepts with contexts, CON-
TEXTS/CONCEPT should be high and, to avoid context bias,
CONCEPTS/CONTEXT should be high as well.

The most similar dataset to ours is CustomConcepts101,
which however does not contain real images for evaluation
(see POOL and IMAGES/QUERY in Tab. 1).

Concepts. In Fig. 2 we show 10 of the 20 concepts in the
dataset (the complete set is in supp. material Fig. 10). As
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Figure 2. Example concepts in ConCon-Chi
1
. Four chimeric and

six common concepts (hard negatives outlined with same color).

in [27, 34], we include animate and inanimate entities (pup-
pets and tools, accessories, clothes) with the aim of creating
rich interactions. There are 6 chimeric concepts, which are
animal or alien puppets crafted out of tools or accessories,
and 14 common concepts. Among these latter, we include
instances of the same categories composing the chimeras,
which are thus visually and semantically similar. These are
hard negatives especially when appearing in the same con-
text (e.g., BIRDYER and MYSPRAYER in Fig. 1) and enhance
the compositionality assessment [21].

Concept names are invented and provided for complete-
ness since are not used by the considered methods. Differ-
ently, in our evaluation (e.g., Tab. 2) we consider feeding
a pre-trained VL model with a description of the concept
as zero-shot baseline, thus we provide the adopted descrip-
tions for reproducibility since words choice was empirical
(supp. material Tab. 5). Discriminative descriptions were
formulated to be a competitive baseline, by thinking to a
minimal sentence discriminating the concept from others in
the concept set. Coarse descriptions are category-level and
model the typical case where the concepts to be discrimi-
nated from are unknown (e.g., “bag”, but there are two bags
in the concept set). Rich descriptions aim to verify whether
enriching the Discriminative with visual details helps.

Contexts. Contexts are grouped into 9 kinds (one exam-
ple per kind in Fig. 1). Inspired by [27], these are structured
in concept modifications (accessorizations, property modifi-
cations, renditions) and relationships (actions, interactions,
re-contextualizations). We describe them and present their
distribution in supp. material Fig. 11a.

Similarly to [27, 34] we include general and specific con-
texts: general contexts are applicable to all or most con-
cepts (e.g. re-contextualization in Fig. 1) and strongly con-
tribute to avoiding context bias; specific contexts are typi-
cal of a concept category and aim to increase the difficulty
of distinguishing between hard negatives (e.g. the action
containing for bags-like objects). When a context speci-
fies an interaction between a concept and an entity (object,

re-contextualization

concept interaction person interaction

accessorization

property modification

object interaction

concept interaction

action

wearing holding inside close

with wings of in front of liftingfilling

Figure 3. Fine-grained contexts. Examples queries for the con-
cept BIRDYER, in which the recognition of the co-occurrence of
elements does not suffice for retrieval.

PerVL DeepFashion2

1 221Context1
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C
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ce
pt

ConCon-Chi

1 101Context1

20

C
on
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Figure 4. Concept-context matrices. Blue cells mark the
concept-context combination appearing in the dataset (test split).

person, another concept), a retrieval method could perform
well simply by detecting their co-occurrence. To avoid this
we included contexts specifying different interactions with
the same entities (see Fig. 3). A particular interaction is
the one between two learned concepts. Concept-concept in-
teractions have been studied in personalized TIG [13, 34].
In Sec. 4 we evaluate this aspect in personalized TIR.

Concept-context structure. In Fig. 4 we compare the
concept-context structure of our dataset with PerVL DF2.
A matrix cell is Blue when a query formed by the corre-
sponding context and concept exists in the dataset. While
our dataset contains approximately half of the concepts and
contexts, our concept-context matrix is denser, reflecting a
higher number of queries (1084 vs. 221, see Tab. 1). Specif-
ically, in PerVL DF2 each context is coupled with a single
concept, while in our dataset this only occurs for 8 contexts,
with 16 contexts combining with every concept. Moreover,
in ConCon-Chi each concept is composed with 46.64 con-
texts on average vs. 4.42 in PerVL DF2 (few cells per row):
similarly to context bias, concept bias limits the composi-
tionality assessment since it makes it difficult to determine
to what extent the retrieval method understands the context.

1Any representation of trademarks, trade names, logos, domain names
such as any other distinguishing marks appearing in this dataset is purely
random, and it is used exclusively for scientific and non-commercial pur-
poses; therefore, the relevant representation cannot be understood as an
expression of an opinion or an indication or a precondition for taking de-
cisions.
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Figure 5. Concept and context biases. Retrieval performance by
varying the relative weight (↵) of the concept and the context in the
query. Lateral bars: performance drop when using either only the
concept (↵=0) or the context (↵=1), relative to peak performance.

3.2. Acquisition and Annotation

Acquisition. First we gathered the objects and crafted the
chimeric concepts; then we moved to photograph each con-
cept in the designed contexts. We arranged the scene to
represent the query and shot multiple pictures by varying
the viewpoint. Any private and sensitive information was
removed from the scene; images containing humans were
cropped to remove the face and make the subject unidenti-
fiable. We provide the distribution of environments in supp.
material Fig. 11b and details about the creation of renditions
in supp. material Sec. 7.3.

Annotation. Annotations consist of query-image asso-
ciations. A first step consisted of labelling each image with
the represented concepts and context. A second step was
carried out to remove false negatives in the annotations.
These happen whenever the ground-truth (GT) images of
a query that is more specific, are not included among the
GT of a query that is more generic (query overlap). A
similar problem happens when GT images of a query con-
tain content that also corresponds to other queries (image
overlap). In benchmarks created by re-annotating existing
datasets of images “in the wild” it is not possible to control
overlaps and an exhaustive check is unfeasible. To this end,
CIRR [20] and CIRCO [2] designed approximated proce-
dures to ensure that false negatives are respectively absent
in sub-pools of images or below an estimated percentage.
We accounted for the problem since the dataset design by
controlling and minimizing overlaps. The GT images were
then assigned following concept and context overlap and
manually checking those of queries where we were aware
of possible image overlap. As a result, to the best of our
knowledge, the set of 1084 queries is free from false nega-
tives with respect to the pool of 4008 images. We report the
number of GT images per query in supp. material Fig. 12.

4. Personalized Text-to-Image Retrieval

We define the TIR benchmark task on ConCon-Chi and
compare it with related benchmarks in Sec. 4.1. We present
and analyse results respectively in Sec. 4.2 and Sec. 4.3.

4.1. Benchmark Task

Train and test splits. Each concept in the set of 20 is
trained independently on 1 to 5 images where the concept
is standing in front of some background (train split, exam-
ples in Fig. 2). At test time, for each query in the test split
we rank the images in the pool according to their similarity
with the query. Training backgrounds do not appear in the
test split. Since the concepts are not trained jointly, similar
concepts play the role of hard negatives. In supp. mate-
rial Sec. 7.4 we introduce other splits not used in this paper.

Metrics. For each query we evaluate the rank of the first
GT image (mean Reciprocal Rank, mRR) and whether this
is among the top-k (recall rate, R@k); then we evaluate the
rank of all GT images (mean Average Precision [3], mAP)
and of GT images up to the top-k, mAP@k [2]. See supp.
material Sec. 8.1 for definitions.

Concept and context biases. We first aim to compare
the presented benchmark with existing ones in terms of
context and concept biases. To quantify the importance
of attending the concept and the context for correct re-
trieval, we adopt the experimental setup proposed in [30]
and model the concept-context interaction by computing a
query embedding q as weighted sum of c, the CLIP [25]
embedding of the context (output of CLIP text encoder,
ViT-L14 backbone), and i, the average CLIP embedding of
the concept training images (output of the vision encoder):
q = (1�↵)·i+↵·c with ↵ 2 [0, 1]. In Fig. 5 we compare the
retrieval performance by varying ↵ on ConCon-Chi, PerVL-
DF2, CIRCO, CIRR and FashionIQ. For PerVL DF2 and
ConCon-Chi we consider the available training images and
for each dataset we use the test split if available, the valida-
tion otherwise (see Sec. 8.2 and Tab. 1 for details). When
in ConCon-Chi multiple concepts appear in the query we
average their embeddings.

For three datasets the performance achieved by just
putting the context in the query (↵=1) is higher than 70%
of the peak performance, indicating that the probability of
retrieving the correct context-concept combination is rela-
tively high even when ignoring the concept (context bias).
Differently, in ConCon-Chi we observe low performance
for ↵=1, and a drop of 74% from the peak performance with
↵=0 (only the concept in the query). Only CIRCO exhibits
a similar trend, with lower peak performance possibly be-
cause of the intrinsic difficulty of the proposed ZS-CIR task
and the large image pool.
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Method mAP [%] mRR [%] R@1 [%]

k=0
Coarse 16.83 24.21 14.48
Discriminative *30.16* *43.16* *31.92*
Rich *27.65* *40.58* *29.98*

k=1
PALAVRA 22.56 ± 1.29 34.39 ± 1.68 24.59 ± 1.94
Pic2Word 25.23 ± 1.20 37.16 ± 1.76 26.35 ± 1.85
SEARLE 28.16 ± 0.55 41.07 ± 0.92 31.16 ± 0.94

k=5
PALAVRA 23.59 35.99 26.75
Pic2Word 26.39 38.62 27.68
SEARLE 30.74 43.83 33.49

Table 2. Personalized TIR benchmark. Performance of CLIP
baselines (k=0) and personalized TIR (PALAVRA) and ZS-CIR
methods (Pic2Word, SEARLE) on the retrieval task in ConCon-
Chi. The best method per metric is in Bold; Discriminative and
Rich baselines (oracles) are highlighted with *asterisks*.

4.2. Benchmark Results

Methods. We compare the personalized TIR method
PALAVRA [5] with two ZS-CIR methods, Pic2Word [30]
and SEARLE [2], on the defined TIR benchmark. Since,
differently from ZS-CIR, in our setting multiple concept ex-
ample images are available, for the two latter methods we
average the generated token embeddings to create the con-
cept embedding. All methods rely on CLIP ViT-L14 back-
bone with same input pre-processing. The methods learn
a textual token embedding that expands CLIP vocabulary
and assign it an arbitrary textual identifier such that at in-
ference they replace the learned embedding whenever this
is encountered in an input query. We used the code released
by the authors (see supp. material Sec. 8.3 for details).

Results. In Tab. 2 we evaluate each method with k=1 and
k=5 training images per concept (for k=1 we report mean
and standard deviation over the 5 images). We also report,
as baselines that do not use any image (k=0), the perfor-
mance achieved by feeding CLIP with queries where the
concept identifier is replaced with the Coarse, Discrimina-
tive or Rich descriptions introduced in Sec. 3.1.

As expected, Coarse descriptions provide a lower bound,
since they are shared among the concepts of same category
to simulate descriptions that are not tailored to the discrim-
inative task at hand. Differently, Discriminative and Rich
descriptions provide a competitive baseline (higher than
PALAVRA and Pic2Word). They represent an oracle, since
were formulated by discriminating every concept from the
others, thus accessing information which is unavailable to
other methods that learn each concept independently. In this
respect, we note that adding visual details degrades perfor-
mance. Interestingly, SEARLE outperforms the Discrimi-
native baseline thus being the best method, also because it
exhibits a smaller standard deviation in the 1-shot scenario
and a larger gain when more images are provided. This con-
firms that SEARLE outperforms the other two methods not
only in ZS-CIR [2] but also in the personalized TIR setting.
We report more metrics in supp. material Tab. 7.

Figure 6. New-meaning learning. Retrieval performance on
queries containing at least one chimeric concept vs. common con-
cepts (percentage of each query kind in the dataset in brackets).

All Chimeric Common ContextsMethod Concepts Concepts Concepts

Coarse 29.38 09.51 37.89 42.11
Discriminative *66.48* *60.61* *68.99* 40.92
Rich *84.54* *85.54* *84.11* 29.81
PALAVRA 91.52 91.15 91.67 28.56
Pic2Word 50.04 51.32 49.49 50.12

SEARLE 76.58 82.25 74.15 40.47

Table 3. Concept-context compositionality. Performance (F1
score [%]) of recognition of concepts and contexts in the retrieval
task of Tab. 2.

Figure 7. Concept-concept compositionality. Performance on
single- and multi-concept queries, comparing “accessorization”
and “property modification” (“modification”) kinds versus the rest
of the kinds (“other”).

4.3. Analysis of Results

We analyse the performance achieved in the benchmark in
terms of new-meaning learning and compositionality. For
this study we consider the methods trained on 5 images.

New-meaning learning. In Fig. 6 we report the mAP
of Tab. 2 separately on queries containing at least one
chimeric concept and common ones. We see that all meth-
ods and baselines achieve a lower performance when re-
trieving queries containing a chimeric concept. We then
inspected whether this can be explained with a misclassi-
fication of the concept or the context, or their combina-
tion. For each query therefore we considered the first N
ranked images (N equal to the number of GT images) and
marked the concept in the query as ground-truth and the
concept in each retrieved image as a prediction. We com-
puted the F1 score for each concept by accumulating the
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Figure 8. Personalized TIG benchmark. Scatter plot of the
FIDcpt/FIDctx trade-off for the considered methods, baselines and
upper bounds on the generation task ConCon-Chi.

predictions from the queries containing that concept and we
report in Tab. 3 the average scores over all, chimeric and
common concepts. Please note that we restricted this anal-
ysis to single-concept queries and discarded ranked images
containing multiple concepts.

In Tab. 3 we observe that personalization methods
achieve equal or better classification performance for
chimeric with respect to common concepts. We then con-
clude that, while these methods learn to recognize the visual
appearance of the chimeras, they struggle more at retrieving
these new meanings in composition with known contexts.

Concept-context compositionality. As for the con-
cepts, we computed the classification performance in a sim-
ilar way for the contexts, and report it in Tab. 3. We see that
PALAVRA achieves the best concept and the lowest context
classification performance. We deduce that its low retrieval
performance in the benchmark must be due to the poor com-
positionality properties of the learned tokens. Conversely,
Pic2Word excels at recognizing the contexts, but cannot
learn discriminative tokens. Thus, the good retrieval per-
formance of the Discriminative baseline and of SEARLE
in Tab. 2 seems explained by their capability to trade-off
and combine context and concept recognition. This seems
confirmed by the fact that the Rich descriptions improve
concept recognition at the expense of the context, probably
since longer descriptions out-weight the rest of the query.

Concept-concept compositionality. We finally inves-
tigated whether performance also depends on the context
kind. In Fig. 7 we report the mAP of Tab. 2, separately on
queries containing a single and multiple concepts and, in
each group, containing a concept modification (“property
modification” or “accessorization”) or another kind of con-
text. As expected, multi-concept queries are more challeng-
ing. On these we observe an interesting trend: description-
based baselines drop performance on concept modifica-

k=3 k=10

Density " Coverage " Density " Coverage " FIDcpt FIDctx

SDM
Common 2.66 0.12 8.84 1.33 0.74 0.23
Chimeric 0.78 0.02 2.40 0.21 0.73 0.23

TI
Common 3.43 0.23 11.56 2.93 0.71 0.25

Chimeric 2.71 0.15 5.43 0.90 0.69 0.25

DB
Common 6.55 0.28 18.98 2.65 0.80 0.24
Chimeric 4.81 0.14 11.49 1.09 0.79 0.25

Table 4. Comparing generated and GT images. We consider TI
and DB with SDM. The best for each metric is in Bold. Coverage
and Density are in [%] (Density not upper bounded by 100).

tions, while the personalization methods drop performance
on the other kinds. Multi-concept queries with concept
modifications are mostly the ones where a part of a con-
cept is worn or applied to another one (an example in Fig. 3
where the wings of BIRDYER are applied to MYDOLL).
These queries require knowing visual information on the
concept parts, thus explaining why the baselines fail in these
cases. Conversely, the other kinds of multi-concept queries
typically require the detection of the co-occurrence of the
concepts and their relationship (e.g., in Fig. 3, “MYDOLL
in front of BIRDYER”). To achieve this, the concept textual
representations must exhibit robust compositionality prop-
erties. Thus, the tokens learned by the methods do not seem
to retain the same compositionality properties of the tokens
in the original vocabulary (which form the descriptions).

5. Personalized Text-to-Image Generation

We define the TIG benchmark task and present results
in Sec. 5.1. We analyse them in more detail in Sec. 5.2.

5.1. Benchmark Task and Results

Train and test splits. We train each concept on the same 5
images used for TIR and at test time we generate 4 images
per prompt. We restrict the evaluation to the single-concept
prompts in the test split (which are 735).

Metrics. We report the two metrics introduced in [6] and
adopted by following works. These rely on CLIP and com-
pute, for each prompt, the average pairwise cosine similar-
ity between the visual embeddings of the generated images
and of, respectively, the visual embeddings of the training
images (fidelity-concept or FIDcpt as in [27]) and the textual
embedding of the context in the prompt (fidelity-context or
FIDctx). Personalized TIG methods are expected to trade-off
the two metrics by learning to represent the concept appear-
ance while retaining the capability to represent contexts.

Methods. As in personalized TIR, the considered meth-
ods assign a textual identifier to the concept and when
this is encountered in the prompt they load a correspond-
ing learned token embedding (Textual Inversion, TI [6])
or model (DreamBooth, DB [27]). For DB we adopted
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the Diffusers library [36] with a Stable Diffusion Model
(SDM) [26] as pre-trained text-to-image model (called
DB(SDM)). For TI we adopted the code by the authors with
either a Latent Diffusion Model (LDM) [26] or, by follow-
ing [34], the same SDM as for DB (called TI(LDM) and
TI(SDM)). Details in supp. material Sec. 9.2.

Results. In Fig. 8 we show the fidelity-concept/context
trade-off (numbers in supp. material Tab. 8). To quantify
these metrics, as in [6] we compare with upper bounds. For
the fidelity-concept, the upper bound returns always the 5
training images irrespective of the prompt (concept-only).
For the fidelity-context, the upper bound are images gener-
ated by the pre-trained SDM when fed as input only with the
context of the prompt (context-only). We also evaluate the
baseline performance of the LDM or SDM pre-trained mod-
els by replacing the concept identifier in the prompt with its
Rich description. As reference, we report also the metrics
for the GT images available in ConCon-Chi.

We first observe that TI(LDM) does not improve the
fidelity-concept over LDM, but improves the fidelity-
context. This can be explained by considering that the Rich
description in LDM tends to out-weight the context. Con-
versely, TI(SDM) improves the fidelity-concept of SDM,
while degrading the fidelity-context. This behaviour has
also been observed in recent work [34] and may be due
to the learned token over-fitting the context of the train-
ing images. A better learning behaviour is provided by
DB(SDM), which improves both metrics over SDM. No-
tably, compared with the GT images, DB shows a higher
fidelity-concept and lower fidelity-context.

5.2. Analysis of Results

We leverage the availability of GT images to inspect the
performance of DB, TI and their pre-trained model SDM
with two metrics proposed for evaluation of text-to-image
generation [23]: Density as measure of realism (fidelity)
and Coverage as measure of diversity (how well generated
images span the real images manifold). We created one
real and one generated manifold per concept as the union
of all prompts for that concept (similarly to [9] Appendix
L). In Tab. 4 we report the metrics for two values of the pa-
rameter k, averaged over chimeric and common concepts.
For all methods, Density and Coverage are higher on com-
mon concepts than on chimeric ones. This is in line with
what has been observed in [27, 34] that more common ob-
jects are easier to generate since these methods leverage the
pre-trained knowledge about the concept category. Inter-
estingly, such difference is not evident from the FIDcpt/ctx
metrics typically adopted in personalised TIG. We observe
that DB has best Density, while in terms of Coverage there
is a smaller gap with TI. Thus DB achieves relatively better
realism, but diversity remains low. We conclude that lever-
aging the availability of a real population of images allows

Text

TI (LDM) DB (SDM) SDM GT IMAGES

mydoll
resting in a
home gym

ink baby
drawing of
birdyer

a person
lifting mybird

bottalien
with a flower
on the head 

Figure 9. Qualitative results for personalized TIG.

for a more thorough evaluation of personalised TIG: there
seems to be large room for improvement, with new-meaning
concepts posing more challenges.

Qualitative examples. We report some cherry-picked
examples in Fig. 9. We observe that DB represents the
concepts more accurately and combines them more nicely
with the context than TI, which sometimes forgets the con-
cept (First Row) and sometimes the context (Third Row). It
can also be noticed how common concepts are learned very
accurately by DB (First and Third Row), while chimeric
ones are not. As expected, using a visually Rich description
(Third Column) is not enough for personalized generation,
especially on chimeric concepts (Second and Fourth Row),
which lack more distinctive features than the common ones.

6. Conclusion

We present a new dataset called ConCon-Chi for the evalua-
tion of personalized TIR and TIG. The dataset models novel
concepts as chimeric objects and by adopting a concept-
context matrix structure allows to study the learning of new
meanings in terms of their compositionality properties with
known ones. Our analysis on retrieval showed that current
methods struggle at composing these new concepts with
known contexts, and also together. A similar issue was ob-
served when evaluating the generated images with respect
to real examples by adopting image generation metrics. We
hope that this study and the dataset released will help im-
proving current personalized VL methods.
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