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Abstract

Aiming to enhance the utilization of metric space by the
parametric softmax classifier, recent studies suggest replac-
ing it with a non-parametric alternative. Although a non-
parametric classifier may provide better metric space uti-
lization, it introduces the challenge of capturing inter-class
relationships. A shared characteristic among prior non-
parametric classifiers is the static assignment of labels to
prototypes during the training, i.e., each prototype consis-
tently represents a class throughout the training course. Or-
thogonal to previous works, we present a simple yet effec-
tive method to optimize the category assigned to each pro-
totype (label-to-prototype assignment) during the training.
To this aim, we formalize the problem as a two-step opti-
mization objective over network parameters and label-to-
prototype assignment mapping. We solve this optimization
using a sequential combination of gradient descent and Bi-
partide matching. We demonstrate the benefits of the pro-
posed approach by conducting experiments on balanced
and long-tail classification problems using different back-
bone network architectures. In particular, our method out-
performs its competitors by 1.22% accuracy on CIFAR-100,
and 2.15% on ImageNet-200 using a metric space dimen-
sion half of the size of its competitors. Code

1. Introduction

Image classification is a fundamental problem in deep learn-
ing [44]. Deep image classification models conventionally
consist of a stack of non-linear feature extractors (back-
bone) together with a classification layer [18, 28, 53]. De-
spite diversified model design for their backbone, from con-
volutional neural networks [18, 26] to transformer archi-
tecture [11, 35], Parametric Softmax Classifier (PSC) with
Cross-Entropy (CE) loss has been the de facto choice of de-
sign for the classification layer [18, 29, 51]. This widely
adopted framework enables joint training of the PSC and
backbone through gradient-based learning algorithms [4].
Yet, it suffers from several shortcomings [23, 42, 51, 54].

Figure 1. Comparison of the proposed method with the conven-
tional PSC and the previous fixed classifier setup, using a toy ex-
ample with three classes. Each color denotes a distinct class. a)
Label-to-prototype assignment remains static during training. In
PSC, optimization focuses on the network, consisting of the back-
bone and prototypes W. In the case of a fixed classifier, only
the backbone is optimized, and prototypes remain fixed. b) In the
proposed method, prototypes within the hypersphere are fixed, and
optimization targets the backbone and the label that each prototype
represents. c) Toy example showing changes in label-to-prototype
assignment during training.

First, it overlooks the intra-class compactness, focusing
solely on the optimization of the relative intra and inter-
class distances [42, 50]. Second, it fails to fully exploit the
metric space, leading to a localized solution [12, 23, 33].
Third, the standard PSC enforces a fixed dimensionality of
the output space, which hampers transferability and results
in linear growth of the classifier parameter associated with
the number of classes [47, 51]. Forth, when facing an unbal-
anced dataset w.r.t. sample per class, the PSC struggles with
suboptimal performance for minority classes [10, 13, 54].
To address these issues, studies suggest employing auxil-
iary supervisions [12, 52], sample-based objectives [10, 46],
distributed training [1, 2], active class selection [15], and
loss reweighting [9, 24]. However, these methods concen-
trate exclusively on addressing a single limitation and do
not generalize to all the issues [51].

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

17333



Recently, studies have focused on replacing PSC with
non-parametric solutions [39, 51, 54]. Yang et al. [54] em-
ployed a fixed Equiangular Tight Frame (ETF) geometrical
structure as prototypes of the PSC providing maximal inter-
class separation, optimal metric space exploitation, and a
constant number of trainable parameters as the number of
classes increases. Furthermore, fixed prototypes alleviate
the problem of ‘minority collapse’ in the learnable classifier
trained on an imbalanced dataset [13]. However, a major is-
sue with the ETF classifier [54] is that ETF prototypes force
any pairs of classes to reflect equal similarity. Intuitively,
semantically unrelated classes should be farther apart from
the related ones, and equal inter-class similarity for all cat-
egories is counter-intuitive [25]. Besides, ETF requires the
metric space dimensionality to be greater than the number
of classes, limiting its applicability [36, 43].

In the quest for a more appropriate non-parametric clas-
sification alternative, Wang et al. [51] obtain fixed proto-
types by summarizing each class into a cluster. Albeit ef-
fective for supervising intra-class compactness, it fails to
fully exploit the metric space. Recently, Mettes et al. [39]
utilized fixed equidistributed hyperspherical points as pro-
totypes of PSC. While equidistributed prototypes enhance
metric space exploitation [12, 23, 39], the question that nat-
urally arises here is: with fixed prototypes, how to define
the label-to-prototype assignment to capture the dataset’s
inter-class relationships? To answer this, HPN [39] utilizes
the classes’ names as privileged information; however, such
privileged information can be inadequate or absent [14].
A common characteristic amongst previous learnable and
fixed classifiers is that the label-to-prototype assignment is
static, and each prototype represents a unique label through-
out the training course, as depicted in Figure 1a.

In this study, our methodology diverges from static label-
to-prototype assignment and focuses on optimizing the as-
signment throughout the training when the prototypes are
fixed, as illustrated in Figure 1b. Therefore, the model
changes the label-to-prototype assignment while the pro-
totypes are pre-distributed in the hypersphere and fixed.
Ideally, this ensures the maximal inter-class separation
throughout fully exploiting the metric space in a manner
consistent with the inter-class relationships, as depicted in
Figure 1c. We divide the c-way classification into three sub-
tasks: 1) organizing c equidistributed prototypes in the hy-
persphere, 2) solving a bipartite matching problem from the
classes to the predefined prototypes, and 3) solving a regres-
sion problem from input to discrete approximation of unit
hypersphere. The solution to the former depends merely on
the metric space dimensionality and the number of classes.
We formulate the second and final stages as a two-step op-
timization over the label-to-prototype assignment mapping
and network parameters. The main contributions of this pa-
per can be summarized as follows:

• We propose a novel classification framework in which the
prototypes are fixed but the label-to-prototype assignment
is adaptive and changes during the course of training.

• We formalize the problem as a two-step optimization and
solve it using a combination of bipartite matching and
gradient descent. This procedure does not use any aux-
iliary information to achieve this goal.

• We empirically show that our method is a generalized ver-
sion of the ETF methods by removing the constraint on
the number of classes.

• We evaluate our method on both balanced and long-
tailed classification, achieving superior or comparable re-
sults compared to state-of-the-art fixed classifier methods
while being more effective in training and scale.

2. Related Works
Deep Neural Networks (DNNs) have become widely used
in machine learning, excelling in classification with end-to-
end training using PSC [18, 28]. Motivated by the huge
computational demand of the last linear layer [20, 47, 51],
limited inter-class separation [12, 39, 42, 50], and poor clas-
sification accuracy of minority classes [10, 47, 51, 54], re-
cent studies have focused on replacing the PSC with non-
parametric alternatives [17, 20, 30, 38, 41]. To this end, a
group of studies [36, 54, 55] focused on replacing proto-
types of PSC with predefined fixed ETF. A set of c lines
L = {l1, l2, ..., lc} through the origin of d-dimensional
space is termed equiangular if there is a constant ρ ≥ 0,
such that ⟨li, lj⟩ = ±ρ for all 1 ≤ i < j ≤ c [56]. Here,
⟨., .⟩ represents the inner product. While ETF provides op-
timal inter-class separation, we argue that it can be sub-
optimal from the perspective of inter-class relationships. In-
tuitively, unrelated classes should be farther apart from the
related ones. However, an ETF classifier forces a separable
but counter-intuitive structure in which all the classes have
equal relationships. Moreover, while constructing simplex
ETF for pair (d, c) is not limited to d ≥ (c− 1), studies
demonstrate that ETF is only applicable to DNNs classifi-
cation framework when d ≥ (c− 1), which critically limits
its practical utilization [3, 48, 56].

To bypass these limitations, Wang et al. [51] adhere to
the well-established idea of the nearest centroid classifier.
The classifier in this framework is obtained by summarizing
each class into a cluster. While effective in capturing inter-
class relationships, the efficacy of metric space exploita-
tion is overlooked [39]. Mettes et al. [39] proposed em-
ploying fixed equidistributed hyperspherical points as pro-
totypes of PSC. Ideally, equidistributed prototypes provide
full exploitation of the metric space [12, 39]. While promis-
ing, this method requires privileged information, to capture
the inter-class relationships, which can be inadequate or ab-
sent [14]. Common among previous methods is that the
label-to-prototype assignment is constant during training.
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In an orthogonal direction, we propose to fix the proto-
type in an equidistributed organization and change the label-
to-prototype assignment. Thus, the semantic category that
every prototype represents is not unique during the training
and changes w.r.t. the state of the feature extractor. For dis-
tributing the prototypes on the hypersphere, we optimized a
cost function based on the Gaussian potential kernel, which
is closely connected to universally optimal point configu-
rations [7, 8], and we empirically show that our equidis-
tributed answer converges to the ETF structure when the
metric space dimensionality requirement is met.

3. Method
Notation. Let D = {(xi, yi) ∈ X × Y}ni=1 be the train-
ing set consisting of c classes and n samples. Suppose
Mθ(.) : X → Rd is the deep feature extractor that maps an
input sample xi to d-dimensional representation zi ∈ Rd.
W = [w1,w2, . . . ,wc] ∈ Rd×c is the matrix storing hy-
perspherical prototypes wi ∈ Rd. A : [1, 2, . . . , c] →
[1, 2, . . . , c] is the label-to-prototype assignment, denoting
a bijective mapping from labels to prototypes. A is constant
in conventional PSC and equiangular setup and optimiz-
able in our method. Q = [z̄1, z̄2, . . . , z̄c] ∈ Rd×c is the ma-
trix of the classes’ representative, storing the momentum-
averaged latent feature of each class during training. For
the convenience of presentation, all the representations and
prototypes are ℓ2-normalized.

3.1. Overview

We are interested in learning a classification model that
fully exploits the metric space while capturing the under-
lying characteristics of the target dataset. Inspired by the
recent works on replacing the PSC with non-parametric
alternatives [17, 20, 22, 30, 38, 41], we fix the equidis-
tributed hyperspherical prototypes [47, 55] to maintain
large-margin separation among class prototypes during the
training. Hence, the supervised classification is generally
defined as mapping input images to a discrete approxima-
tion of the unit hypersphere:

min
θ

n∑
i=1

L(Mθ(xi),wA(yi)), (1)

where L is the training objective, tryings to align features
zi with their corresponding prototype wA(yi).

In the case of ETF [54], the assignment of prototypes
is an arbitrary mapping that remains constant during train-
ing, as any given pair of prototypes exhibits equal simi-
larity. While this assumption may hold for specific data,
it fails to generalize, e.g., for a multi-modal data distribu-
tion where different classes share similar properties. Thus,
it is expected that the similarity between members of the
same super-class to be higher than the similarity between

Figure 2. Comparing the Average Pairwise Angular Distance
(APAD) value of the 100 prototypes drawn from multivariate
Gaussian distributions with the covariance matrix of σI and the
proposed optimized prototypes. a) Analysis of the APAD value.
Notably, random prototypes drawn from arbitrary zero-mean dis-
tributions yield the optimal APAD value, underscoring that uni-
formity across Sd−1 cannot be solely guaranteed by this objective
function. b) Illustrating optimized and degenerate solutions on the
S2. Highlighted in yellow are areas where multiple prototypes ex-
hibit closer proximity than ideal. c) Comparison of the minimum
cosine distance, i.e., 1 − cos(wi,wj), for our optimized and de-
generate solutions prototypes. Greater distances are indicative of
superior utilization of metric space.

members of different super-classes [6], e.g., as the ‘truck’
and ‘automobile’ classes in CIFAR-10. Also, in the case of
PSC setup, A is the identity mapping A(yi) = yi and fixed
during the training, i.e., each class is assigned to a specific
trainable prototype. However, PSC ignores the distribution
of features in holistic metric space and may lead to high lo-
cality [12, 39]. Here, A is not fixed during the training, and
we aim to find the best prototype for each class from the
predefined prototype set W. Hence, our main objective is:

min
θ

min
A

n∑
i=1

L(Mθ(xi),wA(yi)). (2)

Our overall framework involves an optimization problem
w.r.t. two sets of variables θ, and A. This problem does not
have a closed-form solution due to the highly non-linear na-
ture of DNNs. Furthermore, A is not differentiable, and the
whole framework cannot be optimized using gradient de-
scent. We formulate a two-step optimization to solve this
problem. In the first step, we solve a bipartite matching
problem between classes’ representatives Q and fixed pro-
totypes W, which is essential to capture the inter-class re-
lationships in the metric space. In second step, we optimize
L with respect to θ given A and W.
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Figure 3. a) Average inter-prototype cosine when d = c = 100. b) Classification accuracy (%) on CIFAR-100 with ResNet-32 when the τ ′

changes. c) Time consumed for updating the A. Since we update the label-to-prototype assignment every epoch, τ ′ = 1.0, this computation
time is negligible compared to the total training time. d) Effect of regularizing the PSC with Luni with different scaling hyperparameter λ.
The horizontal dotted and ’-.-’ lines represent the PSC and proposed method performance, respectively.

Inspired by [49], we enhance the metric space utiliza-
tion by discretizing the hypersphere with prototypes dis-
tributed as uniformly as possible prior to training. During
the training, optimization in Equation 2 does not involve up-
dating the prototypes and maintains the large-margin sepa-
ration among classes. Albeit the predefined and fixed posi-
tion of W, our framework changes the corresponding label
for each prototype to reduce the classification loss function.
In this way, given well-separated prototypes, our approach
assigns classes to prototypes to minimize the classification
loss and capture inter-class dependencies rather than fixing
class relationships similar to the ETF setup [54]. Further-
more, the label-to-prototype assignment is based on model
learning with no need for privileged information [39]. Al-
gorithm 1 provides an overview of the presented method.

3.2. Classification with Dynamic Label-to-
Prototype Assignment

Here, we provide a detailed description of our method. Prior
to training, we distribute hyperspherical prototypes as uni-
formly as possible in a dataset and architecture-independent
manner. Given the optimized prototypes, we adopt a two-
step algorithm where the goal is to find parameters θ and A
that best describe the data distribution.

3.2.1 Hyperspherical Prototype Estimation

Metric space utilization of the PSC relies on its hyperspher-
ical prototype distribution [12]. To enhance metric space
utilization, studies tried to encourage the uniformity of pro-
totypes’ distribution in the hyperspherical space by adding
regularization to conventional PSC setup [12, 32, 52]. Re-
cently, Yang et al. [54] defined prototypes as vertices of a
simplex ETF that provides maximal inter-class separabil-
ity. However, the ETF structure of prototypes is a strong
assumption in which all pairs of classes are forced to have
equal similarity. Also, ETF requires d ≥ (c− 1), impracti-
cal for large c [47, 54]. To maximize the metric space uti-
lization, we distribute prototypes in the hypersphere as uni-
formly as possible in a data and architecture-independent
manner and fix them during the network training.

For d = 2 and c prototypes, the problem of uniformly
distributing prototypes on the unit hypersphere Sd−1 re-

duces to splitting the unit circle into equal slices with
2π

c
angles. However, no optimal solution exists for d ≥ 3 [45].
As a viable alternative, we use a differentiable uniformity
metric to encourage mapping prototypes to a uniform dis-
tribution over Sd−1. Designing an objective minimized by
uniform distribution is not trivial [8]. For instance, Wang et
al. [49] demonstrated that an arbitrary zero mean distribu-
tion is a degenerate solution of Average Pairwise Angular
Distance (APAD) [7, 8], as depicted in Figure 2.

We built our uniformity objective upon recent progress
in contrastive representation learning [49]. Let pw(.) be the
prototypes’ distribution over Sd−1. Gt(u,v) ≜ Sd−1 ×
Sd−1 → R+ is the Gaussian potential kernel:

Gt(u,v) ≜ e−t||u−v||22 ; t > 0, (3)

the uniformity loss can be defined as:

L ≜ log E
wi,wj

i.i.d.
∽ pw

[Gt(u,v)]; t > 0, (4)

which is nicely tied with the uniform distribution of points
on the Sd−1 [5]; detailed derivation can be found in [49].

In practice, we first randomly initialize the prototype ma-
trix W ∈ Rd×c. At every iteration, we optimize a subset of
W using the following loss function:

Luni = log (
1

ĉ

ĉ∑
i=1

c∑
j=1

gi,j), (5)

where Ŵ ∈ Rd×ĉ is a subset of W that randomly selects
ĉ < c prototypes, and gi,j is the element of G that re-
flects the pairwise Gaussian potential between prototypes
wi and wj . Subsequent to updating the prototypes, they are
mapped to the unit hypersphere using ℓ2-normalization.

Please note that the solution to the distribution of the pro-
totypes is independent of the dataset and network architec-
ture. Instead, it depends merely on the metric space dimen-
sionality, d, and the number of classes, c. Once we obtain a
solution for a specified d and c, this W can be used across
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CIFAR-100 ImageNet-200
d = 10 d = 25 d = 50 d = 100 d = 25 d = 50 d = 100 d = 200

PSC 25.67 60.0 60.6 62.1 - - - 33.1
Word2Vec [40] 29.0 44.5 54.3 57.6 20.7 27.6 29.8 30.0
HPN [39] 51.1 63.0 64.7 65.0 38.6 44.7 44.6 44.7
Ours 57.21 64.63 66.22 62.85 41.71 46.57 46.85 37.28

Table 1. Classification accuracy (%) of our method and baseline prototypical methods using ResNet-32. Please note that our best result
across dimensions (underlined), is always better than the best performance of baseline methods. Our method obtains the best accuracy
across dimensions and datasets when d < c, emphasizing the role of dynamic label-to-prototype mapping in metric space exploitation.

Dataset PSC Word2Vec [40] HPN [39] ETF [54] Ours

CIFAR-100 62.1 57.6 65.0 65.34 66.22
ImageNet-200 33.1 30.0 44.7 37.15 46.85

Table 2. Comparison of classification accuracy (%) of the pro-
posed method with d = c

2
and other prototypical methods with

d = c using ResNet-32.

problems with the same number of categories and the same
metric space dimensionality. For instance, in Table 6 the
same W is used for CIFAR-10, SVHN, and STL-10.

3.2.2 Input-to-Prototype Mapping

As pointed out by [10, 54], in the training of PSC, the ‘pull-
push’ mechanism of Cross-Entropy (CE) implicitly forces
intra-class compactness and inter-class separability, please
see Section 6 of Supplementary Material for detailed anal-
ysis on CE derivative. Our method fixes the prototypes as
the solution for inter-class separability, and the model does
not learn it during the training. Hence, for a training sample
xi we seek to learn a mapping from the input to its assigned
prototype, i.e., ‘pull’ zi toward wA(yi):

LIPM (zi,wA(yi)) =
1

2
(z⊤i wA(yi) − 1)2, (6)

this loss is only concerned with solving a regression task
between the zi and wA(yi); supervising the intra-class com-
pactness by decreasing the angular distance of samples and
their assigned prototypes.

Unlike the CE loss, Equation 6 is derived using a single
prototype per sample. This approach reduces the computa-
tional workload compared to CE, where all prototypes are
required for every sample [1]. Since we do not update the
prototype during the training, our approach requires a back-
propagation step through the Mθ. The partial derivative of
Equation 6 can be given as:

∂LIPM

∂zi
= −(1− z⊤i wA(yi))z

⊤
i wA(yi), (7)

which is identical to the ‘pull’ force in the CE derivative.
Since the Equation 7 is only concerned with aligning the
samples to their assigned prototype, the problem of fre-
quent passive update [10] of minority classes is relieved for

long-tail datasets [13]. Ideally, the combination of Equation
6 and fixed equidistributed prototypes, increases the intra-
class compactness in an optimally separate prototype orga-
nization, i.e., maximal inter-class separation.

3.2.3 Bijective Label-to-Prototype Mapping

Our proposal hinges on finding suitable label-to-prototype
assignment A during the training. In the ETF setup, A is ini-
tialized randomly. In the case of PSC setup, the assignment
is identity mapping. Note that in both these scenarios, A re-
mains constant during the training. Here, our objective is to
find assignment mapping that maximizes the log-likelihood
function of the observed class:

A∗ =argmin
A

c∑
j=1

− log
ez̄

⊤
j wA(j)∑c

k=1 e
z̄⊤j wA(k)

=argmin
A

c∑
j=1

[
−z̄⊤j wA(j) + log

c∑
k=1

ez̄
⊤
j wA(k)

]
,

(8)

where z̄yi = αz̄yi + (1 − α)zi is the momentum av-
eraging over the representations of each class and α ∈
[0, 1] is the momentum coefficient [19, 37]. The term
log

∑c
k=1 e

z̄⊤
j wA(k) is constant for all elements of A.

Hence, the optimization term becomes:

A∗ = argmin
A

c∑
j=1

−z̄⊤j wA(j), (9)

following [21, 31] we solve this bipartite matching problem
using Hungarian algorithm [27]. The resulting A∗ is used to
optimize Equation 6. We update the prototypes’ assignment
every τ iterations to sync it with model learning.

4. Experiment

As discussed in Section 3.2.2, employing fixed prototypes
and LIPM is particularly effective for the long-tail classifi-
cation problem, also shown in [10, 13]. Hence, we conduct
experiments in balanced and long-tailed setups to illustrate
the efficacy of the proposed method in both scenarios.
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Algorithm 1: Classification with dynamic Label-
to-prototype assignment

1 Initialize A, W, θ, Q, t1 > 0, and t2 > 0.
2 for t = 0 ... t1−1 do
3 Compute Luni, ∀wi ∈ W
4 Update W using ∇WLuni ▷ prototype estimation
5 end
6 for t = 0 ... t2−1 do
7 for Batch in Dataset do
8 z = M(Batch)
9 Update Q using momentum averaging the

representations of each class
10 Compute LIPM using z, A, and W
11 Update Mθ using ∇θLIPM ; ▷ backbone training
12 end
13 Update assignment A using Equation 9;
14 end

4.1. Implementation Details

For precomputing the prototypes, we used SGD optimizer
with a constant learning rate of 0.1, and the optimization
was performed for 1000 iterations with the batch size equal
to the number of classes. We conduct evaluations on bal-
anced ImageNet-1K, ImageNet-200, and CIFAR-100 using
ResNet-32, ResNet-50 [18], and Swin-Transformer [35] ar-
chitectures. We train ResNet-32 and ResNet-50 using the
SGD optimizer, and Swin-T is trained from scratch using
Adam-W. For the sake of a fair comparison in balanced
evaluations, we followed [39] for data augmentation. We
conduct long-tailed evaluations on CIFAR-10, CIFAR-100,
SVHN, and STL-10 using ResNet-32 and on ImageNet-LT
[34] using ResNet-50. The models are trained from scratch
using the SGD optimizer. The detailed experimental setup
is described in Section 7 of Supplementary Material.

4.2. Balanced Classification

We compare our method with three different baselines of
PSC, Word2Vec [40] and HPN [39]. Table 1 presents results
for evaluations on ImageNet-200 and CIFAR-100. For both
datasets, our method obtains the highest accuracy across
metric space dimensions and datasets. This shows the bet-
ter metric space exploitation by our predefined prototypes
which are distributed based on Gaussian potential. Fur-
thermore, these results demonstrate the superiority of our
method in optimizing label-to-prototype assignment based
on model training. Note that HPN utilizes privileged in-
formation of word embedding of classes’ names which is
not related to the training and comes from an independent
model. However, we optimize the assignment based on
model learning without employing any auxiliary informa-
tion. We also observe that the superiority of the proposed
method is more remarkable when the metric space dimen-
sion is significantly lower than the number of classes d ≪ c.
It can be attributed to the dynamic label-to-prototype as-

Method Venue Backbone Optimizer Accuracy (%)

PSC [18] CVPR2016 ResNet-50 SGD 76.51
DNC [51] ICLR2022 ResNet-50 SGD 76.49
Goto et al. [16] WACV2024 ResNet-50 SGD 77.19
Kasarla et al. [23] NEURIPS2022 ResNet-50 SGD 74.80
Ours CVPR2024 ResNet-50 SGD 77.47

DNC [51] ICLR2022 ResNet-101 SGD 77.80
Goto et al. [16] WACV2024 ResNet-101 SGD 78.27
Kasarla et al. [23] NEURIPS2022 ResNet-152 SGD 78.5
Ours CVPR2024 ResNet-101 SGD 79.63

PSC CVPR2016 Swin-T AdamW 76.91
Ours CVPR2024 Swin-T AdamW 77.26

Table 3. Classification accuracy (%) on ImageNet-1K. The train-
ing was performed for 100 epochs when d = 512.

signment that captures inter-class relationships which are
more noticeable when d ≪ c.

Moreover, we observe that our method achieves the
best performance across metric space dimensions. Specif-
ically, in CIFAR-100, our approach attains an accuracy
of 66.22% in R50, surpassing HPN’s best performance by
1.22%, regardless of dimension. Similarly, in ImageNet-
200, our method in R100 outperforms HPN’s best perfor-
mance across metric space dimensions by 2.14%. This em-
phasizes the role of label-to-prototype assignment which is
an optimization variable in our method and constant in other
fixed classifier baselines. When d = c our optimized pro-
totypes converge toward ETF which leads to the counter-
intuitive solution in that all classes have equal similarity,
causing our best performance to be achieved when d < c.

In terms of robustness to changes in metric space dimen-
sion, HPN experiences a performance drop of 11.89% and
1.7% on CIFAR-100 when transitioning from 25 → 10 and
50 → 25, respectively. In comparison, our method demon-
strates greater stability with performance degradations of
7.41% and 1.6%. Similarly, in ImageNet-200, when tran-
sitioning from 50 → 25, HPN experiences a 6.1% perfor-
mance drop, while our method is more robust with a per-
formance degradation of only 4.85%. This performance ro-
bustness demonstrates that despite the reduction in metric
space dimension and inter-class separability, our label-to-
prototype assignment successfully captures inter-class rela-
tionships, leading to the capability to handle classification
with much fewer metric space dimensions, i.e., better met-
ric space exploitation.

Table 2 compares the results of equidistributed proto-
types, i.e., Word2Vec [40], HPN [39], and our approach,
with ETF [54] on CIFAR-100 and ImageNet-200 evalua-
tions. In these evaluations, other methods use d = c (the
best performance of baseline methods), while our method
employs d = c

2 . Please note that the ETF cannot im-
plemented in R c

2 since the constraint for ETF requires
d ≥ (c − 1). We observe that the presented method out-
performs ETF structure by 0.87% and 9.15% in CIFAR-
100 and ImageNet-200, respectively. The results highlight
the effectiveness of our approach in lifting the dimensional-
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Method d 0.005 0.01 0.02
PSC 128 38.7 43.0 48.1
ETF 128 40.9 45.3 50.4
Ours 128 41.3 44.9 50.7
Ours 50 40.9 45.2 50.8

Table 4. Long-tailed CIFAR-100 classification accuracy (%) of
the proposed and baseline prototypical methods using ResNet-32.
Note that our method using d = 50 could get the best or second-
best performance in all the experiments.

PSC ETF (d = 4096) Ours (d = 4096) Ours (d = 512)

44.3 44.7 44.6 44.9

Table 5. ImageNet-LT classification accuracy (%) of the proposed
and baseline prototypical methods using ResNet-50 as backbone.

ity constraint of the ETF and outperforming baselines with
less metric space dimension. Our results on ImageNet-1K
are presented in Table 3, showing the superior performance
of the presented method when compared to the conven-
tional PSC framework. These improvements signify that
our approach is not restricted to small-scale classification
like CIFAR-100 or architecture like ResNet-32.

4.3. Long-tail Classification

The standard PSC framework with Cross-Entropy (CE) loss
suffers from frequent ‘passive updates’ of minority classes,
leading to low separability among them [10]. Table 4
presents the results for long-tail evaluations on CIFAR-
100. Our method consistently outperforms the standard
PSC classifier across various imbalance factors, demon-
strating its ability to alleviate the issue of frequent ‘passive
updates’ of minority classes. Furthermore, our approach
advances the performance of the ETF without any constraint
on the metric space dimension, underscoring its capability
to overcome the ETF constraint on the number of classes
and metric space dimensionality.

In Table 5, the advantage of the proposed method is fur-
ther verified using ResNet-50 on ImageNet-LT. Concretely,
our method outperforms PSC and ETF classifiers without
having limitations on the metric space dimensionality and
number of classes. These observations reflect the important
role of dynamic label-to-prototype assignment in increasing
metric space exploitation. Also, these observations show
that our method is not limited to small-scale classification
or backbone. Table 6 presents the results for evaluations
on CIFAR-10, SVHN, and STL-10. Since the d and c are
constant across these experiments, the same W is used for
these evaluations. The on-par performance of our method
with the ETF classifier indicates that our approach to dis-
tributing prototypes on the hypersphere converges toward
the ETF organization of prototypes, i.e., maximal separa-
tion, when the requirement of ETF is provided, i.e., d > c.

CIFAR-10 SVHN STL-10
0.005 0.01 0.02 0.005 0.01 0.02 0.005 0.01 0.02

PSC 67.3 72.8 78.6 40.5 40.9 49.3 33.1 37.9 38.8
ETF 71.9 76.5 81.0 42.8 45.7 49.8 33.5 37.2 37.9
Ours 71.5 76.9 81.4 40.9 47.0 49.7 35.7 35.6 38.0

Table 6. Long-tailed classification accuracy (%) of the pro-
posed and baseline prototypical methods using ResNet-32 when
d = 64 > c for imbalance factors of 0.02, 0.01, and 0.005. Note
that the same W is used for these evaluations. On-par results with
ETF illustrate the convergence of our optimized prototype toward
ETF structure when d > c.

d = 100 d = 50
Max Min Max Min

Word2Vec 0.74 -0.32 - -
HPN 0.05 -0.39 -0.05 -0.62
ETF 0.0 -0.01 - -
Ours 0.0 -0.01 0.01 -1.0

Table 7. The maximum ↓, and minimum ↓ pairwise cosine similar-
ity among 100 prototypes. The proposed distribution of prototypes
obtains the best scores when d < c and converges toward ETF ge-
ometrical structure when d = c.

4.4. Ablations

4.4.1 Hyperspherical Prototype Distribution

Prior to training, we distribute prototypes on Sd−1, and they
remain fixed during the training. Hence, their separability
critically affects the final discriminative power of the net-
work. Following [39], we assess the distribution of proto-
types by analyzing the maximum, and minimum pairwise
cosine similarity among prototypes in Table 7. This anal-
ysis is conducted with 100 prototypes when d = 50 and
d = 100. In R50, our optimized prototypes achieve the best
scores, reflecting the effectiveness of our approach in evenly
distributing points on the hypersphere and providing large-
margin separation among prototypes. Note that the dimen-
sionality constraint of ETF requires that the metric space
dimension should be at least equal to the number of proto-
types. Therefore, the row for 100 ETF prototypes in R50

is empty. In R100 our prototypes achieve the same scores
as ETF, denoting the convergence of our method toward the
ETF structure when d ≥ c.

In Figure 3a, the advantage of our method in distribut-
ing hyperspherical prototypes is further verified by illus-
trating the average pairwise cosine of 100 prototypes when
d = c. The distribution of prototypes in our method obtains
a near-uniform distribution of inter-class cosine, similar to
ETF, while HPN [39] demonstrates a high level of variation
which illustrates the efficacy of our method in uniformly
distributing prototypes. It is worth noting that the minimal
cosine similarity of the c equiangular vectors in Rd is −1

c−1

[43], i.e., −1
100−1 ≈ −0.01 in this experiment.

17339



Figure 4. a) Classification accuracy (%) on CIFAR-100 using
ResNet-32 w/wo dynamic assignment showing the significance of
optimizing A in low dimensional metric space. b) Normalized dif-
ference of consecutive assignments during training.

4.4.2 Ablation on τ

Here, we study the effect of the τ on the model perfor-
mance. For the sake of brevity, we define τ ′ = τ

⌊ n
batch size ⌋

which denotes the number of assignment updates per each
epoch. Figure 3b shows the classification accuracy on
CIFAR-100 when τ ′ changes from 0.1 to 10. We observe
that τ ′ = 10 leads to performance improvement. However,
with the increase in the d, the performance gap between
τ ′ = 10 and τ ′ = 1.0 becomes reasonably close. Hence, to
balance the computational efficacy and performance in the
main experiments, we adhere to τ ′ = 1.

4.4.3 Computational Time

Computing label-to-prototype assignment imposes an addi-
tional workload that grows non-linearly with the increase in
the number of classes, i.e., O(c3). Figure 3c reports the time
consumed by a single label-to-prototype assignment com-
putation. The reported value is the average of four runs.
In our main experiments, we update the assignment map-
ping, A, at the end of every epoch, i.e., τ = ⌊ n

batch size⌋.
Hence, acquiring label-to-prototype assignment incurs neg-
ligible runtime overhead at the scale of 10,000 classes.

4.4.4 Impact of Prototype Distribution

Previous studies [12, 32, 52] have employed the prototype
uniformity constraint as the regularization to the Cross-
Entropy (CE). In Table 8, we compare our method with the
regularized version of PSC, i.e., PSC*: CE + λ Luni. As
expected, PSC* improves the PSC baseline performance.
However, it introduces the challenge of finding optimal tun-
ing parameter λ, which can vary across metric space dimen-
sionality, depicted in Figure 3d. Additionally, we employed
the best-performing PSC prototypes as the fixed W of our
method (referred to as Ours*). We observe that this model
outperforms the baseline PSC model which suggests that
our dynamic prototype matching provides notable enhance-
ment to the training setup. Also, the intra-class compactness
supervision of LIPM is important for this improvement.
Note that our main model outperforms all these baselines
due to the better exploitation of metric space.

d =16 d =32 d =64

PSC 62.62 61.81 63.23
PSC* 62.54 64.18 64.53
Ours* 60.51 63.43 64.71
Ours 62.72 65.09 65.94

Table 8. Abblation on the prototype distribution. The classifi-
cation accuracy (%) is reported on CIFAR-100 using ResNet-32.
PSC*: CE+10−2×Luni. Ours*: substituting the equidistributed
prototypes with softmax prototypes from a pre-trained network.

4.4.5 Impact of A

Figure 4a demonstrates the effect of label-to-prototype as-
signment in CIFAR-100 evaluation when d varies from 3
to 200. When d ≪ c, we observe that our optimizable as-
signment A provides a notable enhancement to the train-
ing setup which emphasizes the importance of maintaining
inter-class dependencies. As d increases, the effect of inter-
class relationships fades. Also, we observe this effect in
Figure 4b. With the increase in d, the label-to-prototype
mapping is converging to a constant mapping. These ob-
servations reflect that our method lifts the dimensionality
constraint of ETF and converges toward ETF when the met-
ric space requirements are provided. Thus, as the prototype
distribution gradually converges toward ETF organization,
the similarity between every pair of prototypes becomes
equal, and inter-class dependencies become less important.

5. Conclusion

In this paper, we proposed a dynamic label-to-prototype
mapping to address the limitations of the current non-
parametric alternative to the conventional Softmax classi-
fier. Our method distributes prototypes before training and
fixes them during training, to maintain the large-margin
separation among prototypes and better metric space ex-
ploitation. Instead, we define the label-to-prototype assign-
ment as an optimization variable, allowing the model to
change the class that each prototype represents during train-
ing. The efficacy of the proposed method is demonstrated
through various experiments on balanced/long-tail classifi-
cation tasks and ablation studies.
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