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Abstract

The zero-shot performance of existing vision-language

models (VLMs) such as CLIP [29] is limited by the avail-

ability of large-scale, aligned image and text datasets in

specific domains. In this work, we leverage two comple-

mentary sources of information—descriptions of categories

generated by large language models (LLMs) and abundant,

fine-grained image classification datasets—to improve the

zero-shot classification performance of VLMs across fine-

grained domains. On the technical side, we develop meth-

ods to train VLMs with this “bag-level” image-text super-

vision. We find that simply using these attributes at test-

time does not improve performance, but our training strat-

egy, for example, on the iNaturalist [41] dataset, leads to

an average improvement of 4-5% in zero-shot classifica-

tion accuracy for novel categories of birds [42] and flow-

ers [23]. Similar improvements are observed in domains

where a subset of the categories was used to fine-tune the

model. By prompting LLMs in various ways, we generate

descriptions that capture visual appearance, habitat, and

geographic regions and pair them with existing attributes

such as the taxonomic structure of the categories. We sys-

tematically evaluate their ability to improve zero-shot cat-

egorization in natural domains. Our findings suggest that

geographic priors can be just as effective and are comple-

mentary to visual appearance. Our method also outper-

forms prior work on prompt-based tuning of VLMs. We re-

lease the benchmark, consisting of 14 datasets at https:
//github.com/cvl-umass/AdaptCLIPZS, which

will contribute to future research in zero-shot recognition.

1. Introduction
Recent improvements in zero-shot classification have

been due, in part, to success in training VLMs at scale.
Models such as CLIP [29], ALIGN [11], and BLIP [16] use
massive datasets of image and text pairs to learn a common
embedding between visual and natural language domains.
However, we find existing VLMs show poor performance in
encoding visual attributes in fine-grained domains, beyond
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Vesper sparrow with a small conical beak, 
brown heavily streaked body, long tail and 
white eye-ring around its black eye.

Size and Shape: A medium-sized, stocky 
sparrow with a rounded head and a short 
stout beak. 
Plumage and Markings: Features brown, 
streaky back and wings, with white or light 
underparts that also have defined streaks. 
Notable white outer tail feathers visible in 
flight, a white eye-ring, and a distinct dark 
shoulder patch. 
Habitat: Prefers open fields, grasslands, and 
woodland edges.

Birds have feathers, toothless beaks of varied 
shapes; wings, a common trait even among 
non-fliers; a streamlined body with an upright, 
two-legged stance; and eyes on the sides of 
their heads for wide vision. 
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Figure 1. Motivation. Collecting image captions in fine-grained domains
requires expertise (top row), but LLMs can generate structured (e.g., shape
or appearance) and accurate descriptions of categories at both the coarse
(e.g., birds) and fine-grained level (e.g., Vesper Sparrow). Rich descrip-
tions of fine-grained categories can be paired with existing datasets, such as
iNaturalist [41] and NABirds [39] to generate coarsely-aligned image-text
datasets for fine-tuning VLMs. This improves their zero-shot performance
on a range of benchmarks, generalizing to novel categories and tasks.

simply recognizing the name of the category. For exam-
ple, we observe concatenating visual attribute descriptions
to the species name for the bird species in the CUB [42]
dataset improves the zero-shot classification from 50.5%
to only 50.7%, while for Cars [14], the performance even
drops slightly (see Tab. 1). Although the datasets on which
VLMs are trained are extensive, they often lack the details
that experts may require for fine-grained categorization. At
the same time, collecting large-scale image-caption datasets
in these domains requires significant effort, making training
similar models challenging.

In this work, we leverage two complementary sources
of information—large language models (LLMs) and abun-
dant, fine-grained image classification datasets—to improve
the zero-shot classification performance of VLMs across
a variety of fine-grained domains. Concretely, we gener-
ate large datasets of images aligned with text by pairing
images within a category with descriptions of that cate-
gory generated by LLMs as seen in Fig. 1. We find this
approach works well, as images within a fine-grained do-
main share many attributes, unlike in coarse categories with
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larger intra-category variation. At the same time, we find
that LLMs are capable of accurately describing appearance,
habitat, and other properties for a wide range of categories,
allowing us to systematically generate datasets in a scal-
able manner. In other words, fine-grained labels allow us
to bridge the gap between image-level captions required for
VLM training, and general information about visual cate-
gories contained in LLMs.

On the technical side, we develop methods to train
VLMs with “bag-level” supervision. In our dataset a set
of images are grouped with a set of descriptions and lack
the image-text correspondences. Some of the descriptions
may not apply to an image (e.g., the part may be occluded).
However, we find that training by stochastically pairing the
images and text within a category, followed by a category-
level contrastive loss similar to CLIP objective offers robust
improvements in performance. Adapting semi-supervised
learning approaches such as FixMatch [35] or Knowledge
distillation [3] results in minor improvements (§ 5.7). A
detailed investigation of the image-text association within
a category suggests the model is able to correctly associate
the visual attributes with the corresponding text even they
are paired randomly during training (Fig. 2).

We systematically evaluate the effectiveness of our
method by assessing the zero-shot classification perfor-
mance on novel classes. We find that simply using these
attributes of novel classes generated by LLMs does not im-
prove performance when using CLIP (Tab. 1). However,
our training strategy leads to an average improvement of
4-5% in accuracy across 12 datasets, and outperforms base-
lines (Tab. 2). For natural domains (e.g., iNaturalist and
NABirds), we prompt LLMs in various ways to generate
descriptions that capture visual appearance, habitat, and
geographic regions, and pair them with existing attributes
within the dataset, such as taxonomic structure. Our re-
sults indicate that geographic priors are equally effective
and complementary to visual appearance cues (see Tab. 3).
Training on iNaturalist without any bird classes improves
the performance of CLIP on CUB by more than 3%, and we
observe similar improvements when evaluating across other
domains (see Tab. 4). Improvements are consistent across
text generated by different LLMs, as well as by humans (see
Tab. 5). Our model also results in relative error reduction of
4.1% over CLIP on the challenging NeWT dataset [40].

2. Related Work
Zero-shot Image Classification using VLMs. Vision Lan-
guage models (VLMs) [6, 11, 29, 33, 45] learn to asso-
ciate images with their corresponding text captions. Learn-
ing a shared embedding makes them perform exceptionally
well in zero-shot classification tasks when paired with an
appropriate text such as the class name during test time.
FLAVA [33] learns using paired as well as unpaired im-

a photo of a Yellow 
Warbler bird with 

a slight, olive-
green tint on its 
back and wings.

a photo of a Hawk 
T1 aircraft with a 
relatively short 

and stubby 
fuselage.

.  .  .

.  .  .

.  .  .

.  .  .

Top Bottom
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Figure 2. Visualizing image-text similarity. All images within a category
are sorted in order of similarity to a given text predicted by CLIP and
our fine-tuned CLIPFT+A. For example, our method identifies birds which
show olive-green tint on their back as the top images, whereas CLIP selects
birds with visibly brown upperparts or occluded back. The image with
lowest similarity which has the occluded back remains the same for both
models, showing our model does not learn incorrect attribute associations
even though we stochastically pair every attribute with every image during
training. On the aircraft example our model predicts higher similarity to
images with prominently visible fuselage. CLIP identifies the least similar
image as one in which fuselage is visible, but ours chooses one where
aircrafts are too far to make out the shape of fuselage.

ages and texts using different losses for multimodal and uni-
modal understanding. ALIGN [11] uses a large number of
noisy image-text data by obtaining alt-texts for images and
trains using a contrastive loss. CLIP [29] is trained on a
smaller and cleaner dataset of image-text pairs using a sim-
ilar objective function. It employs a vision model and a
language model to learn joint embeddings of images and
text. While training, it maximizes the similarity between
related image-text pairs and minimizes similarity between
unrelated pairs. At test time the similarity over captions
such “a photo of a [class name]” over all classes in the
domain for each image is found. The image is classified
to the class with the caption with highest probability. The
original paper shows that manual prompt tuning can boost
zero-shot classification accuracy.
Generating Better Prompts. Prior work on prompt tun-
ing [7, 12, 13, 32, 51] has focused on improving the text
descriptions of classes. For example, CoOp [50] appends
learnable context vectors to the class name texts to im-
prove classification. CoCoOp [49] and related methods
have also explored prompting the vision encoder simulta-
neously. While prompt tuning has proven useful for adapt-
ing models to a set of “base categories”, its performance on
novel categories still falls short of the CLIP baseline.

Another line of research aims at querying LLMs to gen-
erate prompts or attributes of categories. CHiLS [24] re-
fines classes based on GPT descriptions (e.g., taxonomic
structure) and maps the image to one of the subcategories
to improve classification. We also explore the ability to
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learn taxonomy-based attributes in our work. Menon et

al. [20] and CuPL [28] append class-specific attributes ob-
tained from GPT [2] to simple prompts, e.g. “a photo of a
[class]” to improve zero-shot performance at test-time,
similar to our approach. However, we find that CLIP strug-
gles to recognize nuanced attributes in fine-grained domains
where we observe little to no improvement in classification
performance, motivating the need for fine-tuning VLMs.
Fine-tuning VLMs. Most work on fine-tuning VLMs has
focused on parameter efficient updates using lightweight
adapters [8,19,25,27,46,47] for improving few-shot classi-
fication. For example, CLIP adapter [8] trains a few learn-
able layers on top of the encoders, while Maniparambil et

al. [19] query LLMs for class-wise descriptions for tuning
an external adapter network. Their work improves over Co-
CoOp and CLIP adapter for unseen classes, however, as be-
fore, most approaches show no improvement over CLIP, es-
pecially on novel classes in fine-grained datasets.

Another line of research [9, 34, 37, 43, 48] involves fine-
tuning CLIP for robustness to domain shifts. For instance,
WiSE-FT [43] utilizes weight-space ensembling to im-
prove performance on a sketch version of ImageNet. Sim-
ilarly, LaFTer [21] employs fine-tuning both the image and
text encoders using unpaired images and texts obtained by
querying LLMs. These techniques focus on adapting to a
target distribution, such as a specific set of test images or
classes, rather than on generalizing to novel classes.

Two works similar to ours, GIST [15] and
I2MVFormer [22], also utilize GPT to generate category-
specific texts for fine-grained domains. GIST pairs each
image with the n most similar texts within the category
based on CLIP similarity and consolidates them into a
caption. In contrast, our approach stochastically pairs
images with text, a strategy we found to be more robust.
Notably, our experiments showed that biasing sampling
towards similar image and text pairs led to inferior results
(see § 5.7). I2MVFormer uses a LLM to generate class
descriptions based on texts provided by annotators and
Wikipedia documents. The key differences between their
work and ours lie in the use of human effort in their training
data generation and starting from scratch resulting in much
lower performance compared to ours. Finally, in contrast to
both these works, we explore training using visual, habitat,
and location information, as well as training on larger
datasets such as NABirds and iNaturalist.

Summary To the best of our knowledge, ours is the first
method demonstrating that fine-tuning CLIP with class-
specific descriptions obtained by querying LLMs improves
the zero-shot performance in fine-grained domains. Our ap-
proach leverages LLMs to generate image-text data that are
coarsely aligned, making it particularly effective for fine-
grained categories. Moreover, unlike prior work [19, 20],

our method queries LLMs along various dimensions such
as visual, taxonomy, habitat and geographic priors, and sys-
tematically evaluates their effectiveness.

3. Method
Consider a dataset D = {(xi, yi)}ni=1 consisting of im-

ages xi 2 X and labels yi 2 Y . A VLM such as CLIP [29]
consists of an image encoder ⇥ and a text encoder � such
that ⇥(x) ⇡ �(y) for images x with label y. We want to
improve the zero-shot performance of CLIP on novel cate-
gories in fine-grained domains by fine-tuning the image and
the text encoders. We do so either by splitting a dataset D
into Ktrain training and Ktest testing classes, or train our
model on large datasets such as iNaturalist and NABirds by
excluding classes or domains overlapping with our test set.
Our framework consists of: 1) generating textual descrip-
tions given the class names by prompting LLMs in different
ways (§ 3.1); 2) fine-tuning CLIP using these descriptions
using our proposed approach (§ 3.2); and 3) evaluating the
models on downstream tasks (§ 3.3). Fig. 3 provides an il-
lustration of our method.

3.1. Dataset Generation
For each dataset we generate texts for every class which

can be used to differentiate it from other classes in the do-
main using visual attributes. We query an LLM as:

What characteristics can be used to differentiate [class]
from other [domain] based on just a photo? Provide an ex-
haustive list of all attributes that can be used to identify the
[domain] uniquely. Texts should be of the form “[domain]
with [characteristic]”.

Here [class] is the class name for the K classes in the
dataset [domain]. Each domain is associated to different
datasets, for example for the CUB200 dataset, [domain]
is “bird” and for iNaturalist dataset it is “organism”. Ap-
pending the domain [domain] is helpful because it pro-
vides context about the set of the other classes to distinguish
from, and reduces confusion across similar class names in
other domains. The LLM produces lk descriptions for cat-
egory k. We append “a photo of [class]” to the gener-
ated texts resulting in descriptions of the form “ a photo of
a [class] [domain] with [characteristic]” for
each class (more details in the experiment section). This
results in a set of descriptions Yk for each category.

We also separately query about the habitat and geo-
graphic location of occurrence for the classes in CUB200,
Flowers102, NABirds and iNaturalist datasets. For this pur-
pose we use the prompt:

Where can we find a [class]? Produce a list of habitat and
geographic location information that can be used to identify the
[domain].
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1 Text Generation 2
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level fine-
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Frozen
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C1 CK

X1 XK

D(Xk,Ck) 

Dataset

Class
Names

Images

a bird with a dark gray to
brown body

a bird with a white patch on
the base of the bill 

Images

Texts

VLM

Novel
Tasks

Novel
Domain

Novel
Texts

Novel
Classes

Frozen Model

3Evaluation

A bird with a bright yellow underbelly.
A bird with olive-green upperparts.
A bird with black and white stripes on its back.
A bird with a faint chestnut streak on its back.

What are the distinguishable characteristics that 
can be used to differentiate a Prairie Warbler from
other birds based on just a photo?

A bird which nests in low areas of shrubs or trees,
often close to the ground.
A bird which can be found in farmland and areas
where shrubby growth is common.
A bird which can be seen in the Bahamas and  in
the West Indies during migration.

Where can we find a Prairie Warbler?

(a) (b)

VLM Fine-tuning

Figure 3. Fine-tuning VLMs to improve zero-shot performance. a) Our framework for 1� generating fine-grained attributes per class using LLMs, 2�
category-level fine-tuning of VLMs and 3� evaluating on a series of challenging unseen scenarios. b) We show examples of texts produced in step 1�.

We add the texts obtained to the category-level corpus Yk.
The impact of these location-specific texts and the improve-
ments offered are described in the results section. Examples
of visual and habitat descriptions are in the Appendix. We
determine the correctness of the texts produced for 4-6
classes of CUB, Aircraft and Cars by manual fact-checking
texts with the help of online sources. We find that 96%
(CUB), 90% (Aircraft) and 96% (Cars) are marked as cor-
rect by study participants (more details in Appendix). How-
ever, a challenge is that this manual vetting does not scale
to large datasets, and we therefore rely on empirical results
to support the utility of the generated text.

3.2. VLM Fine-Tuning

CLIP [29] is trained with image caption pairs. However,
in our case we have a set of images Xk and a set of texts Yk

for classes k 2 Ktrain in our training set. We address this
by pairing every image with randomly sampled text from
the corresponding category during training. However, we
cannot directly use the batch-level cross-entropy loss used
by CLIP which treats the paired text as positive and rest of
the texts as negative. This is because the same batch can
contain multiple pairs with images and texts belonging to
the same category. Below we describe our modification of
the objective function that addresses this.

In each iteration of training we sample a batch of size N
consisting of {(xi, yi)}Ni=1 pairs where both xi and yi is an
image and text from the same class. Let the similarity score
obtained using the forward pass of CLIP for image xi and
text yj be Sij . Let c(i) be the category of image-text pair
(xi, yi). Let Gi = {j | c(j) = c(i)} denote the indices of
pairs that belong to the same class as pair (xi, yi). Then the

loss function for images is:

Limage = �
1

N

NX

i=1

1

|Gi|
X

j2Gi

log
exp(Si,j/⌧)PN
r=1 exp(Si,r/⌧)

(1)

and the corresponding one for texts is:

Ltext = �
1

N

NX

j=1

1

|Gj |
X

i2Gj

log
exp(Si,j/⌧)PN
r=1 exp(Sr,j/⌧)

(2)

where ⌧ is a learnable temperature parameter. The overall
loss for fine-tuning is:

Lft = Limage + Ltext

The objective aggregates the image text similarity across
all image and text pairs from the same category within the
batch. To avoid overfitting on small datasets we maintain
momentum encoders whose weights (✓EMA, �EMA) are
updated with the exponential moving average (EMA) of the
weights of the encoders (✓, �) which is trained using the
objective Lft:

✓EMA  m✓EMA + (1�m)✓E

�EMA  m�EMA + (1�m)�E ,

where m is a momentum parameter. All encoders are ini-
tialized using the pre-trained weights of CLIP.

3.3. Evaluation for Zero-shot Classification
To evaluate a model on unseen classes we similarly

query the LLM as described in §3.1 to obtain texts Yk, for
k 2 Ktest. For any given image x we can find the similarity
score using a VLM for every text ykm for m 2 {1, . . . , lk}
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and k 2 Ktest. Denote the similarity between image x and
text ykm as Sk

m. The predicted class is:

argmax
k

1

lk

lkX

m=1

exp(Sk
m)

P
p2Ktest

Plp
q=1 exp(S

p
q )

(3)

The score represents average similarity between an image
and the texts corresponding to each class. Our initial exper-
iments suggested that simple averaging of probabilities is
more robust than alternatives such as the geometric mean.

4. Experiments
In this section we present the experimental details of our

approach. We outline the datasets we use, the particulars of
implementation for each part of the method as well as the
details of the baselines we compare our method to.

4.1. Datasets
We use a variety of fine-grained classification datasets

including CUB [42] (200 classes), Flowers 102 [23] (102
classes), Stanford Cars [14] (196 classes), FGVC Air-
crafts [18] (100 classes) and Food101 [1] (101 classes). We
also apply our method on some coarser datasets including
EuroSAT [10] (10 classes), ImageNet [31] (1000 classes),
CalTech101 [5] (100 classes), DTD [4] (47 classes), Ox-
ford Pets [26] (37 classes), Sun397 [44] (397 classes) and
UCF101 [36] (101 classes). For all these datasets, we use
the first half of the classes (ordered by ids of the original
dataset) for training and second half for zero-shot testing.

We also use NABirds [39] which contains 404 bird
classes at species level. We remove the overlapping classes
of the CUB testing set from these to obtain 331 training
classes. Along with train and test classes being different,
this setting also represents a distribution shift in the im-
ages of training and testing as images for CUB and NABirds
have been obtained in different manners.

iNaturalist [41] 2021 is another dataset we utilize to il-
lustrate that our method scales and generalizes. iNatural-
ist contains 10k classes belonging to 11 general categories
(such as birds, plants, fishes). First, in a similar setting
to NABirds we remove overlapping test classes of CUB to
train a model for testing on CUB. Secondly, we remove all
bird classes from iNat and train a model on the remaining
classes to test on CUB. We follow similar settings for testing
on Flowers 102. Even in these challenging circumstances
our method offers improvement over the baselines(§ 5.3).

For CUB, NABirds and iNaturalist we also have tax-
onomy information including family, order and scientific
name. We also append separate texts containing these to the
category-wise text corpus to show improvements (Tab. 3).

NeWT [40] provides a benchmark for a set of 164 com-
plex binary classification tasks in the natural world that ex-

tend beyond species classification. These tasks include de-
termining 1) appearance 2) behavior, 3) context, 4) counting
and 5) gestalt. NeWT contains 36k images with 200-400
images per task. We randomly select 50 of the 164 tasks
to evaluate our trained model. We manually associate two
texts for each task, positive and negative. For example, “a
photo of a raptor bird which is not on a utility pole” and “a
photo of a raptor bird which is on a utility pole”. We show
improvements over CLIP (§ 5.5). All details of texts used
as well as categories selected are in the Appendix.

4.2. Implementation Details

For generating category-level texts for training, we uti-
lize the “gpt-4-0613” API. We set the temperature parame-
ter as 0 so that texts generated are deterministic.

For all queries concerning the classes of iNaturalist (both
visual and location) we also append the type of organism as
well as it’s scientific name in the question. For example, for
the class “Bay Laurel” the query for location information is

Where can we find a Bay Laurel, a type of plant with scientific
name Laurus nobilis? Produce a list of habitat and geographic
location information that can be used to identify the plant.

This is required because there exist organisms with the
same common name but different domains. Also, we need
to append the scientific name as otherwise GPT4 does not
recognise the organism in many cases. We provide more
details in Appendix.

Additionally, we experiment with using taxonomy in-
formation for training and testing on datasets where it is
available (Tab. 3). We form the following texts

1. a photo of [class] [domain], with scientific name [s name]
2. a photo of [class] [domain], with family name [family]
3. a photo of [class] [domain], of the order [order]

While fine-tuning using the texts obtained from an
LLM, we train for only 15 epochs on each dataset. On iNat-
uralist, we train for only 5 epochs. We find hyperparameters
by splitting the train classes into two equal parts, training on
the first half, and validating on the second. We then fix the
best hyperparameters found and train on all train classes.

The CLIP architecture consists of an image encoder and
a text encoder. Both contain transformers followed by a
linear projection layer at the end. We use different learning
rate and weight decay for the projection layers compared to
rest of the encoders. The temperature parameter ⌧ in our
model (§ 3.2) is trainable. We provide the details of the
initialization of ⌧ , the momentum parameter for the EMA
encoder as well as learning rates and weight decays of every
parameter for all datasets in the Appendix.
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Methods CUB Stanford Cars FGVC Aircrafts Flowers 102 Food 101
CLIP 50.54 69.72 29.27 71.78 88.32
CLIP + A 50.71 69.47 30.35 75.37 90.08
CLIPFT 50.81 ± 0.04 69.61 ± 0.07 31.10 ± 0.02 73.68 ± 0.00 88.32 ± 0.00
CLIPFT + A 53.34 ± 0.08 71.63 ± 0.06 36.41 ± 0.02 77.05 ± 0.00 93.71 ± 0.01

Table 1. Comparison with CLIP ViT-B/32 on zero-shot performance on fine-grained domains. We compare our method CLIPFT + A to the baselines
defined in § 4.3. We significantly improve over baseline CLIP evaluated with both “a photo of a [class] [domain]” and LLM attributes. We also
fine-tune CLIP with only “a photo of a [class] [domain]” text and compare with our method to show that our improvements are not due to seeing
domain-specific images but also by learning correlations between images and fine-grained attributes.

Stanford Cars FGVC Aircrafts Flowers 102 EuroSAT Food 101 ImageNet
CLIP 74.94 36.47 77.05 64.05 92.49 67.41
CLIP + A 73.83 36.47 80.84 71.51 93.72 69.74
CLIP-A-self [19] 72.90 33.00 75.30 70.50 91.20 68.30
CLIPFT + A 75.78 40.75 81.26 81.82 95.08 71.87

Table 2. Comparison to prior work using ViT B/16 architecture on zero-shot classification. We show that across a variety of datasets from finer to
coarser domains we considerably boost performance over baselines. Here we train using only 16 images per class and test on unseen classes for fair
comparison to CLIP-A-self. We do not compare on CUB dataset as CLIP-A-self uses a 3:1 split on CUB, whereas we use 1:1 across all datasets.

Texts CUB Flowers 102
Visual 53.34 77.05
Taxonomy 53.07 -
Habitat 53.69 76.00
Vis. + Hab. 54.01 77.22
Vis. + Tax. + Hab. 54.23 -

Table 3. Evaluating CLIPFT + A using different types of text. We query
LLMs to produce visual (vis.) and habitat (hab.) information separately
and use taxonomy (tax.) information available with dataset. We train with
the type of text specified in each row and test with the same type. Using
habitat information works slightly better than using visual information for
CUB. All three types of texts are complementary.

Train Set CUB Flowers 102
NABirds\overlap 55.32 -
iNat\overlap 54.58 77.05
iNat\Birds 53.89 -
iNat\Plants - 76.63

Table 4. Evaluating domain transfer performance. Our method offers
substantial gain over baseline CLIP (Tab. 1) even when trained on external
datasets. Performance boost is competitive even when removing all bird or
plant classes from iNat to test on CUB and Flowers respectively.

4.3. Baselines
In this section, we discuss the various methods for which

we compare zero-shot classification accuracy.
CLIP refers to pre-trained CLIP tested with “a photo of a
[class] [domain]” texts like the original paper.
CLIP + A is evaluating pre-trained CLIP with attributes ob-
tained from LLMs as outlined in § 3.3.
CLIPFT involves fine-tuning CLIP on training classes using
“a photo of [class] [domain]” texts and evaluating on
test classes using “a photo of [class] [domain]” texts.
CLIPFT + A is our method where we fine-tune CLIP (§ 3.2)
using attributes obtained from a LLM (§ 3.1) for training
classes and evaluate using LLM attributes of testing classes

Testing Texts CLIP + A CLIPFT + A
[class] [domain] 50.54 52.29
GPT 4 Vis. 50.71 53.34
GPT 3 Vis. 51.08 53.35
LLaMA Vis. 50.10 52.52
Ground Truth Vis. 52.53 53.99
GPT 4 Vis. + Tax. + Hab. 52.83 54.23
GPT 3 Vis. + Tax. + Hab. 52.63 53.58
LLaMA Vis. + Tax. + Hab. 50.85 52.64

Table 5. Evaluating model trained using GPT4 with texts obtained
from other models. Our model consistently improves over pre-trained
CLIP when evaluated with texts obtained from different LLM models
(GPT3.5 and LLaMA2-7B) as well as GT aggregated captions and “a
photo of a [class] [domain]”.

at test time as described in § 3.3.
CLIP-A-self [19] is prior work which uses text obtained
from GPT to train an adapter network attached after the
text and image encoders of CLIP. For comparing with this,
we use the numbers stated by them under their training and
evaluation scheme. We test our model on the same classes
as them to show improvement.

5. Results
In this section, we compare our method to baselines and

evaluate it under various settings. We discuss our perfor-
mance improvements over various datasets and architec-
tures. We show that for natural domains using taxonomy
and habitat information offers improvements with habitat
information especially being a strong factor. Our model
scales across architectures and needs only a few epochs of
training. We further show that our method performs bet-
ter than baseline CLIP even under more difficult evaluation
settings such as 1) using texts from different LLM mod-
els during testing and training; 2) training a model in a do-
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main very different from testing domain, and 3) evaluating
on tasks other than identifying categories at test time. Ad-
ditionally, we discuss other training strategies for category-
level fine-tuning and how they perform.

5.1. Comparison with Baselines
Tab. 1 compares our method to three baselines CLIP,

CLIP + A and CLIPFT, all evaluated on unseen classes.
Here we use the ViT B/32 architecture for all methods. Our
method offers considerable improvements over pre-trained
CLIP when using “a photo of a [class] [domain]”
text and when using GPT generated text. In difficult fine-
grained domains such as CUB, Stanford Cars and FGVC
Aircrafts pre-trained CLIP does not utilize text attributes
generated by GPT resulting in negligible improvement
(decrease on Stanford Cars) compared to “a photo of a
[class] [domain]” (see CLIP + A vs CLIP). This mo-
tivates the need to fine-tune using these attributes, result-
ing in significant improvement across all datasets. We also
compare to fine-tuning CLIP with “a photo of a [class]
[domain]” texts (CLIPFT) to show that the improvement
our method achieves is not due to just being trained on im-
ages of concerned domain.

We compare our method to previous work CLIP-A-
self [19] in Tab. 2. We follow [19] and use the ViT B/16 ar-
chitecture and only 16 images per class for training. Again
we evaluate on unseen classes. Our method outperforms
CLIP-A-self significantly across all datasets. Also, our
method offers substantial improvement over CLIP, showing
that it scales across architectures. We discuss why CLIP-
A-self underperforms in detail in the Appendix. We also
show results on the 14 datasets benchmark in Appendix.

5.2. Using more than just Visual Information
We explore using information other than visual attributes

for natural domains such as birds and flowers. For humans
identifying a bird in an image it is crucial to know where
the image was taken, because that reveals habitat and lo-
cation information. We therefore query GPT for an organ-
ism’s habitat and geographic range. In Tab. 3 we show that
for CUB using only habitat information performs bet-
ter than using only visual information. A reason for this
is that habitat information describes the background of the
images of birds, which is helping to differentiate between
categories. We also show that combining visual + taxon-
omy + habitat information for CUB and visual + habitat
information for Flowers102 offers best improvement.

5.3. Training on External Domains
We now evaluate under more difficult settings. We train

and test on different datasets, always removing any over-
lapping classes. For training on iNat and NABirds we use
all visual + taxonomy + habitat information. While testing

on CUB we use visual + taxonomy + habitat. For Flowers
102 we use visual + habitat information. Tab. 4 we show
the accuracy on CUB test classes improves considerably
when training using NABirds and iNat even though the im-
ages of these datasets have a distribution shift w.r.t. CUB.
More strikingly, we show that even when we remove all
bird classes from iNat we still offer improvement on CUB
test classes compared to CLIP + A (52.83! 53.89). Sim-
ilarly when we remove all plant classes from iNat, we still
get improvement on Flowers 102 test set. This proves that
our model is also able to generalize well. It is learning
to associate fine-grained attributes to images irrespective of
the domain differences in training and testing.

5.4. Using Novel Texts during Test Time
We evaluate how our model would perform in the ab-

sence of the LLM used to generate training texts, during test
time (Tab 5). We use GPT3.5 turbo (0613) and LLaMA2-
7B [38] for generating visual and habitat texts. We show
that our method consistently improves performance over
pre-trained CLIP for all types of texts explored. 1 Please
refer to Appendix for examples of texts produced. Our
model also improves performance over pre-trained CLIP
while using “a photo of a [class] [domain]” texts.

Reed et al. [30] present a dataset of human-labelled cap-
tions per image for the CUB dataset. We use these ground
truth texts at test time to evaluate our model. The dataset
contains 10 captions for every image, which are all visual
attributes of the bird in the image. Since many attributes in
the captions are repeated for each image as well as across
images of the same class, and to limit the size of the text cor-
pus, we randomly select one caption per image of a given
class and aggregate them to form a category corpus. In
Tab. 5 last row, we notice that CLIP does better using these
image-level GT texts compared to using GPT4 Visual texts
which were category-level (row 2). However, our method
still outperforms showing that it is able learn meaningful
attributes through noisy labels.

5.5. Evaluation on Novel Tasks
We use the NeWT [40] benchmark to evaluate on tasks

beyond categorization. These include identifying age, at-
tribute, health, photo quality, species, context and behav-
ior. We evaluate the model and baseline CLIP using av-
erage Mean Average Precision (MAP) across tasks. Our
model trained on iNaturalist using visual + taxonomy +
location information outperforms baseline CLIP: 60.25 vs
61.90 MAP! 4.1% relative error reduction. We present
all tasks and texts we use to evaluate as well as MAP per
task in the Appendix. Below is an example prediction:

1LLaMA model does not always produce texts in the specified format
and thus needs post-processing. The texts formed finally are considerably
different grammatically from the sentences our model has been trained on.
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a photo of a raptor 
bird which is not on a 

utility pole 

a photo of a raptor 
bird which is on a 

utility pole 

Probability: 0.38 Probability: 0.62

5.6. Resource Requirements

We fine-tune our model using a 1024 batch size on a
single NVIDIA A100 80GB. We need to train only for a
maximum of 15 epochs. For smaller datasets such as CUB,
FGVC Aircraft, and Stanford Cars, this takes less than 5
minutes. For iNaturalist, which is a large dataset, we train
only for 5 epochs, taking about 4 hours.

The cost of using the GPT-4 API to query text descrip-
tions for a dataset with 100-200 classes (such as CUB) is
about $1-$5. This is low because it scales with the num-
ber of categories and not the number of images. Generating
captions per image is both time-consuming and expensive;
an estimate for doing this for the CUB dataset using the
GPT-4 Vision API is more than $100. This cost scales sig-
nificantly for larger datasets with more images.

5.7. Alternate Training Strategies

Here we discuss other training strategies for improving
VLMs using category-level training data. Our simple fine-
tuning strategy of stochastically pairing images with texts
within categories is simple, efficient, and offers similar
improvements compared to more complex approaches.

Firstly, since we pair a given image of a category to every
text of that category, we might be pairing texts that describe
attributes that are not visible. For CUB dataset we have the
ground truth visibility annotations of various bird parts,
which we use to ignore texts that are occluded for each im-
age. This strategy offers improvement to our scores (54.23
! 54.47). However, this depends on visibility information
that is time-consuming to generate.

The next step is to assume that pre-trained CLIP itself is
able to correctly identify if a part is visible. Assuming this
we mask texts during training time based on CLIP pre-
dictions by doing 1) a forward pass for a image and all texts
of the category to find the texts above a threshold that can be
paired with the image, 2) max pooling at instance level for
images and texts. We find that none of these strategies offer
any improvement and that pairing images with low scoring
texts also (like in our method) is improving performance be-
cause CLIP does not accurately identify which fine-grained
attributes correctly correspond to given image.

We also try well-known semi-supervised learning strate-
gies such as FixMatch [35] and knowledge distillation [3].
We find that these offer small (< 0.2%) to no improvements
over our method. Please see the Appendix for details of
implementation of all the methods and accuracies.

5.8. Performance of image captioning models.
We test the recently released GPT4 Vision API for

checking quality of image captions obtained. Even though
it performs better than previous captioning models such as
LLaVA [17] and BLIP2 [16], we find that the captions ob-
tained are general descriptions without fine-grained details.
The captions are specific to the image but do not describe
information helpful to identify the category. An example is:

A slender, streaked brown songbird with keen
eyes and a pointed beak perches atop a weathered
wooden fence post amidst a backdrop of natural
grassland under a clear blue sky.

For this image of a Vesper Sparrow, GPT4 provides a gen-
eral description of the bird and suggests the presence of
clear blue sky which is not visible in the image. We provide
more detail including prompt and examples in Appendix.

6. Limitation
Since our method is trained on texts generated by LLMs,

it is important to verify the correctness of these texts to as-
sess the level of noise in our training dataset. As described
in § 3.1, we conduct spot checks across some categories
on our evaluation sets. However, for our larger training
datasets, vetting becomes impractical. Improved perfor-
mance on human-generated texts on CUB, as well as the
vetted evaluation sets, supports our model’s ability to learn
meaningful information from somewhat noisy training data.

7. Conclusion
We present a method to improve the zero-shot perfor-

mance of VLMs using attributes generated by LLMs on
fine-grained domains. Our evaluation strategy involves test-
ing the trained model on unseen classes, texts generated
from different LLMs as well as humans, dissimilar do-
mains, and novel tasks. We show that fine-tuning CLIP
using category-level descriptions from GPT4 significantly
improves performance compared to baselines in this chal-
lenging downstream evaluation framework. Our findings
suggests that habitat and geographic priors are equally ef-
fective and complementary to visual information for zero-
shot classification in natural domains. We publicly release
our benchmark across all 14 datasets.
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