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Abstract

Recent advancements in Vision-Language Models (VLMs)
have marked a significant leap in bridging the gap between
computer vision and natural language processing. However,
traditional VLMs, trained through contrastive learning on
limited and noisy image-text pairs, often lack the spatial and
linguistic understanding to generalize well to dense vision
tasks or less common languages. Our approach, Solid Foun-
dation CLIP (SF-CLIP), circumvents this issue by implicitly
building on the solid visual and language understanding of
foundational models trained on vast amounts of unimodal
data. SF-CLIP integrates contrastive image-text pretraining
with a masked knowledge distillation from large founda-
tional text and vision models. This methodology guides our
VLM in developing robust text and image representations.
As a result, SF-CLIP shows exceptional zero-shot classifica-
tion accuracy and enhanced image and text retrieval capa-
bilities, setting a new state of the art for ViT-B/16 trained
on YFCC15M and CC12M. Moreover, the dense per-patch
supervision enhances our zero-shot and linear probe perfor-
mance in semantic segmentation tasks. A remarkable aspect
of our model is its multilingual proficiency, evidenced by
strong retrieval results in multiple languages despite being
trained predominantly on English data. We achieve all of
these improvements without sacrificing the training efficiency
through our selective application of masked distillation and
the inheritance of teacher word embeddings.

1. Introduction
The emergence of Vision-Language Models (VLMs), exem-
plified by pioneering models like CLIP [44] and ALIGN [24],
was pivotal in the integration of computer vision and natural
language processing. These models foster a unique sym-
biosis between visual and textual data, opening the door to
various applications. For instance, VLMs have been instru-
mental in enhancing text-guided image retrieval systems [3]
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Figure 1. SF-CLIP’s Performance on Vision-Language Tasks.
Our model, SF-CLIP, builds on the knowledge of foundational
vision and language models to learn a joint embedding space. As a
result, it not only shows improved zero-shot performance but also
inherits strong multi-lingual and image segmentation capabilities
from its teachers. The plot shows the performance of SF-CLIP
compared to SLIP and vanilla CLIP across ten established bench-
marks. (all models are pretrained on YFCC-15M)

and enabling breakthroughs in automated image caption-
ing [29]. Furthermore, they have even extended their impact
to creative domains such as the generation of images from
text [25, 42, 43, 45]. This diverse range of applications un-
derscores the versatile and transformative nature of VLMs
in bridging visual and linguistic domains.

However, despite their success and widespread adoption,
VLMs are not without limitations. A fundamental issue is
their heavy reliance on alt-text data, which is often readily
available but marred by noise and lacks the necessary depth
for a nuanced understanding of the visual-textual interplay.
This reliance typically leads to models developing represen-
tations akin to a “bag of words” approach, where the focus
lies predominantly on identifying objects without adequately
capturing their compositional context or the intricacies of
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their interactions and attributes [56]. Moreover, the standard
contrastive training approach tends to create global represen-
tations lacking localized feature sensitivity [57]. Such global
representations fail to capture the finer details and the spatial
relationships within images, leading to a superficial under-
standing of the visual content. This problem is even more
pronounced in contexts involving low-resource languages,
where the scarcity of quality paired data exacerbates the is-
sue. Consequently, this hinders the model’s performance in
underrepresented languages and raises concerns about the
equitable advancement and applicability of VLMs across
diverse linguistic landscapes.

Recent works have explored various strategies to address
these limitations of VLMs and enhance their understand-
ing of the visual-textual interplay. One prominent trend is
the incorporation of extra supervision [9, 37]. While effec-
tive, these methods significantly harm training efficiency.
The use of cleaner datasets [16] has also been shown to
be beneficial. Though this improves model performance,
scalability remains a challenge, particularly when bootstrap-
ping from pre-trained VLMs. A third approach involves
re-captioning images to refine the alignment between visual
and textual data [15, 38]. This method not only necessitates
a pre-trained VLM but also tends to reach a performance
plateau, indicating a potential saturation point in learning.
Despite these advances, a common limitation across these
methods is their reliance on existing VLM architectures, and
none fully addresses the nuanced understanding of spatial
and compositional elements within images.

To overcome these challenges, our approach, SF-CLIP,
leverages the solid visual and linguistic understanding cap-
tured in foundational vision and language models. These
models learned rich visual and textual representations by
drawing on vast repositories of unimodal text and image
data, allowing them to avoid many of the pathologies re-
sulting from pure weakly-supervised image-text contrastive
training. However, foundational vision and language models
inherently lack the capacity for direct image-text alignment,
an area where models like CLIP thrive. Therefore, we pro-
pose building SF-CLIP on the foundations of pre-trained
vision and language models by distilling and bridging their
knowledge through a combination of masked distillation
and contrastive image-text pretraining. Concretely, we lever-
age the frozen text and image teacher models to provide
per-token target latent representations for the text and im-
age encoders during VLM training. This dense per-patch
supervision greatly enhances the spatial and compositional
understanding of the image encoder and counteracts the ten-
dency to primarily global feature learning of standard VLM
training. As a result, SF-CLIP exhibits much-improved per-
formance on tasks that require a deep comprehension of the
visual content, such as image segmentation and advanced re-
trieval scenarios. A standout feature of SF-CLIP is its multi-

lingual proficiency, addressing another limitation of standard
VLMs. Typically, achieving such capability would require
extensive training on a diverse set of languages [8, 59] or
reliance on an off-the-shelf translation models [10]. How-
ever, our model achieves this despite being only trained on
monolingual data. This is accomplished by designing the
VLM text input as a learned projection from the fixed teacher
word embeddings, thus inheriting the LLM’s multilingual
capabilities. The resulting improvements in less common
languages are a step towards making VLMs more accessi-
ble and applicable globally. Finally, we show that SF-CLIP
can be trained efficiently by only selectively applying the
distillation on a few examples at each step. As a result, our
approach maintains higher training throughput while simul-
taneously achieving better downstream performance than
prior methods using auxiliary training objectives.

Our experiments demonstrate significant improvements
in zero-shot and vision-language retrieval tasks using SF-
CLIP. For instance, our training procedure enhances zero-
shot performance on ImageNet [47] by over 5% compared to
standard CLIP training on CC-12M [5]. This improvement is
achieved with only a marginal impact on training throughput,
maintaining a high rate of 2750 samples per second against
3300 samples per second for traditional training methods.

2. Prior Work
Contrastive Learning in VLMs. Contrastive learning
framework [52] associates images with their correspond-
ing textual descriptions via the use of dual encoders to map
images and text into a shared embedding space. Contrastive
learning has been pivotal in enabling zero-shot learning capa-
bilities in models, as evidenced in numerous studies [24, 44].
However, it predominantly captures high-level associations,
often neglecting finer compositional details [56].
Challenges in Spatial and Linguistic Understanding. A
significant limitation of the standard contrastive training in
VLMs is the insufficient capture of compositional informa-
tion, object attributes, and relations [48, 60]. This shortcom-
ing stems partly from the nature of web-scraped image-text
pairs, which often lack the depth required for understanding
complex compositions [15]. The literature has identified this
as a critical area for improvement in VLMs [33, 40, 51].

To address these challenges, some researchers have ex-
plored data-level interventions, such as data augmenta-
tion and hard-negative mining. Techniques include mod-
ifying text descriptions by word swapping or replace-
ment [12, 56] and enhancing captions using large language
models [13, 15, 35]. While these methods have shown
promise, they risk overfitting specific textual modifications,
usually ignore the image, and might introduce hallucinations,
which is a common problem with LLMs [22].

Another line of research has introduced additional learn-
ing objectives to improve VLMs. This includes incorporat-
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Figure 2. Model Overview for SF-CLIP. Our model learns to represent visual and textual data in a shared embedding space through an
image and text encoder. We train our model on a dataset comprising image-text pairs, utilizing a combination of optionally masked feature
distillation—aimed at inheriting the robust compositional understanding from vision and language foundation models—on a subset of the
minibatch (illustrated by the orange sample in this figure) and standard vision-language contrastive learning to align the two modalities.

ing self-supervision in the vision and text branches [9, 30].
These methods, although effective in enhancing model per-
formance, significantly increase the computational overhead
of training large-scale VLMs [55]. For example, training
MaskCLIP [9] takes 1.75× more than vanilla CLIP, and
training SLIP [37] takes 2.67× more.
Leveraging Foundational Models. Recent works have
demonstrated the efficacy of vision foundational models
in capturing rich spatial features [26, 39] and their robust
feature understanding. This insight has guided recent re-
search towards leveraging these models to enhance VLMs.
LiT [58] uses a frozen pretrained vision encoder instead of
training one from scratch, and Three Towers [27] uses a
frozen vision encoder to guide the CLIP’s vision encoder.
SAM-CLIP [54] starts from a pretrained SAM model and
fine-tunes it with both SAM and CLIP objectives via another
larger pretrained CLIP model. Despite the success of using
pretrained vision models, using LLMs as extra supervision
for the text encoder is under-explored.
Multilinguality. There are generally two approaches to train
multilingual CLIP models. One way is to simply train the
model on multilingual data like mSigLIP [59] trained on
WebLI [6] and OpenCLIP [8] trained on LAION5B [49].
The primary advantage of this approach is the direct ex-
posure of the model to a wide range of languages during
training, which can lead to more naturally generalized mul-
tilingual capabilities. However, it also presents challenges,
particularly in terms of the immense computational resources
required for training on such large and diverse datasets. An

alternative strategy to circumvent the high costs of direct
multilingual training is to align CLIP’s English text encoder
with a pre-trained multilingual text encoder by using parallel
sentences [4, 7, 10]. This approach is significantly more
resource-efficient, as it leverages existing models and data.
However, it may depend on the quality of the parallel sen-
tences and the effectiveness of the alignment process, which
can vary based on the languages involved and the quality of
the machine translation system used.

In summary, VLM approaches have advanced, but a gap
in detailed spatial-textual capture persists compared to uni-
modal foundational models. Our SF-CLIP seeks to fill this
by blending contrastive pretraining with masked knowledge
distillation, leveraging foundational models for improved
spatial-textual insight and training efficiency.

3. Method

We aim to learn a unified embedding space of text and images
using two separate encoders, a visual encoder V and a text
encoder T . We assume access to a paired dataset of images
xi and their noisy captions yi (alt-text) D = {(xi, yi)}Ni=1.
Our model also leverages pre-trained teacher models Vteacher
and Tteacher for both modalities. These teacher models are
trained on potentially much larger uni-modal datasets (e.g.,
large amounts of unlabelled images and texts), which are
generally easier to obtain than the paired image-text data. All
the models in our framework are based on the Transformer
architecture [53], which encodes an input into a sequence
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of feature vectors, e.g., V (x) ∈ Rnv×dv , where nv is the
number of tokens and dv the latent feature dimension of
the visual encoder. At a high level, our proposed training
strategy combines the usual contrastive loss between paired
data [44] with masked knowledge distillation objective to
the teacher in each modality. We name our model SF-CLIP
and show an overview in Figure 2. The remainder of this
section describes our model and training objective in detail.
Vision-Language Contrastive Objective. We use a stan-
dard contrastive learning objective to align our model’s vi-
sion and language embeddings. Concretely, let v(xi) ∈ Rd

be the embedding vector resulting from our visual encoder
and t(yi) ∈ Rd be the corresponding text embedding. In our
implementation, we calculate v(xi) and t(yi) as the average
of all the final layer token embeddings in the transformers
V and T , followed by a learned linear projection in each
modality (e.g., projecting dv to d for the visual encoder).
Finally, the projected embeddings are l2-normalized. We
follow prior works [24, 44] and use a symmetric InfoNCE
loss [52] formulation

LCLIP = LI→T + LT→I , (1)

with

LI→T = − 1

B

B∑
i

log
exp(v(xi) · t(yi)/τ)∑B
j=1 exp(v(xi) · t(yj)/τ)

LT→I = − 1

B

B∑
i

log
exp(v(xi) · t(yi)/τ)∑B
j=1 exp(v(xj) · t(yi)/τ)

,

where τ is a learned temperature parameter, and B is the
size of a training mini-batch.
Masked Feature Distillation. We combine the above con-
trastive vision-text alignment objective with a feature distil-
lation loss in both modalities. These distillation objectives
aim to anchor the learned student representations with strong
pre-trained visual and textual representations that capture
well the structure of visual and textual data (solid founda-
tions). Note that this implies that the student and teacher
input tokenizer must result in the same number of tokens
for any input. We, therefore, inherit the teacher language
tokenizers in practice. Furthermore, we pose feature distil-
lation in a masked setting, where the student only partially
observes the input and must recover the latent teacher rep-
resentation of masked and unmasked input tokens. This
masked reconstruction task additionally steers the encoders
to learn structural patterns in the inputs. Concretely, given
teacher visual encoders Vteacher and text encoder Tteacher, and
their corresponding student models V and T , we pose the
distillation losses

LV D = ∥V (Mv ⊙ x)− Vteacher(x)∥22 (2)

for the visual encoder and for the text encoder

LTD = ∥T (Mt ⊙ y)− Tteacher(y)∥22, (3)

where Mv and Mt are masks that randomly zero out a set
of student input tokens. Note that we layer normalize the
outputs of both teacher models in the loss calculation and
that we include a learned linear projection from the output of
V and T to teacher output features (the teacher and student
feature dimensions can be different).
Overall Training Objective. Our overall learning objective
combines the CLIP loss with the distillation losses

Ltotal = LCLIP + λ1LV D + λ2LTD, (4)

where λ1 and λ2 weigh the contribution of the distillation
terms. In this multitask objective, we can interpret LCLIP

as aligning the two modalities while LV D and LTD anchor
the visual and textual encoders with strong pre-existing rep-
resentations of visual and textual data.
Batch Subsampling for Efficient Training. Since our train-
ing includes distillation from large teacher networks (e.g.,
LLMs for the text encoder), a naive implementation would
result in much increased computational and memory de-
mands and much lower training throughput. This is due to
feeding every example in the mini-batch to the two teacher
networks as well. To counteract this, we propose to perform
the masked distillation objectives only on a small random
subset of each training mini-batch. As our experiments show,
this provides the positive influence of masked distillation
while preserving high training throughput. Furthermore, it
would be possible to pre-compute the teacher representations
and avoid the online computation of targets during training,
trading off additional storage requirements for virtually no
training overhead compared to vanilla CLIP training.
Inheriting Teacher Word Embeddings. A large portion of
the text encoder parameters are dedicated to learned word
embeddings. Instead of learning these from scratch, we opt
for a linear projection from the teacher’s frozen word embed-
dings to T ’s hidden dimension. Besides accelerating training
and enhancing downstream performance, we observe multi-
lingual vision-language understanding capabilities emerging
from this design when leveraging a multi-lingual text teacher.
This occurs even without seeing any multilingual paired data
during training of V and T .

4. Experiments
We conducted extensive experiments to validate our model
design and to demonstrate its advantages over the conven-
tional CLIP-style training approach for vision-language mod-
els. In these experiments, we employed a vision encoder
based on the ViT-B/16 architecture [11] and CLIP’s corre-
sponding text encoder architecture [44] but with a non-causal
attention (Similar to MaskCLIP [9] and CLIP [17]). Fol-
lowing the methodology of SLIP [37], we trained our model
on YFCC15M (a subset of YFCC100M [50]) for 25 epochs
with a batch size of 4096. Our default selection for the visual
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Pretraining on YFCC-15M
CLIP [9] 34.0 58.6 68.5 36.9 10.8 21.4 30.5 16.9 5.1 51.6 6.5 51.1 25.9 5.0 52.7 28.6 51.7 52.5 22.4 4.5 79.1
SLIP [9] 37.8 70.9 82.6 48.6 11.8 26.6 19.8 18.1 5.6 59.9 12.6 51.8 29.4 9.8 56.3 31.4 55.3 51.5 28.5 5.4 80.5
MaskCLIP [9] 40.1 72.0 80.2 57.5 12.6 27.9 44.0 20.3 6.1 64.9 8.5 52.0 34.3 4.9 57.0 34.3 50.1 49.9 35.7 6.7 82.1
CLIP [17] - 72.8 71.3 38.9 14.6 28.0 12.6 - 9.9 61.5 10.0 52.9 44.2 9.4 58.4 30.7 51.1 50.4 37.2 6.7 -
SLIP100ep [17] 40.1 74.0 79.2 50.4 11.5 26.2 20.8 36.5 8.4 63.3 11.7 55.1 35.2 17.1 61.3 34.7 52.1 49.9 27.8 8.1 78.67
CLIP 32ep [17] - 75.4 67.1 37.8 15.6 30.3 23.2 - 11.2 63.0 8.1 54.3 35.6 9.8 62.8 35.4 51.6 50.1 36.0 8.2 -
SF-CLIP 42.1 72.2 85.0 53.6 12.0 35.2 43.7 30.6 11.0 65.0 10.3 49.6 32.9 11.6 59.5 38.1 54.1 50.3 39.7 8.2 80.2

Pretraining on CC-12M
CLIP [15] 37.5 77.4 64.9 38.5 5.1 19.4 20.1 30.8 2.4 50.8 7.3 52.1 36.3 10.1 33.2 64.1 50.3 47.6 38.9 24.1 77.0
SLIP [15] - 77.6 80.7 46.3 5.7 25.1 25.8 - 2.3 52.5 6.0 - - - 29.2 58.6 - - 36.6 24.9 -
LaCLIP [15] 41.9 83.3 75.1 43.9 8.9 31.0 27.3 26.7 5.6 60.7 12.7 52.9 16.9 19.2 39.9 72.4 50.6 48.4 44.3 36.3 81.9
LaSLIP [15] - 82.8 82.0 50.2 9.2 30.1 20.4 - 4.4 62.9 10.1 - - - 37.4 70.6 - - 45.6 32.2 -
LaSF-CLIP 46.9 84.6 86.7 57.3 9.2 42.2 35.9 34.9 7.3 65.1 18.4 53.0 29.7 19.3 43.7 76.3 54.8 50.3 49.1 35.7 84.1
Pretraining on YFCC-15M+CC-3M+CC-12M+ImageNet-21K(ImageNet-1k is removed, around 13M images)
MaskCLIP [9] 48.9 86.4 95.3 78.3 11.6 33.0 57.7 18.8 8.0 78.9 17.3 52.8 16.0 7.3 74.2 74.4 52.1 46.2 54.3 26.5 82.3

Table 1. Zero-shot evaluation on ICinW [28] classification benchmarks. Best results in bold and second best with underline.

ImageNet Flickr30K MS-COCO
Zero Linear Image-to-text Text-to-image Image-to-text Text-to-image

Method Shot Probe R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

Pretraining on YFCC-15M
CLIP [37] 37.6 66.5 52.9 79.6 87.2 32.8 60.8 71.2 27.5 53.5 65.0 17.7 38.8 50.5
SLIP [37] 42.8 72.1 58.6 85.1 91.7 41.3 68.7 78.6 33.4 59.8 70.6 21.5 44.4 56.3
MaskCLIP [9] 44.5 73.7 70.1 90.3 95.3 45.6 73.4 82.1 41.4 67.9 77.5 25.5 49.7 61.3
SLIP100ep [17] 45.0 73.6 59.7 85.5 91.6 39.6 66.5 76.6 33.8 60.0 71.2 22.9 45.9 57.3
SF-CLIP 45.2 74.3 68.7 90.4 94.8 46.2 73.2 82.7 41.8 68.3 78.4 25.5 50.2 61.3

Pretraining on CC-12M
CLIP [15] 40.2 70.3 63.3 86.3 92.4 48.0 73.9 82.5 37.8 65.4 75.7 25.8 51.0 62.5
SLIP [37] 40.7 73.7 62.5 87.2 92.1 46.6 73.3 80.9 37.6 64.9 75.5 26.8 51.4 62.7
LaCLIP [15] 48.4 72.3 63.9 86.5 92.6 51.6 78.8 86.2 38.0 64.8 75.0 26.5 51.2 62.6
LaSF-CLIP 53.6 75.3 71.8 91.9 95.2 59.9 84.2 90.9 44.3 71.3 80.2 31.4 57.3 68.1

Table 2. Zero-shot and Linear probing accuracies on Imagenet (left) and zero-shot image-text retrieval on Flickr30K [41] and MS-COCO [31]
datasets (right). Best results in bold and second best with underline.

teachers included SAM-H/16 [26] and DINOv2-L/14 [39],
and for the text teacher, we chose XGLM-1.7B [32] with
word embedding projection. By default, we masked up to
25% of the text tokens and none of the vision tokens (evalu-
ated in ablations) and employed a subset of 1024 images for
the visual teachers and 512 for the text teacher. The values
of λ1 and λ2 were consistently set to 1. To further demon-
strate the broad applicability of our method, we also trained
LaSF-CLIP, a language-augmented version of our SF-CLIP,
using LaCLIP’s language rewrites [15] on CC12M [5] for 35
epochs with a batch size of 8192, employing 1024 images
for the vision teachers and 512 for the text teacher. For most

of our comparisons, we used the official SLIP2 and LaCLIP3

checkpoints. All the models were trained using eight A100
GPUs on a single node using OpenCLIP’s codebase [8].
Zero-shot Classification on Small Datasets. We use the
20 datasets of the Image Classification in the Wild (ICinW)
challenge [28] to assess our zero-shot classification accura-
cies in Table 1. Other than the datasets that most methods
perform poorly on, like MNIST and Aircraft (likely due
to the domain gap between YFCC15M/CC12M and these
datasets [9]), our method outperforms the others on average

2https://github.com/facebookresearch/SLIP#vit-base
3https://github.com/LijieFan/LaCLIP#pre-trained-models
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Method Pascal-Context ADE-20K

CLIP [9] 13.5 7.2
MaskCLIP [9] 17.2 10.2
SF-CLIP 25.9 11.6

Table 3. Zero-shot semantic segmentation (mIoU%) using models
trained on YFCC-15M.

by 2% on YFCC15M and by 5% on CC-12M. Not only does
our model outperform SLIP100ep (which was trained for 100
epochs, instead of 25), it even gets close to MaskCLIP [9]
trained on significantly more data.
ImageNet Classification. We evaluate both zero-shot and
linear probing accuracy of our model on ImageNet-1k [47].
We use the 7 prompts in SLIP [37] for zero-shot and 90
epochs of training with added batch normalization [23] with-
out affine parameters [19] for the linear probing. As can be
seen on the left of Table 2, SF-CLIP performs better than
all the other models with both pretraining datasets. Most
notably, on CC-12M, SF-CLIP gets a whopping 5.2% im-
provement over LaCLIP in the zeroshot setting.
Zero-shot Text/Image Retrieval. We report the zero-
shot text-image retrieval results on two benchmark datasets,
Flicr30K [41] and MS-COCO [31] on the right side of Ta-
ble 2. Overall, in the case of YFCC-15M, we see on-par
performance with MaskCLIP, and on CC-12M we see sig-
nificant improvements over LaCLIP.
Zero-shot Semantic Segmentation. Even though CLIP was
trained on whole images, DenseCLIP [62] showed that one
can still get per-patch classifications from CLIP. Since our
model inherits additional spatial understanding through our
visual distillation objective, we expect to see improved per-
formance compared to vanilla CLIP on zero-shot semantic
segmentation. Following DenseCLIP, we use the final at-
tention keys of the vision encoder and project them into the
joint embedding space, where we apply a per patch zero-shot
classification on Pascal-Context [36] and ADE-20K [61]. Ta-
ble 3 shows that SF-CLIP performs much better than CLIP
and MaskCLIP (which also has a per patch loss).
Linear Probing for Semantic Segmentation. Following
the previous experiment, we also conducted linear probing
on our per-patch representations for the task of semantic seg-
mentation on Pascal-VOC [14], Pascal-Context [36], ADE-
20K [61], and COCO-Stuff [2] datasets. Results in Table 4
show that SF-CLIP indeed has a richer spatial representation
than CLIP and significantly outperforms it in this task. Most
notably on Pascal-VOC, SF-CLIP is almost performing as
well as CLIP trained on 1B images [18].
Zero-shot Instance Segmentation. Since SF-CLIP was
trained to mimic SAM’s [26] final representations, we can
use SAM’s decoder on top of our model "out of the box"
and get better than chance results. In Table 5, we use the

Method VOC Context ADE COCO

Pretraining on YFCC-15M
CLIP [37] 32.4 29.6 14.5 22.6
SLIP [37] 57.6 41.8 23.0 32.1
SF-CLIP 69.4 47.9 30.5 35.1

Pretraining on CC-12M
CLIP [15] 35.2 30.1 18.0 24.4
LaCLIP [15] 33.7 30.1 17.5 24.5
LaSF-CLIP 69.1 47.0 31.6 34.9

Larger Dataset Pretraining, 448×448 Evaluation
SAMSA-1B [26] 46.6 - 26.6 -
CLIPDataComp-1B [18] 70.7 - 36.4 -

Table 4. Linear head probing evaluations (mIoU%) on semantic
segmentation datasets with ViT-B/16.

Method Training Data mAP mAR

SAM [26] SA-1B 57.8 60.8
SF-CLIP YFCC15M 45.0 54.6

Table 5. Zero-shot instance segmentation (using frozen SAM de-
coder) with ViT-B/16 on the COCO dataset, both models are evalu-
ated with 1024×1024 images using ground truth bounding boxes.

ground-truth bounding boxes of MS-COCO to get instance
segmentations. Note that SF-CLIP was only trained to pre-
dict SAM’s features on YFCC-15M and was not trained
to process 1024×1024 images, but still manages to learn
something useful and compatible with SAM’s decoder.
Compositional Understanding Benchmark. Because of
the noisy training data and the coarse contrastive loss, VLMs
mostly act like a bag of words [56] and lack a deeper compo-
sitional understanding of the images. Previous benchmarks
to assess compositional understanding like Winoground [51],
VL-CheckList [60], ARO [56], CREPE [34], and Cola [46],
were found to have shortcomings and be gameable in many
cases. The SugarCREPE [21] benchmark aims to address
those shortcomings and provides a more reliable metric to
measure compositional understanding of the VLMs. Re-
sults in Table 6 (left) show that SF-CLIP gets a decent im-
provement over prior dual encoder joint embedding VLM
approaches on YFCC-15M but gets worse performance than
CLIP with language rewrites [15]. This result shows that
even though naively sampling from an LLM for text data
augmentation can be useful for many tasks (as was shown
in other experiments), the LLM hallucinations might make
the model worse in some aspects at the end and just using
the hidden representations of an LLM, like as in SF-CLIP
is a more reliable way than sampling from an LLM without
looking at the image.
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SugarCREPE SVO
Method Replace Swap Add Average Subject Verb Object All

Pretraining on YFCC-15M
CLIP [37] 73.3 59.4 74.0 68.9 79.3 70.5 87.8 75.4
SLIP [37] 75.2 58.6 73.7 69.2 80.3 72.8 89.5 77.4
SF-CLIP 77.3 61.6 74.8 71.2 81.0 74.7 87.1 78.2

Pretraining on CC-12M
CLIP [15] 77.5 61.8 73.5 70.9 80.8 76.9 89.5 80.0
LaCLIP [15] 75.1 60.6 71.2 69.0 85.6 80.7 91.8 83.8
LaSF-CLIP 76.7 63.3 72.0 70.7 87.8 84.0 94.2 86.7

Table 6. Benchmarks on the shortcomings of VLMs. SugarCREPE [21] (compositional understanding), and SVO [20](verb understanding).

Method EN ES FR IT DE RU ZH TR JP PL KO

Pretraining on YFCC-12M
CLIP [37] 70.5 23.3 25.6 23.4 21.4 1.1 0.9 3.6 0.7 6.6 0.7
SLIP [37] 75.0 26.8 29.0 22.1 21.7 0.3 0.5 3.8 0.7 7.5 0.6
SF-CLIP 79.0 48.7 44.4 43.1 41.3 32.5 17.7 14.8 10.4 9.4 6.5

Pretraining on CC-12M
CLIP [15] 78.9 4.3 10.8 8.5 7.2 0.7 0.4 2.3 1.0 4.2 0.5
LaCLIP [15] 80.1 8.4 16.1 12.9 14.0 1.0 1.6 3.5 0.4 7.1 0.8
LaSF-CLIP 84.0 34.2 38.1 33.2 33.5 40.3 47.3 13.9 27.5 9.1 12.1

Table 7. Comparison of I2T.R@5 (T2I.R@5 follows the same patterns) performance across different languages on the XTD10 [1] benchmark.

Verb Understanding Benchmark. VLMs often fail at iden-
tifying image-text pairs that show a mismatch concerning
subjects, verbs, and objects. The SVO [20] benchmark aims
to quantify this problem and identified that VLMs perform
worse on verb understanding, likely due to the noisy training
data. We see a clear improvement using SF-CLIP in this task
(Table 6, middle), but we note that verbs remain challenging
even for SF-CLIP compared to subject and object, which are
mostly nouns.

Multilingual Capabilities. YFCC15M, a subset of
YFCC100M [50], primarily features English captions. There-
fore, training a standard CLIP model on this data will not
permit image/text retrieval with other languages. However,
thanks to using a large multi-lingual language model as our
text teacher (XGLM-1.7B [32]) and by inheriting its word
embedding through a learned projection, SF-CLIP shows out-
of-the-box multilingual capabilities even though it was never
explicitly trained on non-English data. Table 7 demonstrates
that SF-CLIP performs drastically better than baselines on
XTD10 [1] for all languages. In contrast, we observe CLIP’s
and SLIP’s performance drop strongly even for languages
similar to English and nearing random levels for distant
languages. SF-CLIP, on the other hand, performs signifi-
cantly better than chance even in very distant languages like
Japanese and Korean. We believe it to be remarkable that

just by learning a projection of input tokens and matching
the outputs of the LLM in one language (i.e., English in our
case), the model can generalize well to various languages.
We observe the same behavior on the models trained on
CC-12M but with different languages. Based on our ini-
tial investigations, language rewrites [15] sometimes output
sentences in Russian and Chinese, explaining the perfor-
mance difference in these languages. This also shows that a
small set of sentences in other languages can greatly benefit
multilingual capabilities through teacher distillation.

5. Ablations

We perform extensive ablation experiments to verify the var-
ious design choices in our model and training algorithm. All
the models in this section are trained on YFCC-15M for 8
epochs with a batch size of 4096. Unless stated otherwise we
use a small 564M version of XGLM [32] and only DINO-
L/14 as our vision teacher. For all of the evaluations we
measured ImageNet-ZeroShot accuracy, MSCOCO text-to-
image and image-to-text retrieval performance, image-to-
text top 5 accuracies on a close to English language (ES) and
distant language (RU), and finally zero shot semantic seg-
mentation accuracy on Pascal-Context to have a full picture
and compare models on many aspects.
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Teachertxt Masktxt Emb. Proj. Teacherimg Maskimg Subset Ratio IN-ZS MSC-T2I MSC-I2T ES-I2T RU-I2T Context

1 ✓ ✓ ✓ ✓ ✗ 12.5% 33.9 18.9 33.3 39.1 34.2 25.4
2 ✗ ✓ N/A ✓ ✗ 12.5% 33.2 18.6 31.5 18.4 1.6 25.3
3 ✓ ✗ ✓ ✓ ✗ 12.5% 33.6 18.9 32.5 38.0 31.1 25.2
4 ✓ ✓ ✗ ✓ ✗ 12.5% 35.2 18.8 31.9 22.6 0.8 23.8
5 ✓ ✓ ✓ ✗ ✗ 12.5% 31.3 16.6 29.0 35.5 33.8 22.7
6 ✓ ✓ ✓ ✓ ✓ 12.5% 34.3 18.7 32.3 37.4 33.6 25.6
7 ✓ ✓ ✓ ✓ ✗ 6.25% 33.9 18.8 32.9 38.9 34.1 25.2
8 ✓ ✓ ✓ ✓ ✗ 25% 34.1 18.7 31.5 39.0 32.4 25.2

Table 8. Importance of the Different Components: We study the different components that matter for different evaluation metrics. For the
different variants, we highlight the differences from the default SF-CLIP setting.

Text Vision IN-ZS MSC-T2I MSC-I2T ES-I2T RU-I2T Context

- - 31.5 15.5 28.0 16.9 0.8 21.6
- DINO 33.2 18.6 31.5 18.4 1.6 25.3

564M - 31.3 16.6 29.0 35.5 33.8 22.7
564M DINO 33.9 18.9 33.3 39.1 34.2 25.4
1.7B DINO 34.6 19.5 33.4 41.7 34.9 25.7
1.7B DINO+SAM 36.2 20.6 36.0 41.7 36.2 25.7

Table 9. We study the effects of different teachers of varying sizes on VLM performance.

Training
Setting Time

CLIP 1.00×
CLIP+SimCLR 2.67×
MaskCLIP 1.75×
SF-CLIP Full Batch 2.28×
SF-CLIP Subsampled 1.20×

Table 10. Training Time.

Importance of Different Components. In Table 8, we
report different model variants as we add or remove com-
ponents. First, we can see that removing the text teacher
or not inheriting the word embedding removes the multilin-
gual capabilities (rows 2 and 4). If we remove the projected
word embedding, we see better performance for ImageNet-
ZeroShot but worse performance on everything else which
indicates trade-offs between different benchmarks. Second,
removing the image teacher leads to a drop in performance
on all metrics (row 5). Next, we see consistent benefits for
masking with text (row 3), while image masking (row 6)
provides mixed results with ViT-B. Although we observe
improvements from image masking for larger ViT architec-
tures in initial exploration, we disable it by default for ViT-B.
Lastly, adjusting the distillation rate to either double or half
(rows 7 and 8) reveals an optimal performance at the default
rate and indications of overfitting at higher rates.
On the Choice of Teachers. Our model supports various
teacher combinations in both modalities. Table 9 compares
these combinations, utilizing XGLM models (564M and
1.7B parameters) for text and DINO-L/14 and SAM-H/16
for vision. Generally, we note improved performance with
an increased number and size of the teachers.
Training Efficiency. We compare training speeds with and
without the proposed batch subsampling (12.5%) for the dis-
tillation objective in Table 10. SF-CLIP trains at a high speed,
only slightly slower than standard CLIP, but significantly
faster than SLIP(CLIP+SimCLR) [37] and MaskCLIP [9].

It also shows improved performance in other experiments,
indicating greater computational efficiency.

6. Conclusion & Limitations

In this paper, we introduced SF-CLIP, a novel Vision Lan-
guage Model (VLM) approach that harnesses the robust
foundations of large-scale unimodal models to enhance the
VLM’s visual and linguistic capabilities. By integrating con-
trastive image-text pretraining with masked knowledge distil-
lation from unimodal teachers, SF-CLIP effectively absorbs
and aligns the strengths of both techniques. This approach
results in notable improvement in zero-shot classification ac-
curacy and image-text retrieval performance, achieving new
state-of-the-art results without sacrificing training efficiency.
SF-CLIP also displays promising multilingual retrieval per-
formance, suggesting its applicability in various linguistic
contexts despite being primarily trained in English data.

However, this multilingual capability necessitates using
the same tokenizer as the text teacher, which can be po-
tentially restrictive. One important limitation is that this
method cannot be trivially modified to finetune an existing
pre-trained CLIP model. Moreover, in pursuit of simplicity
and lightness, SF-CLIP avoids using transformer decoders
for distillation in favor of linear projections. While this
benefits computational efficiency, it might limit the model’s
learning capacity compared to architectures that utilize more
complex decoding mechanisms [9, 54].
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