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Abstract

In the context of pose-invariant object recognition
and retrieval, we demonstrate that it is possible to
achieve significant improvements in performance if both
the category-based and the object-identity-based embed-
dings are learned simultaneously during training. In hind-
sight, that sounds intuitive because learning about the cat-
egories is more fundamental than learning about the indi-
vidual objects that correspond to those categories. How-
ever, to the best of what we know, no prior work in pose-
invariant learning has demonstrated this effect. This paper
presents an attention-based dual-encoder architecture with
specially designed loss functions that optimize the inter-
and intra-class distances simultaneously in two different
embedding spaces, one for the category embeddings and
the other for the object level embeddings. The loss func-
tions we have proposed are pose-invariant ranking losses
that are designed to minimize the intra-class distances and
maximize the inter-class distances in the dual representa-
tion spaces. We demonstrate the power of our approach
with three challenging multi-view datasets, ModelNet-40,
ObjectPI, and FG3D. With our dual approach, for single-
view object recognition, we outperform the previous best by
20.0% on ModelNet40, 2.0% on ObjectPI, and 46.5% on
FG3D. On the other hand, for single-view object retrieval,
we outperform the previous best by 33.7% on ModelNet40,
18.8% on ObjectPI, and 56.9% on FG3D.

1. Introduction

Pose-invariant recognition and retrieval [7] is an important
problem in computer vision with practical applications in
robotic automation, automatic checkout systems, and inven-
tory management. The appearance of many objects belong-
ing to the same general category can vary significantly from
different viewpoints, and, yet, humans have no difficulty
in recognizing them from arbitrary viewpoints. In pose-
invariant recognition and retrieval, the focus is on mapping

Figure 1. The upper panel shows objects belonging to two dif-
ferent categories, chair and stool. In the proposed disentangled
dual-space learning, the goal for the learning of category-based
embeddings is to capture what maximally discriminates the objects
belonging to the two categories — the presence or the absence of
the back-rest. On the other hand, the object-identity based embed-
dings are meant to capture what is distinctive about each object.
The lower panel illustrates our dual-space approach for simulta-
neously learning the embeddings in two different spaces for cate-
gory and object-identity-based recognition and retrieval tasks.

the object images to embedding vectors such that the em-
beddings for the objects that belong to the same category are
pulled together for all the available viewpoints in relation to
the embeddings for the objects for the different categories.

Our work demonstrates that the performance of pose-
invariant learning as described above can be significantly
improved if we disentangle the category-based learning
from the object-identity-based learning.

Fig. 1 illustrates what we mean by disentangling
the category-based representation from the object-identity-
based representation. Assume that an object database con-
tains images of different types of chairs and different types
of stools. We would want our network to learn the category-
based embedding vectors for the chair class and for the stool
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class. These embeddings need to capture what is maximally
discriminating between the chairs and the stools — the pres-
ence or the absence of a back-rest. At the same time, we
would want the network to learn object-identity based em-
beddings. These embeddings should represent what is dis-
tinctive about each object type in relation to all other object
types in the same category. For example, in the chair cate-
gory, we would want the network to be able to discriminate
between, say, lounge chairs and desk chairs.

Prior work [6, 10, 22, 26] has employed multi-view deep
networks to learn aggregated multi-view representations
capturing the variability in object appearance under differ-
ent pose transformations. While these methods demonstrate
good performance in category-level tasks when multiple
views of objects are available during inference, their perfor-
mance degrades when only a single view is available. Since
real-world applications often necessitate inference from sin-
gle views, Ho et al. [7] proposed a family of pose-invariant
embeddings for both recognition and retrieval by imposing
constraints such that the single-view embeddings of an ob-
ject are clustered around its multi-view embeddings, which
in turn are clustered around a proxy embedding representing
the associated high-level category that the object belongs
to. However, this approach does not do a good enough job
of separating the embeddings for two different objects that
belong to the same category (e.g., two different types of
chairs, two different types of kettles, etc.), As a result, prior
approaches perform well on category-level tasks but not on
object-level tasks, as we will demonstrate later in our exper-
imental results (see Tables 2, 3).

Here is arguably the most significant difference between
the previous methods and the one being proposed in this
paper: Rather than learning representations that capture
both category-specific and object-specific discriminative
features within the same embedding space, we simultane-
ously learn them in two distinct embedding spaces, as de-
picted in the lower panel in Fig. 1. In one space that is
devoted to category-based representations, objects from the
same category can be closely embedded together, captur-
ing shared characteristics among them, while in the other
space, the one for object identity-based representations, em-
beddings for the different object types (within the same cat-
egory or otherwise) are allowed to be as separated as dic-
tated by the attributes that differentiate them. This strategy
enables our network to learn object representations that are
more discriminative overall. This should explain the supe-
rior performance of our framework in both recognition and
retrieval, especially for the more difficult case when only a
single-viewpoint query image is available. For single-view
object recognition, we get an improvement in accuracy of
20.0% on ModelNet40, 46.5% on FG3D, and 2.0% on Ob-
jectPI. Along the same lines, for the case of single-view
object retrieval, we achieve a significant mAP improvement

of 33.7% on ModelNet-40, 56.9% on FG3D, and 18.8% on
ObjectPI datasets.

In order to learn the dual embeddings simultaneously, we
propose an encoder that we refer to as the Pose-invariant
Attention Network (PAN). PAN uses a shared CNN back-
bone for capturing visual features common to both the cate-
gory and the object-identity based representations from a
set of images of an object recorded from different view-
points. The visual features are then mapped to separate
low-dimensional category and object-identity based embed-
dings using two fully connected layers. PAN also aggre-
gates visual features of objects from different views using
self-attention to generate what we call multi-view embed-
dings. The dual embeddings, defined in Section 3, can be
used for both category and object-level recognition and re-
trieval from single and multiple views.

For training the network, we propose two pose-invariant
category and object-identity based losses that are jointly op-
timized to learn the dual embeddings. The pose-invariant
category loss clusters together the instances of different ob-
jects belonging to the same category while separating apart
the instances from different categories in the category em-
bedding space. On the other hand, the pose-invariant object-
identity based loss clusters together the instances that carry
the same object-identity label and separates what would
otherwise be mutually confusing object instances with two
different object-identity labels from the same category in
the object embedding space.

2. Background and Related work

(A) Ranking and Proxy-based Losses: Ranking losses,
used in deep metric learning, focus on optimizing the
relative pair-wise distances between exemplars (pairs [2],
triplets [8] or quadruplets [1]), such that similar samples
are pulled closer and dissimilar samples are pushed apart.
For ranking losses, the selection of informative exemplars
[4, 5, 9, 16, 19, 21, 23, 24, 27] is crucial, which however in-
curs additional computational costs and memory. To reduce
the training complexity, proxy-based approaches [14] define
a proxy embedding for each class and optimize sample-to-
proxy distances. However, they only capture relationships
between samples and the proxies, which are less informa-
tive compared to the extensive sample-to-sample relations
inherent in pair-based losses, which is particularly impor-
tant for fine-grained tasks.
(B) Multi-view and Pose-Invariant Classification and

Retrieval: In multi-view object recognition and retrieval
[6, 10, 22, 26], each object from category c is captured
from a set of V views and is denoted by X = {xk}Vk=1.
For each object, a set of single-view embeddings are ex-
tracted by inputing each image xk to a network gs, which
are then aggregated to generate multi-view embeddings as
gm(X) = �({gs(xk)}Vk=1), where � denotes the aggre-
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gation operation. Multi-view losses cluster the multi-view
embeddings of objects from the same category together and
yield good performance on category-based tasks when mul-
tiple views of objects are available during inference. How-
ever, they perform poorly when only a single view is avail-
able during inference as the single-view embeddings are not
constrained to be close to the multi-view embeddings in the
embedding space. To mitigate this, the approach by [7]
learns pose-invariant embeddings by combining two sepa-
rate view-to-object and object-to-category models trained
using different types of pose-invariant losses. These losses
optimize the pose-invariance distance defined as

dpi(x,X,pc) = ↵d(gs(x), gm(X))+�d(gm(X),pc) (1)

where, ↵ promotes the clustering of single-view embed-
dings around the object’s multi-view embedding, while �
encourages the clustering of the multi-view embedding of
the object around the learned proxy embedding pc for its
category c. However, these losses do not effectively sepa-
rate embeddings of distinct objects from the same category,
as we will demonstrate later in Fig. 5. This results in poor
performance on object-based tasks.

In summary, prior work focused primarily on learn-
ing category-specific embeddings, with the object-to-object
variations within each category represented by the varia-
tions in the embedding vectors within the same embedding
space. In contrast, we learn a unified model that explicitly
decouples the object and category embeddings. The model
is trained jointly using two proposed pose-invariant ranking
losses. In the category embedding space, the proposed loss
clusters instances of different objects belonging to the same
category together. In the object embedding space, the pro-
posed loss clusters different views of the same object while
separating confusing instances of different objects from the
same category, thereby capturing discriminatory features to
distinguish between similar objects from the same category.
This significantly improves object recognition and retrieval
performance over prior methods (ref. Tables 2, 3).
(C) Attention-based Architectures: Since the advent of
ViT [3], transformers have become increasingly popular
for a variety of computer vision tasks. Most relevant to
our work are hybrid architectures comprising a CNN back-
bone in conjunction with a transformer encoder that use
multi-head attention layers to learn aggregated represen-
tations from image collections comprising different items
[17, 18] and multi-view 3D shape representations [15, 25]
for classification and retrieval tasks. In contrast, we only
use a single-head self-attention layer for each subspace to
aggregate visual features extracted from a DNN across dif-
ferent views to learn multi-view embeddings. The archi-
tectures in [15, 25] learn multi-view shape representations
for category-based tasks and require multi-view images at
inference time. In contrast, our dual-encoder is designed

to simultaneously learn pose-invariant category and object
representations that can be utilized for both category and
object-based tasks from single and multiple views during
inference. Separate models for classification and retrieval
tasks were proposed in [18], whereas our unified model can
address both tasks jointly. Also, positional encodings are
utilized by [3, 15] to preserve input order, but not by [18].
We omit positional encodings to ensure that the learned rep-
resentations are independent of the input view order.

3. Proposed Approach

A high-level overview of our framework PiRO for learning
dual pose-invariant representations of objects is shown in
Fig. 2. Our approach learns by comparing pairs of objects
belonging to the same category, while taking into account
their multi-view appearances. This is illustrated in Fig. 2
where we show two different kettles, obviously belonging
to the same category, and, in the depiction in the figure, we
use three randomly chosen viewpoint images for each ket-
tle. For the purpose of explanation, we have labeled the
two objects as a and b. In general, we choose V number
of randomly selected images from the different viewpoints
for each object. The objective of this within-category learn-
ing is to become aware of the common attributes shared by
these objects, like the spout, lid, handle, and overall body
structure, enabling their categorization as a kettle.

The multi-view images are input to our proposed dual-
encoder PAN, which we introduce in Section 3.1. The dual
encoder consists of a shared CNN backbone responsible for
capturing common visual features, along with two distinct
heads dedicated to the learning of the dual category and
object-identity based embeddings.

The encoder is trained jointly using pose-invariant losses
designed for each respective embedding space, as described
in Section 3.2. In the category embedding space, the loss
is designed to cluster together the embeddings of the ob-

Figure 2. An overview of our PiRO framework to learn the
dual pose-invariant object and category embeddings using losses
specifically designed for each embedding space. Multi-view im-
ages of two randomly chosen objects from the same category are
used to learn common characteristics of the objects in the category
embedding space and discriminatory attributes to distinguish be-
tween them in the object embedding space.
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Figure 3. The Pose-invariant Attention Network (PAN) takes a set
of multi-view images of an object as input, producing both single-
view and multi-view embeddings for each representational sub-
space. The object embeddings are depicted in orange, while the
category embeddings are in blue.

jects from the same category regardless of the viewpoints,
as shown in top-right of Fig. 2. On the other hand, in
the object-identity embedding space, the loss is designed
to cluster together the embeddings for the instances that
carry the same object-identity label, again regardless of
the viewpoints, while separating instances with different
object-identity labels from the same category, as shown in
bottom-right of Fig. 2. The idea is for the encoder to cap-
ture shared characteristics among objects within the same
category in the category space and discriminatory attributes
to distinguish between them in the object space. These dual
embeddings can then be utilized for pose-invariant category
and object-based recognition and retrieval.

3.1. Pose-invariant Attention Network (PAN):

Fig. 3 illustrates in greater detail the design of PAN, the
Pose-invariant Encoder shown previously in Fig. 2. It con-
sists of a CNN backbone (B), two FC layers (Fobj and Fcat)
and two single-head self-attention layers (Aobj and Acat).
It takes as input an unordered set of images from V differ-
ent views of an object x from category lx represented as
Ixset = {Ix1 , · · · , Ixk, · · · , IxV }. The backbone and FC layers
for each view share the same weights.

The backbone learns visual features common to both
the category and object-identity representations. The visual
features extracted from each object view are subsequently
input to the FC layer (Fobj) to generate the object-identity
embeddings. The set of single-view object embeddings for
object x is denoted by:

Ex
obj = {ox

k | ox
k = Fobj(B(Ixk)) 8Ixk 2 Ixset} (2)

Similarly, the shared visual features are input to another FC
layer (Fcat) to generate category embeddings. The set of
single-view category embeddings for object x is denoted by:

Ex
cat = {cxk | cxk = Fcat(B(Ixk)) 8Ixk 2 Ixset} (3)

The single-view object and category embeddings are
then passed into the self-attention layers Aobj and Acat to
learn the corresponding multi-view embeddings. The self-
attention mechanism allows weighted interactions between
the features extracted from one view with features extracted
from all the remaining views in the set to capture the cor-
relation between visual features across multiple views ef-
fectively. The resulting feature vectors from the images of
an object are then aggregated using mean-pooling to get
the multi-view embeddings. The resulting multi-view ob-
ject and category embedding for object x is denoted by:

ox
mv =

1

V

VX

k=1

Aobj(Ex
obj), c

x
mv =

1

V

VX

k=1

Acat(Ex
cat) (4)

3.2. Pose-invariant Losses

The single-view and multi-view embeddings extracted us-
ing PAN are used for constructing pose-invariant losses
that train the encoder to map object images across different
viewpoints to compact low-dimensional subspaces, where
the Euclidean distance between embeddings corresponds to
a measure of object similarity across viewpoints. We pro-
pose two such pose-invariant losses for the object and cate-
gory embedding spaces next.
(A) Pose-invariant Object Loss: This loss is designed
specifically for fine-grained object recognition and retrieval
from arbitrary viewpoints. The loss pulls together the em-
beddings of the different views of the same object, as shown
by the green arrows in Fig. 4(A). This allows the encoder to
learn common view-invariant features from multiple views.
At the same time, it is designed to increase the inter-class
distances between the embeddings (as shown by the red ar-
rows in the same figure). That allows the encoder to learn
the discriminative features to distinguish between visually
similar objects from the same category.

Let us consider a pair of objects (a, b) from the same
high-level category as shown in Fig. 4(A). The object-
identity embeddings generated by the encoder (ref. Eqn.
2) from V views for each of the objects are symbolically
represented as the two sets Ea

obj and Eb
obj respectively. For

each such pair, embeddings of different objects with the
minimum separation between them are the most informa-
tive and are chosen as the confusers. These embeddings are
called confusers because they maximally violate the inter-
class margin between the object pair and are the most likely
to confuse a classifier. The confusers denoted by oa

con and
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Figure 4. The pose-invariant losses enhance intra-class compact-
ness and inter-class separation in the dual embedding spaces. In
the object embedding space (top), confusing instances of two dif-
ferent objects from the same category are separated. In the cat-
egory embedding space (bottom), objects belonging to the same
category are pulled closer while being separated from those be-
longing to other categories.

ob
con are computed as

oa
con,o

b
con = argmin

8x2Ea
obj ,8y2Eb

obj

d(x,y) (5)

where, d(x,y) = kx � yk2 is the euclidean distance be-
tween the embeddings x and y. The multi-view object
embeddings oa

mv,o
b
mv from the respective object-identity

classes are considered as positives.
The intra-class compactness and inter-class separability

are controlled using two margins ↵ and � respectively. Our
pose-invariant object-identity loss has two components:
(i) Clustering loss ensures that the distance between the
multi-view embedding and the single-view confuser embed-
ding in Eqn. 5 of the same object-identity class a does not
exceed the margin ↵. For the object-identity class a, it is
defined as:

La
intra =

h
d(oa

mv,o
a
con)� ↵

i

+
(6)

where, [z]+ = max(z, 0) is the hinge loss.
(ii) Separation loss ensures that the minimum distance be-
tween the single-view confuser embeddings of two objects
a and b and also the separation between the multi-view ob-
ject embeddings of the corresponding objects is greater than
a margin �. By separating the confusers and multi-view em-
beddings of two objects from the same category, the encoder

will learn discriminatory features. It is defined as:

La,b
inter =

h
��d(oa

con,o
b
con)

i

+
+
h
��d(oa

mv,o
b
mv)

i

+
(7)

The overall loss is defined as:

La,b
piobj = La

intra + Lb
intra + La,b

inter (8)

(B) Pose-invariant Category Loss: As shown by the
green arrows in Fig. 4(B), this loss ensures that in the cate-
gory embedding space, the single-view and multi-view em-
beddings of an object are well clustered and the multi-view
embeddings for two different object-identity classes from
the same category are embedded close to each other and do
not exceed a margin ✓. The clustering loss for the category
embeddings (ref. Eqn. 3) of the objects a, b from the same
category is defined as:

La,b
picat =

h
dasm�✓

i

+
+
h
dbsm�✓

i

+
+
h
d(camv, c

b
mv)�✓

i

+
(9)

where, dxsm = 1
V

VP
k=1

d(cxk, c
x
mv) is the mean of the dis-

tances between the multi-view and single-view embeddings
for an object x in the category embedding space.
(C) Total Loss: In the category embedding space, we use
the large-margin softmax (L-Softmax) loss for separating
the embeddings of objects from different categories (shown
by the red arrows in Fig. 4(B)) using a margin �. The dual-
encoder PAN is jointly trained using all the losses and the
overall loss is defined as

L =
1

|P|
X

(a,b)2P

La
cat + Lb

cat + La,b
picat + La,b

piobj (10)

where, Lx
cat =

1
V

VP
k=1

L�(cxk, lx) such that L�(cxk, lx) is the

L-Softmax loss [11] with margin � for a category embed-
ding cxk of an object x belonging to category lx from any
viewpoint k, and P is the set of all object pairs where each
pair is randomly sampled from the same category.

4. Experiments

In this section, we evaluate our approach on pose-invariant
classification and retrieval (PICR) tasks on three multi-view
object datasets, report ablation studies at the end of this sec-
tion, and additional results in the supplementary material.
(A) Setup, Implementation Details, and Results:

Datasets: ModelNet-40 [26] is a multi-view dataset com-
prising 3983 objects (3183 train and 800 test) with roughly
100 unique CAD models per category from 40 common ob-
ject categories with 12 views per model, generated by start-
ing from an arbitrary pose and rotating each model every 30
degrees. The ObjectPI dataset [7] consists of images col-
lected in the wild, by placing each object in a natural scene
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Dataset Embed.
Space

Classification (Accuracy %) Retrieval (mAP %)

Category Object
Average

Category Object
Average

Single-view Multi-view Single-view Multi-view Single-view Multi-view Single-view Multi-view

ObjectPI
Single 69.56 ± 0.9 80.27 ± 1.9 88.35 ± 0.3 98.98 ± 0.9 84.29 ± 0.7 65.81 ± 0.5 75.60 ± 0.7 68.55 ± 0.5 99.46 ± 0.5 77.35 ± 0.4

Dual 70.22 ± 0.7 82.48 ± 1.0 93.07 ± 0.8 98.64 ± 0.5 86.10 ± 0.3 65.20 ± 0.4 82.80 ± 0.5 80.61 ± 0.5 99.46 ± 0.3 82.02 ± 0.3

ModelNet
Single 85.09 ± 0.3 88.08 ± 0.6 82.90 ± 1.5 86.75 ± 1.2 85.71 ± 0.5 78.88 ± 0.2 82.88 ± 0.2 61.89 ± 2.3 91.22 ± 0.8 78.71 ± 0.7

Dual 84.96 ± 0.2 88.32 ± 0.4 94.14 ± 0.3 96.88 ± 0.2 91.07 ± 0.2 79.30 ± 0.2 85.28 ± 0.4 84.46 ± 0.2 98.17 ± 0.1 86.80 ± 0.1

FG3D
Single 78.18 ± 0.2 80.42 ± 0.1 26.51 ± 0.3 29.76 ± 0.7 53.72 ± 0.3 65.05 ± 0.3 69.28 ± 0.2 15.79 ± 0.1 41.98 ± 0.6 48.02 ± 0.3

Dual 78.89 ± 0.2 81.81 ± 0.1 83.00 ± 0.2 91.56 ± 0.1 83.81 ± 0.1 67.95 ± 0.3 74.24 ± 0.3 72.78 ± 0.3 95.47 ± 0.1 77.61 ± 0.2

Table 1. Pose-invariant Classification and Retrieval results on category and object-level tasks using our method for single and dual em-
bedding spaces on the ModelNet-40, FG3D and ObjectPI datasets. The average performance along with standard deviation are reported.

and capturing pictures from 8 views around the object, for
480 objects (382 train and 98 test) from 25 categories. We
use the same training and test splits provided by [7] for
both datasets. Additionally, we also evaluate our method on
FG3D [12] which is a large-scale dataset for fine-grained
object recognition with 12 views per object for 25552 ob-
jects (21575 training and 3977 test) from 66 categories.
Tasks: Ho et al. [7] proposed five tasks: Single-view and
multi-view category recognition. These tasks predict the
category from a single view and a set of object views re-
spectively. Single-view and multi-view category retrieval.
The goal of these tasks is to retrieve images from the same
category as the query object from a single view and mul-
tiple views respectively. Single-view object retrieval. This
task aims to retrieve other views of the same object in the
query view. We additionally report results using our method
in Table 1 on three more tasks which are extensions of the
above-mentioned tasks. These tasks are single and multi-
view object recognition and multi-view object retrieval. The
details of these tasks are provided in Supplemental Sec. 12.
Classification and retrieval performance are reported as ac-
curacy and mean average precision (mAP) respectively.
Training Details: Images are resized to 224⇥224 and nor-
malized before being input to the network. The VGG-16
network [20] is used as the CNN backbone for a fair com-
parison with other state-of-the-art approaches. The last FC
layers are modified to generate 2048-D embeddings and are
initialized with random weights. A single layer and single
head self-attention layer is used with a dropout of 0.25. The
network is jointly trained using the proposed pose-invariant
category and object losses. For all datasets, we set the mar-
gins ↵ = 0.25,� = 1.00 for the object embedding space
and margins ✓ = 0.25, � = 4.00 for the category embed-
ding space. We use the Adam optimizer with a learning rate
of 1e�5 for ObjectPI, ModelNet-40, and 5e�5 for FG3D.
We train for 25 epochs and use the step scheduler that re-
duces the learning rate by half after every 5 epochs. Our
code is available at https://github.com/sarkar-rohan/PiRO.
(B) Comparison with the State-of-the-art: In Ta-

ble 2, we compare performance of our method against sev-
eral state-of-the-art multi-view and pose-invariant methods
[6, 7, 22] reported by [7] on the ModelNet-40 and ObjectPI
datasets. For the single-view object recognition task, we re-
port the results using the trained models provided by [7]. As
explained in Section 2(B), the multi-view methods are de-
signed for category-based tasks when multiple images are
available during inference. However, they perform poorly
when only a single view is available and Pose-invariant
(PI) methods outperform the multi-view (MV) methods on
single-view tasks as they constrain the single-view embed-
dings to be clustered close to the multi-view embeddings.
Although these pose-invariant methods encourage the clus-
tering of different views of the same object, they don’t ef-
fectively separate the confusing instances of neighboring
objects from the same category in the embedding space.
Hence, they don’t capture discriminative features to distin-
guish between visually similar objects from the same cat-
egory because of which they exhibit poor performance on
the single-view object recognition and retrieval tasks.

We observe that our method PiRO-DE when learn-
ing dual category and object embeddings, outperforms the
state-of-the-art methods on both the average classifica-
tion (improvement of 7.7% on ModelNet-40 and 2.6% on
ObjectPI) and retrieval tasks (improvement of 13.0% on
ModelNet-40 and 8.8% on ObjectPI). We notice a signifi-
cant improvement in the single-view object recognition (ac-
curacy improves by 20.0% on ModelNet40 and 2.0% on
ObjectPI) and retrieval tasks (mAP improves by 33.7% on
ModelNet-40 and 18.8% on ObjectPI). Even in the single
embedding space, PiRO-SE shows improvements on object-
based tasks compared to the state-of-the-art approaches.

We train the state-of-the-art pose-invariant methods [7]
on the FG3D dataset and compare performance with our
method in Table 3. FG3D is more challenging for object-
level tasks as it comprises a large number of similar ob-
jects in each category with fine-grained differences. As
mentioned earlier, prior methods mainly focus on learn-
ing category-specific embeddings and do not effectively
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Method
ModelNet-40 (12 views) ObjectPI (8 views)

Classification (Accuracy %) Retrieval (mAP %) Classification (Accuracy %) Retrieval (mAP %)

SV
Cat

MV
Cat

SV
Obj Avg

SV
Cat

MV
Cat

SV
Obj Avg

SV
Cat

MV
Cat

SV
Obj Avg

SV
Cat

MV
Cat

SV
Obj Avg

MV-CNN 71.0 87.9 65.6 74.8 41.7 71.5 29.6 47.6 62.1 74.1 75.8 70.7 53.8 72.3 42.6 56.2
PI-CNN 85.4 88.0 65.1 79.5 77.5 81.8 50.8 70.0 66.5 76.5 61.6 68.2 58.9 72.1 60.7 63.9
MV-TC 77.3 88.9 54.2 73.5 63.5 84.0 36.6 61.4 65.7 79.2 65.9 70.3 59.5 77.3 51.8 62.9
PI-TC 81.2 88.9 74.1 81.4 71.5 84.2 41.4 65.7 69.3 77.5 91.1 79.3 63.8 76.7 61.8 67.4
MV-Proxy 79.7 89.6 37.1 68.8 66.1 85.1 35.0 62.1 63.2 78.3 53.6 65.0 57.9 74.7 49.3 60.6
PI-Proxy 85.1 88.7 66.1 80.0 79.9 85.1 40.6 68.5 68.7 80.0 70.8 73.2 62.6 78.2 49.4 63.4

PiRO-SE (Ours) 85.1 88.1 82.9 85.4 78.9 82.9 61.9 74.6 69.6 80.3 88.4 79.4 65.8 75.6 68.5 70.0
PiRO-DE (Ours) 85.0 88.3 94.1 89.1 79.3 85.3 84.5 83.0 70.2 82.5 93.1 81.9 65.2 82.8 80.6 76.2

Table 2. Comparison of performance on pose-invariant classification and retrieval tasks on the ObjectPI and ModelNet-40 datasets
with the state-of-the-art approaches. The best, second-best, and third-best performance is highlighted in bold, underline, and italics
respectively. The methods starting with MV indicate multi-view methods and those starting with PI indicate methods that learn pose
invariant embeddings. For our method PiRO, SE and DE stands for single and dual embedding spaces. The average classification and
retrieval performance indicate that we learn better representations for recognition and retrieval tasks on both datasets. The improvements
in single-view object recognition and retrieval performance are the most significant.

Method
Classification (Accuracy %) Retrieval (mAP %)

SV
Cat

MV
Cat

SV
Obj Avg

SV
Cat

MV
Cat

SV
Obj Avg

PI-CNN 79.7 83.3 23.6 62.2 70.2 76.8 10.5 52.5
PI-Proxy 80.0 83.2 23.4 62.2 70.6 77.0 10.7 52.8
PI-TC 76.1 82.5 36.5 65.0 61.5 74.7 15.9 50.7

Ours 78.9 81.8 83.0 81.2 68.0 74.2 72.8 71.7

Table 3. Comparison of performance on the FG3D dataset with
state-of-the-art pose-invariant methods.

separate the embeddings for objects within each category.
In contrast, our proposed pose-invariant object loss sepa-
rates confusing instances of objects from the same category
which helps learn more discriminative fine-grained features
to distinguish between visually similar objects resulting in
significant improvement on single-view object recognition
accuracy of 46.5% and object retrieval mAP of 56.9%.
Overall, we outperform the pose-invariant methods on the
classification tasks by 16.2% and retrieval tasks by 18.9%.
(C) Ablation Studies:

Visualization of Pose-invariant Embeddings: From Fig.
5, we observe that for the pose-invariant methods (PI-CNN,
PI-Proxy, and PI-TC), the embeddings for objects from the

same category are not well-separated leading to poor per-
formance on object-based tasks. In contrast, the object em-
beddings generated using our method are much better sep-
arated as our pose-invariant object loss separates confusing
instances of objects from the same category. A more de-
tailed comparison is shown in Supplemental Sec. 6.
Single and Dual Embedding Spaces: From Tables 1 and

4, we observe that learning dual embeddings leads to better
overall performance, especially for object-based tasks. This
is because, for category-based tasks, we aim to embed ob-
jects from the same category close to each other while for
object-based tasks, we aim to separate objects apart from
each other to be able to discriminate between them. This
leads to contradicting goals for object and category-based
tasks in the single embedding space. Learning dual embed-
dings more effectively captures category and object-specific
attributes in separate representation spaces leading to over-
all performance improvements.
Pose-invariant Losses: We employ three losses in PiRO:
Lcat to distinguish between different categories, Lpicat for
clustering objects from the same category, and Lpiobj for
clustering different views of the same object and separating
confusing instances from different objects of the same cat-

Figure 5. We show UMAP [13] visualizations for a qualitative comparison of the object embedding space learned for the ModelNet40 test
dataset (from 5 categories such as table, desk, chair, stool, and sofa with 100 objects) by prior pose-invariant methods [7] and our method.
Each instance is an object view and a unique color and shape is used to denote each object-identity class in the visualizations.
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Dataset Embed.
Space

Losses
Classification (Accuracy %) Retrieval (mAP %)

Category Object Avg. Category Object Avg.
SV MV SV MV SV MV SV MV

Object

Single
Lcat 70.7 81.6 78.7 87.8 79.7 65.3 82.9 54.8 92.9 73.9

PI

Lcat + Lpiobj 69.4 81.6 88.5 98.0 84.4 66.0 75.6 68.5 98.9 77.2
Lcat + Lpiobj + Lpicat 71.2 82.7 83.3 95.9 83.3 65.6 82.8 62.3 98.0 77.2

Dual Lcat + Lpiobj 71.2 82.7 94.5 99.0 86.8 65.7 82.9 80.5 99.5 82.2
Lcat + Lpiobj + Lpicat 71.3 83.7 92.7 98.0 86.4 65.7 83.4 81.0 99.0 82.3

Model

Single
Lcat 84.7 88.4 71.3 75.9 80.1 79.0 84.8 45.3 82.0 72.8

Net40

Lcat + Lpiobj 85.4 88.8 81.2 85.6 85.2 79.1 83.1 59.2 90.4 78.0
Lcat + Lpiobj + Lpicat 84.7 88.4 71.8 79.3 81.0 78.7 84.9 49.1 85.2 74.5

Dual Lcat + Lpiobj 84.5 88.6 94.6 96.6 91.1 78.9 85.0 85.2 98.1 86.8
Lcat + Lpiobj + Lpicat 85.2 88.9 93.7 96.9 91.2 79.7 86.1 84.0 98.2 87.0

FG3D

Single
Lcat 79.3 81.8 18.2 19.0 49.5 66.6 73.1 9.7 28.4 44.5
Lcat + Lpiobj 78.3 80.2 26.2 31.0 53.9 64.9 69.0 15.7 42.9 48.1
Lcat + Lpiobj + Lpicat 78.4 81.1 29.3 41.8 57.6 65.1 70.8 17.9 55.0 52.2

Dual Lcat + Lpiobj 78.7 82.2 83.2 91.4 83.9 67.6 73.1 72.8 95.3 77.2
Lcat + Lpiobj + Lpicat 79.0 81.9 83.1 91.6 83.9 68.1 74.4 73.0 95.5 77.8

Table 4. Ablations of the proposed losses in the single and dual embedding spaces.

Figure 6. Optimization of the inter-class and
intra-class distances for object-identity classes
during training while learning single and dual
embedding spaces for the ModelNet40 dataset.

egory for object-based tasks. Table 4 shows that in the sin-
gle embedding space, Lcat is effective for category-based
tasks, but not for object-based tasks. Adding Lpiobj im-
proves performance in object-based tasks, but at the cost
of category-based tasks (especially MV category retrieval).
This can be mitigated by adding Lpicat that enhances per-
formance on category-based tasks. However, Lpicat and
Lpiobj have conflicting objectives in the same space and
only marginally improve overall performance over Lcat in
the single embedding space. In the dual embedding space,
these losses are optimized in separate embedding spaces. In
the dual space, we observe that Lcat+Lpiobj improves over-
all performance, particularly for object-based tasks, and
adding Lpicat boosts performance on category-based tasks
and yields the best overall performance for all the datasets.
Lpiobj enhances the separability of object-identity classes
facilitating learning more discriminative object embeddings
that significantly improves performance on object-based
tasks (see detailed ablation study of Lpiobj in Sup. Sec 7).

Optimizing Intra-class and Inter-class Distances: In
the top of Fig. 6, we show the maximum intra-class distance
(dmax

intra) and minimum inter-class distance (dmin
inter) between

object-identity classes from the same category during train-
ing on the ModelNet40 dataset. These distances are com-
puted using the object-identity embeddings and averaged

(a) ModelNet-40 dataset (b) ObjectPI dataset
Figure 7. Effect of embedding dimensionality on performance.

over all objects. We also plot the ratio ⇢ = dmin
inter

dmax
intra

in the
bottom of Fig. 6. A higher ⇢ value indicates embeddings of
the same object-identity class are well clustered and sepa-
rated from embeddings of other object-identity classes from
the same category. Comparing the plots for the single and
dual embedding spaces, we observe that ⇢ and dmin

inter are
much higher for the dual space indicating better separabil-
ity of object-identity classes when learning a dual space.
We observe the same effect for all datasets (see Sup. Sec 8).
Embedding Dimensionality: In Fig. 7, we observe that
for ModelNet-40, a dimension of 64 for category and 128
for object-level tasks is sufficient for good performance.
For ObjectPI, higher dimensions of 256 and 512 are re-
quired for category and object-level tasks respectively to
capture color and texture information in addition to shape,
unlike ModelNet-40. A higher embedding dimensionality is
required for object-level tasks compared to category-level
tasks possibly because object embeddings need to capture
finer details to effectively distinguish between objects. We
provide more details in the Supplemental Sec. 9.
Qualitative Results: In the Supplemental, we illustrate
how self-attention captures correlations between different
views of an object using multi-view attention maps in Sec.
10, and present qualitative object retrieval results in Sec. 11.

5. Conclusion

We propose a multi-view dual-encoder architecture and
pose-invariant ranking losses that facilitate learning dis-
criminative pose-invariant representations for joint category
and object recognition and retrieval. Our method out-
performs state-of-the-art methods on several pose-invariant
classification and retrieval tasks on three publicly available
multi-view object datasets. We further provide ablation
studies to demonstrate the effectiveness of our approach.
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