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Abstract

Reassembly tasks play a fundamental role in many fields

and multiple approaches exist to solve specific reassembly

problems. In this context, we posit that a general unified

model can effectively address them all, irrespective of the in-

put data type (images, 3D, etc.). We introduce DiffAssemble,

a Graph Neural Network (GNN)-based architecture that

learns to solve reassembly tasks using a diffusion model for-

mulation. Our method treats the elements of a set, whether

pieces of 2D patch or 3D object fragments, as nodes of a

spatial graph. Training is performed by introducing noise

into the position and rotation of the elements and itera-

tively denoising them to reconstruct the coherent initial

pose. DiffAssemble achieves state-of-the-art (SOTA) re-

sults in most 2D and 3D reassembly tasks and is the first

learning-based approach that solves 2D puzzles for both

rotation and translation. Furthermore, we highlight its re-

markable reduction in run-time, performing 11 times faster

than the quickest optimization-based method for puzzle solv-

ing. Code available at https://github.com/IIT-

PAVIS/DiffAssemble.

1. Introduction

Spatial Intelligence is the ability to perceive the visual-spatial

world accurately and to perform transformations upon the

perceived space [15]. This skill is commonly assessed with

reassembly tasks, which involve arranging and connecting in-

dividual components to form a coherent and functional entity.

Examples of such tasks include solving 2D jigsaw puzzles

or assembling 3D objects with LEGO blocks. Since the pro-

posal of the first puzzle solver [12], Spatial Intelligence has

challenged the Machine Learning (ML) community with its

intrinsic combinatorial complexity and its numerous appli-

cations, such as genomics [30], assistive technologies [47],

fresco reconstruction [2, 43] and molecular docking [7].

Reassembling a set involves placing each element in its

correct position and orientation to form a coherent structure,

that being a 2D jigsaw puzzle or a 3D object, as in Figure 1.

Figure 1. We propose DiffAssemble as a unified approach to deal

with reassembly tasks in two and three dimensions. DiffAssemble

processes the elements to reassemble as a graph and infer their

correct position and orientation in 2D and 3D space.

Despite the similarities between the tasks, the literature ad-

dresses reassembly tasks in different dimensions separately.

In the 2D dimension, the most common reassembly prob-

lem is related to the resolution of puzzles, particularly those

with pieces that are translated and rotated and have a regular

shape, i.e., square pieces of the same dimension. Due to

the regularity of the pieces, the problem can be treated as

a permutation problem and solved via optimization-based

approaches [14, 21, 46]. These solutions are effective but

lack robustness, showing a massive drop in performance

when dealing with non-standard scenarios, such as eroded

or missing pieces [40]. On the other hand, recent learning-

based solutions are robust to distortion in the visual aspect of

the pieces by working in the feature space but cannot handle

rotations and perform worse than greedy approaches in the

standard scenario.
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Regarding the 3D reassembly task, since the 3D pieces

are not regular, it can not be solved as a permutation prob-

lem but has to be solved in the continuous domain, making

it a much more challenging task where optimization-based

solutions cannot be applied. As a part of the ongoing efforts

to address fractured 3D object reassembly, Sellan et al. re-

cently introduced the Breaking Bad dataset [34] that includes

fragments of thousands of 3D objects, and it is commonly

adopted as a benchmark for 3D object reassembly solutions.

Despite the interest of the machine learning community, the

results achieved in 3D reassembly tasks have yet to reach

the same level of performance as their 2D counterparts due

to the increased complexity of the task.

We argue that 2D jigsaws and 3D objects are two aspects

of the same problem, namely reassembly. All these tasks

share some properties and, potentially, common solutions.

Nonetheless, methods that tackle only one of these tasks are

too narrow to generalize to the others. A unique approach

that tackles all reassembly tasks at once may benefit from

their shared characteristics.

This work introduces DiffAssemble, a general frame-

work for solving reassembly tasks using graph representa-

tions and a diffusion model formulation. In contrast to prior

learning-based approaches for reassembly tasks, which typi-

cally tackle the problem in a single step, our approach uses

a multi-step solution strategy leveraging Diffusion Proba-

bilistic Models (DPMs) to guide the process. We represent

the elements to be reassembled using a graph formulation,

allowing us to work with an arbitrary number of pieces. Each

piece is modeled as a node that contains the piece’s visual

appearance, extracted with an equivariant encoder, and the

piece’s position and orientation. By mapping the appearance

to a latent space, we can remove the separation that exists

between 2D and 3D tasks and propose a unique solution.

We structure the learning problem using the Diffusion

Probabilistic Models (DPM) formulation. We iteratively

add Gaussian Noise to each piece’s starting position and

orientation until they are randomly placed in the Euclidean

space. We then train an Attention-based Graph Neural Net-

work [36] to reverse this noising process and retrieve the

pieces’s original pose from a random starting position and

orientation. By adopting a sparsifying mechanism [37] on

the graph, we run DiffAssemble on graphs with up to 900

nodes with minimal loss in accuracy while greatly reducing

the memory requirement.

Our solution achieves state-of-the-art performance in

most 2D and 3D tasks, showcasing that these tasks share

common characteristics and can thus be solved through a

unified approach. In 2D, compared to optimization-based

solutions, our solution is more robust to missing pieces and

much faster, i.e., 5 seconds to rearrange 900 pieces compared

to 55 seconds for the fastest optimization approach. In 3D,

our method achieves state-of-the-art results in both rotation

and translation accuracy without sacrificing one for the other,

as is the case for previous learning-based solutions.

Main Contributions and Novelty of the Work:

• We propose DiffAssemble, a unified learning-based solu-

tion using diffusion models and graphs neural networks

for reassembly tasks that achieve SOTA results in most 2D

and 3D without distinguishing between the two.

• We show that reassembly tasks in 2D and 3D share several

key properties and that model choices such as the use of

different losses, different diffusion chains, and equivariant

features.

• To the best of our knowledge, DiffAssemble is the first

learning-based solution that can handle rotations and trans-

lations for 2D visual puzzles.

2. Related Works

In this section, we revise the main literature for reassembly

tasks in 2D and 3D. We complement the discussion with a

brief overview of recent advancements in diffusion models

and graph neural networks.

Reassembly Tasks. Reassembly tasks captivate the atten-

tion of the research community as a benchmark for investi-

gating the effectiveness of solutions that employ a reasoning

process in the spatial domain. Here, we present the relevant

works for the most common reassembly task in 2D and 3D:

jigsaw puzzles and fracture object reassembly.

2D jigsaw puzzles. Puzzles are used to investigate the

intricacies of image ordering with inherent combinatorial

complexity [5]. Among the most successful strategies are

those rooted in optimization and greedy approaches that

rely on hand-crafted features [14, 21, 46]. More recently,

there has been a shift towards employing learning-based

methods to solve puzzles with only shifted pieces [17, 26, 31,

40]. These approaches demonstrate greater resilience when

handling inputs with distortions, though they perform worse

compared to optimization methods in standard scenarios.

Moreover, these methods do not handle rotated pieces.

3D fractured objects. Fractured object reassembly in 3D

is extensively explored in the literature [4, 13] and has appli-

cations in numerous fields, such as fresco reconstruction [2],

and furniture assembly [25]. A recent effort in solving the

problem was introducing the Breaking Bad dataset [34]. In

Breaking Bad, the challenge involves reconstructing a bro-

ken object from multiple fragments. Those fragments are

not labeled with any semantic information, as in many real-

world applications [2]. Previous research efforts focus on

predicting 6-degree-of-freedom poses for input parts (such as

chair backs, legs, and bars) [48] and assembling 3D shapes

from images of the complete object [27]. These prior in-

vestigations heavily lean on the semantic details of object
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Figure 2. Framework of our proposed DiffAssemble for reassembly tasks, here is shown for the 3D task. Following the Diffusion Probabilistic

Models formulations, we model a Markov chain where we inject noise into the pieces’ position and orientation. At timestep t = 0, the

pieces are in their correct position, and at timestep t = T , they are in a random position with random orientation. At each timestep t, our

attention-based GNN takes as input a graph where each node contains an equivariant feature that describes a particular piece and its position

and orientation. The network then predicts a less noisy version of the piece’s position and orientation.

parts, overlooking essential geometric cues. Neural Shape

Matching (NSM) [4] addressed the two-part mating problem

by emphasizing shape geometries over semantic information.

SE(3)-Equiv [44] tackles the problem with specific design

choices that go beyond object reassembly, e.g., adversarial

and reconstruction losses.

Unlike the previous works, which focus on just one aspect

of the problem, we propose a unified solution for reassembly

tasks. Furthermore, to the best of our knowledge, we are the

first to propose a learning-based approach for puzzles with

translated and rotated pieces.

Diffusion Probabilistic Models. DPMs are generative

models that have shown remarkable results in recent years.

These models approach the generation process through a

bidirectional iterative chain. In one direction, they transform

data into a Gaussian distribution by incrementally adding

Gaussian noise. They are then trained to reverse this pro-

cess, generating new samples from the initial distribution

starting from random noise [18]. DPMs demonstrate re-

markable versatility across a range of tasks applications,

including image synthesis [10], semantic segmentation [1],

and generation [29]. Their applicability extends to spatial

data processing in both 2D and 3D contexts, where they have

been effectively employed in object detection [3], scene gen-

eration [20], and 3D protein modeling [45].

Our work proposes the use of Diffusion Models for re-

assembly tasks. We introduce a unified model capable of

operating effectively in both 2D and 3D space, aiming to re-

trieve the original position and orientation of the constituent

pieces accurately.

Graph Neural Networks. Graph Neural Networks

(GNNs) underwent significant advancements in recent years

with new models like GCN [22], GraphSage [28], and Sig-

MaNet [11]. These advancements have continued with new

architectures [42, 49] that incorporate attention mechanisms

that weigh the importance of nodes during message passing.

The use of Graphs and GNNs has seen widespread adoption

for spatial applications, as they are able to describe an ar-

bitrary number of elements and their relation to each other.

Common applications include scene graph generation [33],

3D scene generation [9], object localisation [16], relative

pose estimation [39], and robot navigation [32]. Scalabil-

ity is a common issue affecting GNNs and Exphormer [37]

represents a significant stride in scalable graph transformer

architectures, utilizing a sparse attention mechanism that

leverages virtual global nodes and expander graphs [8].

We represent the puzzle as a graph and process it by using

an Attention-based GNN [35]. We adopt the Exphormer [37]

to enhance DiffAssemble’s capability in handling the com-

putational demands of reassembly tasks.
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3. Our Method

We reassemble a set of elements by predicting the transla-

tion and rotation, i.e. the pose of a piece, with the objective

to arrange the elements in a coherent structure, such as a

non-broken 3D object or a solved 2D puzzle. Figure 2 sum-

marizes our approach. We represent the set of pieces to

reassemble as nodes in a complete graph, with each node

having a modality-specific feature encoder. We adapt the

DPM formulation [18] by introducing time-dependent noise

into each element’s translation and rotation. Noise injec-

tion resembles shuffling the set of elements, e.g., randomly

distributing puzzles pieces or 3D object fragments in the

2D or 3D Euclidean space. During training, we process the

noisy input graph via an Attention-based GNN to restore

the initial translation and rotation of all elements. At in-

ference, we initialize each element’s starting positions and

rotation from pure noise, and iteratively denoise the graph,

reassembling the coherent structure in the process. Section

3.1 introduces our graph-based formulation. Section 3.2 dis-

cusses the input’s feature representation. Section 3.3 presents

our diffusion-based approach, and Section 3.4 defines our

attention-based architecture and the sparsity mechanism.

3.1. Graph Formulation

We assign each of the M pieces m to a node vm, defining

a set of vertices V = {vm}m∈[1,...,M ]. Since we do not

want to introduce a priori relationship between the pieces,

we connect all the nodes together. This defines a complete

graph G = (V,E), where E is the set of edges. We define

the feature of each node vm by concatenating the following

vectors:

• Features vector hm ∈ R
d, where d is the dimension of the

feature generated by a equivariant encoder. DiffAssemble

is agnostic to the adopted feature backbone.

• Translation vector sm ∈ R
n, where n represents the

dimensionality of the continuous Euclidean space in which

the reassembly task is conducted.

• Rotation matrix Rm ∈ SO(n), where SO(n) is the Spe-

cial Orthogonal Group in n dimensions. We also define

a function fr(r
m) = Rm that maps any vector rotation

representation rm to Rm.

The advantage of using this graph formulation lies in its

ability to be flexible with respect to the cardinality of V . For

this reason, DiffAssemble is able to work simultaneously

with puzzles of various sizes rather than being limited to

handling only one size at a time.

3.2. Feature Representation

A fundamental aspect of our architecture lies in its capability

to operate with element features hm, which can be extracted

by pre-trained encoders. Features play a central role in

solving reassembly tasks, as they provide the network with

inductive biases. This intuition is particularly relevant for

complex tasks involving translation and rotation.

To extract the features, we first translate the piece so that

its center lies on the origin and then use a rotation-equivariant

encoder to map the visual and shape information into the

latent space. Rotation-equivariant features undergo the same

rotation that is applied in the original input space and are thus

the best candidates to enable the neural network associating

a specific rotation Rm (in the input space) to the features

map hm. More details on group equivariance are given in

the Supplementary Material.

3.3. Diffusion Models for Reassembly Tasks

We adopt Diffusion Probabilistic Models as defined in

DDIM [38] to solve the reassembly tasks. We define a com-

pact representation of the initial translation sm0 and rotation

rm0 of piece m as a concatenated vector xm0 = [sm
⊤

0 , rm
⊤

0 ]⊤.

At training time, we iteratively add noise sampled from

a Gaussian Distribution N (0, I) to their poses (Forward

Process). Following that, we train DiffAssemble to reverse

this noising process (Reverse Process) and to obtain the

initial poses X0 = {xm0 }m∈[1,··· ,M ].

Forward Process. We define the forward process as a

fixed Markov chain that adds noise following a Gaussian

distribution to each input xm0 to obtain a noisy version, xmt ,

at timestep t. Following [18], we adopt the variance βt

according to a linear scheduler and define q(xmt |xm
0 ) as:

q(xmt |xm
0 ) = N (xmt ;

√
αtx

m
0 , (1− αt)I), (1)

where αt =
∏t

c=1(1− βc) and I is the indentity matrix.

Reverse Process. The reverse process iteratively retrieves

the initial poses for the set of elements X̂t−1 given current

(noisy) poses Xt = {xm
t }m∈[1,··· ,M ] and the features H =

{hm}m∈[1,··· ,M ]. X̂t−1 is computed as:

X̂t−1 =
1√
αt

(

Xt −
1− αt√
1− αt

ϵθ(Xt, H, t)

)

, (2)

where αt = 1− βt, and ϵθ(Xt, H, t) is the estimated noise

output by DiffAssemble that has to be removed from X̂t at

timestep t to recover X̂t−1.

Losses. Following a standard practice in Diffusion Mod-

els [18], we train DiffAssemble to predict X̂0 instead of

X̂t−1. We introduce two loss functions to reconstruct the

intial pose of each piece.

Translation Loss. This loss computes the average dif-

ference between the ground truth translation vectors and the
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predicted ones ŝm0 :

Ltr =
1

M

M
∑

m=1

||sm0 − ŝm0 ||22,

where || · ||22 is the squared L2 norm.

Rotation Loss. This loss measures the average difference

between the ground truth rotation matrices and the predicted

ones fr(r̂
m

0 ):

Lrt =
1

M

M
∑

m=1

||fr(rm0 )⊤fr(r̂
m

0 )− I||22.

3.4. Architecture

We use an Attention-based GNN with L−layers of Unified

Message Passing (UniMP) [36]. UniMP implements a multi-

head attention mechanism over all nodes to scale the infor-

mation gathered from neighboring nodes during message

passing. Multi-head attention is well-suited for graph con-

texts where we lack prior knowledge of node relationships,

i.e., we cannot define an adjacency matrix A.

However, one of the main constraints associated with

these attention-based architectures [42, 49] lies in the inher-

ent definition of a complete graph. This constraint poses a

severe limitation for scaling on large graphs, i.e., dealing

with a large number of elements. To address this constraint,

we employ exphormer [37], which relies on the expander

graph [19] and virtual nodes to reduce memory requirements

by cleverly pruning edges in the graph. In Section 4.3, we

show how we use exphormer to scale to large graphs.

4. Experimental Evaluation

DiffAssemble tackles 3D objects reassembly and 2D jigsaw

puzzles as two possible instantiations of a reassembly task.

We first validate DiffAssemble on 3D object reassembly

(Section 4.1), showing through quantitive and quality results

the benefits of our approach. Section 4.2 discusses the perfor-

mance of our approach on 2D jigsaw puzzles in the standard

scenario and when dealing with missing pieces. We carry

out an ablation study of DiffAssemble’s design choices in

Section 4.1 and in the Supplementary Material. Finally, we

tackle DiffAssemble’s limitation on large puzzles in Section

4.3, demonstrating that DiffAssemble efficiently reassemble

up to 900 elements thanks to the sparsity mechanism.

Throughout this section, tables report the best results in

boldface and the second-best underlined.

4.1. 3D Object Reassembly

First, we explore the application of DiffAssemble to the task

of reassembling objects in 3D.

Figure 3. Qualitative results on Breaking Bad, showing the re-

assembly results for a broken wine glass and a wine bottle. We

compare the results against SE(3)-Equiv [44], which is the current

SOTA method. All results are in the same reference frame, shifted

horizontally so they do not overlap. We show the results with glass

materials to better show overlapping pieces.

Dataset and Evaluation Setting. We test our methods on

3D object reassembly on Breaking Bad (BB) [34]. It is com-

posed of 3D meshes for 20 classes of everyday objects, such

as bottles, plates, glasses. For each of these objects, there are

multiple variants, where the object is broken into multiple

parts by simulating fractures in the geometry. The dataset

provides objects split into 2 to 100 pieces. As proposed in

BB, we train and test using objects composed of 2 to 20

parts. All the objects’ pieces are translated to the origin and

randomly rotated. For each piece, we need to provide a pose

that returns the fragment to its correct location in the object’s

canonical pose. Following the evaluation pipeline in [34],

we report the metrics in terms of Root Mean Squared Error

in rotation RMSE (R), Root Mean Square Error in transla-

tion RMSE (T), and Part Accuracy (PA), which measures the

percentage of parts whose Chamfer Distance to ground-truth

is less than 0.01 [48]. We compare with the three baselines

proposed in BB: Global, DGL, LSTM. In addition, we com-

pare with SE(3)-Equiv. [44], the current state of the art on

BB, which integrates both equivariant and invariant features.

Regarding our approach, we use the base model along with

two variations: one without the diffusion process, predicting

the translation and rotation of the pieces in a single step, and

another version that omits the use of an equivariant encoder.

Implementation Details. Each fragment m of a 3D object

is a point-cloud of 1, 000 points. For the 3D shape reassem-

bly, we use VN-DGCNN [44] as our feature extractor. This

backbone takes as input the point cloud of each piece and

returns both an equivariant and invariant representation. We

only consider the equivariant features to create the element

features hm. For this task, we parameterize the rotation in

3D as a unit quaternion, qm = qm0 +iqm1 +jqm2 +kqm3 , where
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METHOD
RMSE (R) ↓ RMSE (T ) ↓ PA ↑

degree ×10−2 %
Global [34] 81.6 15.2 17.5

DGL [34] 81.4 14.9 25.4

LSTM [34] 87.4 15.8 11.3

NSM [4]† 83.3 15.3 10.6

SE(3)-Equiv [44] 77.9 16.7 8.1

DiffAssemble - No Diffusion Process 83.6 17.1 3.1

DiffAssemble - No Equivariant Enc. 81.7 17.0 18.3

DiffAssemble 73.3 14.8 27.5

Table 1. Quantitative results of four learning-based shape reassembly baselines and DiffAssemble on the everyday object subset.
†Modified version, suggested in [44], capable of handling multi-part assembly.

STAGE CHANGES
RMSE (R) ↓ RMSE (T ) ↓ PA ↑

degree ×10−2 %

Representation
Non-Equivariant Enc. 81.68 17.04 18.32

Invariant Enc. 77.06 18.09 14.27

Diff. Design

6 degree-of-freedom rotation 75.60 18.80 18.50

w/o Chamfer Distance loss 72.75 14.78 24.10

w/ Chamfer Distance loss 73.34 14.82 27.48

No Diff. process 83.60 17.12 3.10

GNN Standard GCN [22] 74.56 15.79 21.33

Table 2. Ablation for 3D object reassembly on the everyday object subset.

qm0 , qm1 , qm2 and qm3 are real numbers, i, j and k are mutu-

ally orthogonal basis vectors. Thus, we define the vector

rm = [qm0 , qm1 , qm2 , qm3 ]⊤. Since we parameterize rotations

as unit quaternions, i.e., |qm| = 1, the direct application

of the forward process of the diffusion steps is not feasible

as it may generate rotation values outside the SO(3) man-

ifold [23]. Following [23], we address this limitation by

leveraging the diffusion processes on the Lie group SO(3)
(more details are available in the Supplementary Material).

As proposed in [34], we also test the effect of an additional

Chamfer Distance Loss term.

Results. We report in Table 1 the results of the compar-

ison on BB. Among the baselines, SE(3)-Equiv, which is

the current SOTA, performs best in terms of RMSE(R), and

DGL performs best in terms of RMSE(T) and PA. These

baselines trade accuracy in rotation with accuracy in trans-

lation, with SE(3)-Equiv performing well in rotation and

worst in translation and DGL performing well in translation

and badly in rotation. Contrarily, DiffAssemble outperforms

the baselines on all metrics: rotation, translation, and part

accuracy, showing the effectiveness of our approach.

When comparing the two variants of our approach, we

see the importance of using both an equivariant feature rep-

resentation and the diffusion process. Notably, we observe

significantly worse results when one of these elements is

missing: RMSE(R) drops by ∼ 10 points, RMSE(T) drops

by ∼ 3 points, and part accuracy drops from 27% to 3%.

In the following paragraph, we report the results with

other variants of our approach. Figure 3 reports a qualita-

tive comparison between DiffAssemble and the SE(3)-Equiv

when reassembling a wine glass and a bottle, both frag-

mented in four pieces. We observe that SE(3)-Equivariant

struggles in dealing with both large and small pieces,

and shifts all pieces to the middle point. Contrarily,

DiffAssemble was able to handle big pieces well but strug-

gled with small pieces like the fragments of the glass stem.

Ablation. Table 2 reports results assessing i) the impor-

tance of the feature representation, ii) the impact of the

diffusion design, and iii) the benefit of using attention.

We notice that employing invariant and non-equivariant

features leads to worse performance. This result highlights

the importance of providing the network with inductive bi-

ases, specifically rotation-equivariant feature, to solve this

task. In the Diffusion Design section of the table, we com-

pare our implemented forward process for handling rotation

in SO(3) with a direct application of Gaussian Noise to the

6D representation (6DOF) [50]. This straightforward ap-

proach negatively impacts the model’s performance across

all metrics. Following [34], we investigate the use of the

Chamfer Distance (CD) loss alongside our general losses.

We see that by using the CD loss, we improve in Part Accu-

racy but perform worse in both RMSE for translation and

rotation. Nevertheless, the loss in performance is minor, and

with or without Chamfer Distance loss, aside from the part
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DATASET

METHOD PuzzleCelebA PuzzleWikiArts

6x6 8x8 10x10 12x12 6x6 8x8 10x10 12x12

Optimization

Based

Gallagher [14] 80.21 55.18 71.19 69.81 71.88 61.63 54.15 44.68

Yu et al. [46] 98.63 94.65 98.33 93.33 94.62 92.95 90.99 89.88

Huroyan et al. [21] 98.47 97.45 98.65 97.08 92.69 91.37 89.74 88.28

Learning

Based

DiffAssemble - No Diff. 99.43 79.84 99.05 91.28 73.07 54.70 22.68 18.27

DiffAssemble - No Equiv. 96.12 71.62 91.98 64.15 25.31 14.63 8.19 4.96

DiffAssemble 99.51 87.66 99.30 97.76 90.65 72.79 63.33 53.08

Table 3. Results for Jigsaw puzzle solving on PuzzleCelebA and PuzzleWikiArts

DATASET

METHOD CelebA WikiArts

6x6 12x12 6x6 12x12

Gallagher [14]
33.28 19.18 32.19 24.12

(-46.93) (-50.63) (-39.69) (-20.56)

Yu [21]
33.45 21.78 32.53 24.65

(-66.85) (-72.84) (-62.09) (-65.23)

Huroyan [46]
18.18 0.09 17.14 0.08

(-80.29) (-88.45) (-75.55) (-80.28)

DiffAssemble
96.92 76.49 51.21 27.09
(-2.59) (-32.81) (-39.44) (-25.99)

Table 4. Results for Jigsaw puzzle solving with 30% missing pieces

on PuzzleCelebA and PuzzleWikiArts. The percentage variance of

the model relative to the result presented in Table 3 is reported

within square brackets.

accuracy, our method performs best.

Finally, we investigate the impact of the attention mech-

anism on information propagation. For this purpose, we

define the adjacency matrix A ∈ R
M×M as an all-ones ma-

trix and, instead of UniMP, we use the Graph Convolutional

Network (GCN) [22]. DiffAssemble with UniMP consis-

tently outperforms DiffAssemble with GCN, highlighting

the benefit of adopting an attention mechanism.

4.2. 2D Jigsaw Puzzle with Rotated Pieces

We adopt DiffAssemble to reassemble visual jigsaw puzzles

with translated and rotated pieces. In this task, we need to

reassemble an image by translating and rotating a collection

of image patches. The patches are regularly shaped, non-

overlapping, and initialized with a random orientation.

Dataset and Evaluation Setting. Following [40], we test

our approach on two datasets of puzzles: PuzzleCelebA [24]

and PuzzleWikiArt [41]. PuzzleCelebA is a dataset of

celebrities’ faces, while PuzzleWikiArt contains paintings

from various artists in many styles. We compare with three

optimization-based methods for visual puzzle-solving: i)

Gallagher [14], ii) Yu et al. [46], and iii) Huroyan et al. [21].

We report the results using various numbers of patches,

from 36 (6× 6) to 144 (12× 12). We present the outcomes

using the direct comparison metric [5], where a piece is suc-

Figure 4. (a) Patch alignment in inference from t = T to t = 0.

(b) Qualitative comparison with 30% missing pieces.

cessfully placed if it is both correctly positioned and rotated.

While our solution operates in the continuous domain, the

evaluation is conducted in the discrete one of [14]. To do

so, we first apply to each piece the predicted (continuous)

translation and rotation; then, we discretize its pose by snap-

ping the piece to the closest cell in a n× n squared lattice,

n =
√
M , and its rotation to the nearest π/2 angle.

Implementation Details. Each piece has to be arranged

into a two-dimensional continuous space with boundaries

[−1, 1]. Following [14], the possible initial rotation of each

patch is represented by the set {0, π/2, π, 3π/2}, which are

elements of the cyclic group Z4 [14]. We parameterized

the rotation in 2D as: rm = [cos(θm), sin(θm)]⊤ [50] and

we optimize θm in the continuous domain. For the feature

extractor, we use a version of ResNet18 that is equivariant [6]

to the cyclic group Z4.

Results. Table 3 reports results for the visual puz-

zle reassembly task, with rotated and translated pieces.

DiffAssemble achieves SOTA results in CelebA, improv-

ing over the optimization-based method. In Wikiart,

the optimization-based approaches [21, 46] outperform

DiffAssemble. An explanation for this gap is that our method

relies not only on pure visual appearances but also on the

semantic content of the images. CelebA has a very strong

semantic structure, containing images of faces in similar

poses. In contrast, Wikiart has very diverse images with
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Figure 6. Time requirement to solve one puzzle for our approach

and the optimization methods.

no predefined structure. Optimization-based approaches di-

rectly match visual content along the borders. This design

makes them a strong baseline when all patches are provided,

at a cost of time efficiency, as shown in Figure 6. Section 4.3

further discusses efficiency as we scale up to larger puzzles.

Relying on semantics also makes DiffAssemble’s robust

when some of the pieces are missing. Testing robustness

to missing pieces is common when solving jigsaw puz-

zles [14, 40], as it reflects real-world application, e.g., fresco

reconstruction [2]. We evaluate DiffAssemble and all the

baselines when 30% of the pieces are randomly removed

and report results in Table 4. DiffAssemble outperforms

Huroyan et al. [46], the second-best model, in both CelebA

and Wikiart. Optimization-based methods experience a sig-

nificant decrease in accuracy on both 6 × 6 and 12 × 12
puzzles, while DiffAssemble retains high performances even

in this challenging setting. Figure 4 shows DiffAssemble

solving a CelebA puzzle from randomly shuffled pieces,

along with a comparison with all the baselines when 30%
of the pieces are missing. In the Supplementary Material,

we present an ablation on the design choices for 2D Jigsaw

puzzle, analogously to the above-mentioned ablation study

for 3D object reassembly.

4.3. Scaling to Larger Graphs

We investigate DiffAssemble with Exphander [37] for higher-

dimensional puzzles. We explore the effectiveness of scaling

our method with PuzzleCelebA puzzles up to 900 pieces

(30× 30 puzzles). DiffAssemble with Expander prunes 80%

of the edges from the complete graph during training and

introduces 8 virtual nodes to ensure global connectivity. Fig-

ure 5 shows the memory requirements for DiffAssemble with

and without sparsity, executed on standard consumer-grade

hardware (NVIDIA GeForce RTX 4090 with 24GB). When

the graph has 900 elements, our method with sparsity halves

the memory consumption without compromising accuracy.

Although our method requires much memory, it is signifi-

cantly faster than memory-intensive optimization methods.

We compare DiffAssemble with the three optimization-based

approaches. Figure 6 reports the time required for the four

methods to solve a puzzle based on size. The time required

by optimization-based approaches increases exponentially

with the number of elements and, consequently, with the

number of matches. On the other hand, DiffAssemble re-

assembles up to 900 elements without scaling in time re-

quirement, e.g., it solves 30 × 30 puzzles in 5s with 95%
accuracy. This represents a significant improvement over

Gallagher, the faster optimization-based solution, which has

a run-time of 55s with an accuracy of 58%.

5. Conclusion

In this work, we introduced DiffAssemble, a general frame-

work for tackling reassembly tasks through graph repre-

sentations and a diffusion model formulation. By framing

reassembly as a denoising task, we leverage an Attention-

based Graph Neural Network to iteratively refine the pose of

each piece through a diffusion process.

Our experimental evaluation showcases the effectiveness

of DiffAssemble, spanning 3D object reassembly and 2D

puzzles with translated and rotated pieces. The results

demonstrate SOTA performance in most 2D and 3D sce-

narios, revealing a common ground between these seemingly

disparate tasks. Notably, in the 2D domain, DiffAssemble ex-

hibits robustness to missing pieces and achieves remarkable

efficiency compared to optimization-based methods. In the

3D, our solution obtains SOTA results, maintaining accuracy

in translation and rotation, unlike previous solutions.

Limitations and Future Research. One of the main limi-

tations of DiffAssemble is its high memory usage, even by

introducing the sparsity mechanism based on the expander

graph. Future efforts will focus on mitigating the memory

demands and exploring further reassembling scenarios while

dealing with data from real-world scans.
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