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Abstract

As large-scale foundation models become publicly avail-

able for different domains, efficiently adapting them to indi-

vidual downstream applications and additional data modal-

ities has turned into a central challenge. For example, foun-

dation models for geospatial and satellite remote sensing

applications are commonly trained on large optical RGB or

multi-spectral datasets, although data from a wide variety

of heterogeneous sensors are available in the remote sens-

ing domain. This leads to significant discrepancies between

pre-training and downstream target data distributions for

many important applications. Fine-tuning large founda-

tion models to bridge that gap incurs high computational

cost and can be infeasible when target datasets are small.

In this paper, we address the question of how large, pre-

trained foundational transformer models can be efficiently

adapted to downstream remote sensing tasks involving dif-

ferent data modalities or limited dataset size. We present a

self-supervised adaptation method that boosts downstream

linear evaluation accuracy of different foundation models

by 4-6% (absolute) across 8 remote sensing datasets while

outperforming full fine-tuning when training only 1-2% of

the model parameters. Our method significantly improves

label efficiency and increases few-shot accuracy by 6-10%
on different datasets

1
.

1. Introduction
Remote sensing data, such as satellite imagery and aerial
photographs, have become ubiquitously available in recent
years. Governmental programs such as Landsat [44] and
Copernicus [11] produce vast amounts of high quality data
and make them publicly available. Important environmen-
tal and societal problems can now be addressed by ap-
plying methods from computer vision to remote sensing
data [41]. These include the monitoring of biodiversity [27],
extraction of socioeconomic indicators [45] or the estima-
tion of greenhouse gas emissions [31]. Public remote sens-

1Code available at github.com/HSG-AIML/GDA

Figure 1. Average performance (colored bars) and number of
trainable parameters (gray bars) for different visual foundation
models across 8 remote sensing datasets. Our Scaled Low-Rank
(SLR) adapter method achieves significant performance improve-
ments across datasets and models with no (SLR Linear) and as
little as 1-2% (SLR fine-tuned) additional trainable parameters.

ing archives provide high quality data with global cover-
age, while private fleets of smaller satellites already pro-
vide data at high spatial and temporal resolutions, which
enables applications that depend on timely observations or
high resolution imagery, such as mapping of natural dis-
asters [18], monitoring of marine traffic [12], or precision
agriculture [34].

The remote sensing field is characterized by a high het-
erogeneity of available data sources. Most satellite instru-
ments are custom-designed to monitor specific phenom-
ena enabling the satellite’s scientific or commercial mis-
sion. Commonly collected data modalities include optical
data such as RGB images, multi-spectral data (e.g., near-
infrared or short-wave infrared), hyperspectral data, or syn-
thetic aperture radar (SAR). Accordingly, computer vision
approaches for remote sensing data are highly fragmented
into specialized sub-fields defined by the different modali-
ties or the application of interest (see [49] for a review).
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Figure 2. Overview of our parameter-efficient continual pre-training framework. An existing pre-trained visual foundation model (0) is
modified with SLR adapters (1). Then, the adapters are trained in a self-supervised way on the target domain (2) before the model is
fine-tuned for the target task in a supervised manner (3). The contributions of this work lie in steps 1–3.

With the success of self-supervised learning, the idea of
general foundation models that can be leveraged for many
different tasks has gained traction in the computer vision
field [4]. Large pre-trained models have become a stan-
dard component in computer vision pipelines for classifi-
cation [13], segmentation [19] or object-detection [47]. In
large part, the success of these approaches is due to the
ubiquitous nature of optical RGB data in computer vision.
Deep neural networks trained on large optical RGB datasets
such as ImageNet [29] have shown to be robust to lower-
level differences between individual optical camera sensors.
This robustness enables the transfer of the pre-trained mod-
els to unseen imagery with similar characteristics. Similar
results are possible in natural language processing, where
unsupervised pre-training on large amounts of textual data
yields strong performance on diverse tasks [5].

A number of foundation models for remote sensing
data haven recently been proposed [8, 23, 28]. Most of
these models follow the computer vision approach and are
pre-trained on optical RGB imagery, albeit collected from
satellites or airborne observing platforms. However, opti-
cal RGB data corresponds only to a small fraction of the
commonly used data modalities in the remote sensing do-
main [38]. Foundation models promise large benefits in
remote sensing, where labeled datasets are small and the
acquisition of labels can be very expensive. To date, sig-
nificant potential for remote sensing foundation models re-
mains for data modalities beyond optical RGB data. First
steps haven been made to include other data modalities
such as multi-spectral [8] or SAR [30] data in the pre-
training progress, but remote sensing foundation models re-
main limited in their ability to adapt to downstream tasks
utilizing unseen modalities. Without zero- or few-shot ca-

pabilities on modalities other than optical data, expensive
fine-tuning protocols have to be employed, resulting in the
re-training of large foundation models for datasets involv-
ing new modalities. This requires large amounts of labeled
samples to adapt the model and comes with high computa-
tional cost.

In this paper, we present a new approach for adapting
large remote sensing foundation models to novel tasks and
modalities in a computationally efficient way. Our method
introduces Scaled Low-Rank (SLR) adapters with a small
number of parameters to add new data modalities to a pre-
trained foundation model. Through self-supervised learn-
ing on unlabeled data of the target domain, these additional
parameters allow the model to adapt to the characteristics
of the new data modality, while the pre-trained parameters
are kept fixed. This approach helps to generalize remote
sensing foundation models beyond their pre-training data
modalities while fully leveraging their existing capabilities.
The SLR adapters enable parameters-efficient and label-
efficient supervised training for new downstream tasks.
The contributions of our work are as follows:

• We present SLR adapters, a parameter efficient domain
adaptation method to utilize visual foundation models on
new data modalities.

• We introduce a self-supervised continual pre-training
framework to optimize SLR adapters on unlabeled data
from new domains.

• Our empirical results demonstrate strong performance
of the proposed method. SLR adapters drastically re-
duce the memory footprint, outperform fine-tuning of all
model parameters, and significantly improve performance
in few-shot scenarios.
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2. Related Work
Computer Vision for Remote Sensing Large amounts
of remote sensing data are routinely collected by a wide
variety of heterogeneous sensors aboard satellites and air-
borne vehicles [38]. Much of this data, e.g., optical or radar
observations, can be represented as imagery and be pro-
cessed with computer vision methods [41]. This enables
applications ranging from monitoring of biodiversity [27] or
wildlife conservation [40] to the estimation of demographic
parameters [45] or industrial air pollution [31]. While unla-
beled remote sensing data is automatically acquired every-
day, producing high quality labeled datasets is difficult for
many important applications [3].
Geospatial Foundation Models Foundational models are
large general purpose models that are typically trained
with self-supervised learning [4]. To solve specific prob-
lems, the pre-trained models are then adapted to the target
task with supervised fine-tuning. A common pre-training
technique for foundation models is masked-autoencoding
(MAE) [13], which is used to train transformer models by
reconstructing masked portions of the input data. After ex-
tensive training on large datasets, MAE produces strong
general-purpose visual features [13]. A number of recent
works adapt the MAE framework to the characteristics of
remote sensing data: SatMAE [8] introduces specialized
encodings for the temporal or multi-spectral dimension of
satellite imagery and explores different masking schemes
for self-supervised training. Scale-MAE [28] explicitly
addresses the problem of varying ground sampling dis-
tance (GSD) of different remote sensing sensors, and pro-
poses a GSD-aware positional encoding scheme. Masked-
autoencoding has also been used with other remote sens-
ing modalities such as SAR [43] or hyperspectral data [32].
Other approaches for geospatial foundation models have
used contrastive learning between satellite observations at
different points in time [22, 23] or data modalities [30]. An-
other line of work emphasizes the advantages of hierarchi-
cal pre-training approaches [28] for remote sensing founda-
tion models [24].
Parameter Efficient Finetuning General purpose founda-
tion models can be adapted for specific tasks by supervised
fine-tuning on labeled datasets [4]. This approach leverages
the model’s pre-trained representations and adapts them to
the characteristics of the target data and task. However, the
standard fine-tuning process is very costly, as every parame-
ter of the large foundation model has to be re-trained, which
is computationally expensive, has a large memory footprint,
and requires a sizeable labeled target dataset. Recently, this
process has been simplified by limiting the number of pa-
rameters that are trained during the fine-tuning stage [16].
Parameter efficient fine-tuning approaches train only the
bias parameters [48], add additional trainable adapter mod-
ules [14, 16] such as low-rank matrices [17] between the
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Figure 3. Transformer block (left) with SLR adapters (right). We
add individual SLR adapters to linear transformations in the qkv
projection and mlp layers of the transformer block. SLR freezes
the original transform Wi and introduces trainable scaling param-
eters s1,2

i and low-rank matrices W 1,2
i .

pre-trained layers, or rescale activations with learnable vec-
tors [20]. Originally proposed for supervised fine-tuning
of large-language models, these techniques can reach per-
formance on-par with fine-tuning of the entire model while
drastically reducing the memory requirements for individ-
ual downstream tasks.
Geospatial Domain Adaptation Domain shifts due to
changes in acquisition region, time, sensor or environmen-
tal conditions are a common problem in geospatial machine
learning (see [39] for a review). Unlike most of the general
domain adaptation literature, we focus on adapting unsuper-
vised foundation models to new modalities and targets.

3. Method
This section describes our proposed method for efficiently
adapting visual foundation models for new remote sensing
tasks. We first introduce the proposed continual pre-training
framework and then the scaled low-rank adapters. Together,
these components facilitate a data-efficient and compute-
efficient adaptation of the foundation model to the target
domain and task.

Preliminaries We investigate the scenario when
a reconstruction-based visual foundation model
f✓ : RC⇥H⇥W ! RC⇥H⇥W , trained on a dataset from
the source domain Ds, should be transferred to a dataset
from the target domain Dt. We focus on vision transformer
(ViT) [10] based foundation models trained with masked
autoencoding (MAE) [13]. For self-supervised training, the
unlabeled input imagery xs ⇠ Ds with xs 2 RC⇥H⇥W
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is split into n non-overlapping patches p 2 Rn⇥P
2
C of

patch size P . The patches are then embedded with a
linear transform ft : Rn⇥P

2
C ! Rn⇥D to create tokens

of dimension D. For each image xs, a binary mask m
randomly drops a fraction d of the tokens. The remain-
der of the tokens is then processed by a ViT encoder
f✓e : R(1�d)·n⇥D ! R(1�d)·n⇥D. After the encoder, MAE
models introduce learnable [MASK] tokens at the positions
of dropped tokens to recover the original sequence length
n. A transformer [42] decoder maps the tokens back into
pixel space f✓d : Rn⇥D ! RC⇥H⇥W to compute the
reconstruction loss LMAE :

LMAE =
1

d · n
X

i

mi · (xi � f✓(xi))
2 (1)

3.1. Parameter Efficient Continual Pre-training
To adapt the model to data xt ⇠ Dt from the unseen target
domain, we introduce scaled low-rank (SLR) adapters f✓ada
to the foundation model f✓. The resulting model f✓�f✓ada is
then trained with unlabeled samples xi 2 Dt from the target
dataset. During that process, the pre-trained parameters ✓
are kept fixed and only the parameters of the adapters ✓ada
are optimized with stochastic gradient descent. In practice,
we use a masked autoencoding objective LMAE to train the
adapter parameters in a self-supervised fashion.

This makes it possible to leverage all available unlabeled
data samples xi of the target domain. Masked autoencoding
reduces the computational costs for continual pre-training
as the majority of the patches from each image is dropped
in the forward pass, reducing the input sequence length by
the factor d. This has significant advantages for transformer
models, as their computational complexity is quadratic in
the number of input tokens. During the backward pass,
we only perform gradient updates for the adapters, as all
other parameters are fixed. Training of the adapters primes
the foundation model for new types of remote sensing data,
even new data modalities, and facilitates successive training
for a target task with limited labeled samples. After adap-
tation to the target domain, the foundation model is then
adapted to the target task (e.g., classification) by supervised
fine-tuning of the pre-trained adapter parameters. Based on
our setup and experience, the proposed method reduces the
number of parameters that are trained in the continual pre-
training an fine-tuning stages by about two orders of mag-
nitude for commonly used MAE visual foundation models
when compared to the standard fine-tuning approach.

3.2. Scaled Low Rank Adapters
The scaled low-rank (SLR) adapters are designed to aug-
ment the linear transformations Wi in a pre-trained trans-
former foundation model in a parameter efficient way, while
maintaining as much capacity as possible. ViTs stack mul-

tiple blocks b of multi-head self-attention (MSA) and multi-
layer perceptrons (MLP) with layer normalization (LN) [2]:

z0
b

= MSAb(LN
1
b
(zb)) + zb

zb+1 = MLPb(LN
2
b
(z0

b
)) + z0

b

(2)

Notably, the MSA computes query, key and value
representations of the inputs through a linear projection
fqkv : RD ! R3D. Similarly, the feed-forward layers of
the MLP consist of linear projections fmlp : RD ! RD.
These operations contain the majority of trainable parame-
ters in ViT models.

We propose SLR adapters that scale activations zi�1

from the preceding layer element-wise with a learnable vec-
tor s1

i
2 RD. The resulting rescaled feature vector is

then passed through the original linear transform (s1
i
�

zi)Wi. Inspired by low-rank adaptation methods [17],
SLR uses symmetric low-rank matrices W 1

i
2 RD⇥r

and W 2
i

2 Rr⇥D to process the scaled input features
((s1

i
� z)W 1

i
)W 2

i
. Finally, the adapter adds the features

from the original transform and those from the low-rank
matrices and multiplies them with a second scaling vector
s2
i
. Using an SLR adapter (see Fig. 3), the linear transform

f(zi) = ziWi turns into:

fada(zi) = s2
i

⇥
(s1

i
� zi)Wi + ((s1

i
� zi)W

1
i
)W 2

i

⇤
(3)

We add instances of this adapter to the linear transforms of
the MLP and MSA layers throughout the MAE encoder and
decoder. The scaling parameters s1,2

i
are initialized with

vectors of ones, and the low-rank matrices W 1
i

⇠ N and
W 2

i
with zeros [17]. The SLR adapter consist of 2 ·D · r+

2 · D parameters. We choose r ⌧ D, making the adapter
significantly smaller than the original linear transform Wi

with D2 parameters. Depending on model architecture and
bottleneck size r, this introduces ⇡1% of the original model
size as additional parameters (see Sec. 4).

3.3. Supervised Task Adaptation
SLR adapters are added throughout the pre-trained founda-
tion model and trained with masked autoencoding on the
target domain Dt. We then transfer the model to the target
task of interest T . The model encoder f✓e and its adapter
parameters are combined with a task-specific head f✓task .
The resulting model can then be trained in a supervised way
with labeled data (xt,yt) from the target domain (e.g., for
a k-way classification task with a linear head W h 2 RD⇥k

and cross-entropy objective). We investigate supervised
task adaptation settings with different efficiency and per-
formance trade-offs (see Sec. 4).

4. Experiments & Results
Datasets We evaluate our experiments on 8 different re-
mote sensing datasets (see Tab. 2): EuroSAT [15], RE-
SISC45 [6], UCMerced[46], FireRisk [33], TreeSatAI [1],
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MAE SatMAE ScaleMAE
Dataset Linear SLR Lin. SLR FT FT Linear SLR Lin. SLR FT FT Linear SLR Lin. SLR FT FT

EuroSAT 93.27 96.61 98.66 98.82 92.00 94.53 98.21 97.79 94.52 95.69 98.65 98.73
RESISC45 77.90 87.08 93.84 95.16 81.80 84.02 92.57 93.39 86.28 87.40 92.87 95.12
FireRisk 37.89 41.78 52.23 49.17 38.27 38.14 50.80 51.21 41.05 41.86 52.63 51.45
TreeSatAI 23.05 38.69 57.66 53.78 21.33 29.55 55.56 50.99 23.48 37.15 53.97 52.58
EuroSAT-SAR 77.95 84.22 87.00 86.46 71.83 79.66 87.17 86.86 73.53 82.73 86.44 78.49
BENGE-S1-C 34.81 42.14 42.80 46.82 35.23 35.60 45.14 44.77 35.35 37.02 45.59 45.07
BENGE-S1-S 68.06 69.74 69.84 69.00 66.57 68.45 70.63 68.27 68.10 68.44 69.05 67.23
UCMerced 94.74 98.35 98.43 98.50 95.44 95.95 98.81 96.65 95.18 96.67 97.60 96.20

Average 63.46 69.83 75.06 74.71 62.81 65.74 74.86 73.74 64.69 68.37 74.60 73.11

Table 1. Classification and segmentation accuracy of different visual foundation models across 8 remote sensing datasets. Linear: Linear
evaluation of the pre-trained model. SLR Linear: Linear evaluation after self-supervised training of SLR adapters. SLR FT: Supervised
training of the SLR adapters after self-supervised pre-training of SLR adapters. FT: Fine-tuning of the full foundation model.

Dataset # Samples Modality GSD

EuroSAT [15] 27k Multispec. 10m
RESISC45 [6] 31k RGB 0.2-30m
FireRisk [33] 91k RGB 1m
TreeSatAI [1] 50k multiple 0.2-10m
EuroSAT-SAR [43] 27k SAR 10m
BENGE-8k [25] 8k multiple 10m
UCMerced [46] 2.1k RGB 0.3m

Table 2. Overview of the remote sensing datasets used in this
work. Each dataset is used to learn a supervised classification
and/or segmentation task. The datasets have between 2-90k sam-
ples and combine observations from different modalities that vary
in their ground-sampling distance (GSD).

BENGE-8k [25] classification, BENGE-8k segmentation
and EuroSAT-SAR [43]. These datasets contain different
data modalities such as RGB and multi-spectral imaging,
SAR polarimetry and others at ground-sampling distances
between 30 cm and 30m per pixel. Detailed information on
the specific downstream task trained on each dataset (clas-
sification or segmentation) and the corresponding target are
presented in the supplemental material. When available, we
use the dataset splits defined by the torchgeo library [35].

Implementation Details To use foundation models for
the downstream classification and segmentation tasks, we
append a linear layer or a convolutional layer, respectively,
to the model encoder. We use the AdamW [21] optimizer
for training and reduce the learning rate by a factor of 10
when the validation loss plateaus. The number of train-
ing steps is fixed for each dataset, and we report the test
performance of the checkpoint with the lowest validation
loss. Images are re-sized to 2242 pixels and 75% of to-
kens are masked during the self-supervised SLR adapter
pre-training. For few-shot experiments we report the aver-
age performance and standard-deviation across three train-

ing runs on few-shot samples chosen with different random
seeds. Samples are chosen with replacement if k is greater
than the total number of samples for a class in the dataset.
Further details on datasets and training procedures can be
found in the supplemental material.

Foundation Models The SLR adapter method can be ap-
plied to any neural network model with dense layers for
continual pre-training and efficient fine-tuning. In our ex-
periments, we use ViT-L models with pre-trained weights
from three visual foundation models: MAE, the vanilla
masked autoencoder [13], pre-trained on ImageNet [29].
SatMAE, a geospatial foundation model [8] with special-
ized positional embeddings for remote sensing data modal-
ities. And Scale-MAE, a geospatial foundation model [28]
with positional embeddings that are invariant to changes in
the ground-sampling distance of remote sensing data. Both
geospatial foundational models were pre-trained on optical
remote sensing data [7].

Evaluation Settings We evaluate the quality of self-
supervised domain adaptation with our method with dif-
ferent supervised downstream training settings on the tar-
get domain. These approaches offer different trade-offs be-
tween label-efficiency and computational cost ranging from
standard linear evaluation to fine-tuning, which serve as
our baselines.
SLR Linear: To evaluate the quality of representations
from a foundation model after adaptation to the target do-
main with self-supervised SLR adapter training, we fix all
model parameters and train only the (linear) task head. This
incurs the same training cost as conventional linear probing.
SLR Scaling: The design of the SLR adapters facilitates
a parameter-efficient fine-tuning method. Instead of re-
training all parameters of the model, we fix the original
foundation model, as well as the parameters of the low-rank
matrices, after the self-supervised domain adaptation stage.
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Figure 4. Masked autoencoder reconstruction examples. The first
two columns show the original image and the masked version, re-
spectively. The last two columns show the reconstructions from a
masked autoencoder trained on ImageNet and after self-supervised
domain adaptation with SLR adapters. Training with adapters re-
duces the reconstruction loss from 1.35 to 0.87 in the top row, 0.62
to 0.59 in the middle row, and 0.17 to 0.14 in the bottom row.

We then train all scaling vectors s1,2{i} and normalization pa-
rameters together with the task head.
SLR Fine-tuning: In this setting, all parameters of the SLR
adapter and normalization parameters are trained along with
the task head, while the parameters of the original founda-
tion model remain fixed.

Self-supervised Domain Adaptation We evaluate the
performance of our method when transferring visual foun-
dation models to different new modalities (see Tab. 1). To
that end, a set of SLR adapters for each dataset is added
to the foundation models, as detailed in Section 3. Self-
supervised training on the target dataset improves the mod-
els’ reconstruction capacities and recovers data modality-
specific details (see Fig. 4). In supervised downstream
experiments, we find that SLR adaptation improves the
resulting data representations across datasets and modali-
ties (see Tab. 1). For the MAE foundation model, SLR
adapters improve the average linear evaluation accuracy
from 63.46% to 69.83% (+6.37% absolute improvement)
across all datasets (see Fig. 1). Similarly, for SatMAE and
Scale-MAE linear evaluation accuracy improves +2.93%
and +3.68%, respectively. In the fine-tuning setup, our
method outperforms fine-tuning of the entire model on
most dataset and foundation model combinations. On aver-
age, SLR adapter fine-tuning improves model accuracy by
+0.35% for MAE, +1.12% for SatMAE and +1.49% for
Scale-MAE over fine-tuning of the full model.

To evaluate the degree to which self-supervised training

Method Params k = 10 k = 100

Linear Eval. 10k 75± 0.5 89± 0.5
SLR Linear 10k 74± 0.2 92± 0.5
SLR Scale 0.5M 87± 0.6 96± 0.1
SLR FT 7.3M 88± 2.0 96± 0.1
Fine-tune 304M 82± 2.0 95± 0.4

Table 3. Few-shot results with SatMAE on EuroSAT.

Method Params k = 10 k = 100

Linear Eval. 10k 63± 0.8 63± 0.2
SLR Linear 10k 71± 2.9 75± 0.1
SLR Scale 0.5M 74± 3.0 77± 0.3
SLR FT 7.3M 72± 3.0 82± 1.0
Fine-tune 303M 64± 1.6 77± 3.0

Table 4. Few-shot results with MAE on EuroSAT-SAR.

of SLR adapters captures the benefits that continual pre-
training can provide [24], we perform continual pre-training
of all model parameters for the RESISC45 and EuroSAT-
SAR datasets. On both datasets, SLR adapters reach >98%
of the accuracy achieved by full continual pre-training (see
Sec. 9 in the Supplementary Material).

Few-shot Learning We investigate the label efficiency of
our method with few-shot experiments on the EuroSAT (see
Tab. 3) and EuroSAT-SAR (see Tab. 4) datasets. Fine-
tuning of the SLR adapters outperforms full-model fine-
tuning on both modalities, as well as for different labeled
dataset sizes. In a k-shot experiment, we randomly select k
samples for every class from the training set. With k=10,
SLR adapter fine-tuning improves land-cover classification
performance by +6% and +8% on EuroSAT and EuroSAT-
SAR, respectively, compared with fine-tuning of the full
model. To further reduce the number of trainable param-
eters, we also fix the low-rank matrices W 1,2

i
after self-

supervised adapter training (SLR Scale). In this setting,
only the task head and the scaling parameters are trained
with labeled data. This approach results in the best k=10
performance on EuroSAT-SAR over all tested approaches.
It outperforms full fine-tuning on EuroSAT by +5% and by
+10% on EuroSAT-SAR. Only 0.5M of the 303M param-
eters of the model (⇡ 0.2%) are optimized in this setting,
which limits the risk of overfitting and improves label ef-
ficiency. Even at k=100 labeled samples per class, SLR
scale outperforms full fine-tuning of the model on EuroSAT
(+1%) and achieves the same accuracy at lower variance
across random seeds on EuroSAT-SAR (77± 0.3%).
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Figure 5. Classification accuracy of the MAE foundation model
with SLR adapters. SLR pre-trained: Self-supervised pre-
training of adapters on the target dataset. SLR from scratch:
Random initialization of adapter parameters and supervised train-
ing on the target data.

Ablation on Self-supervised Adapter Training In this
experiment, we investigate the value of self-supervised
adapter training on the target domain (see Fig. 5). To
that end, we compare the SLR adapters initialized by self-
supervised pre-training with adapters trained from random
initialization on the supervised target task. We find that
self-supervised pre-training helps to stabilize the super-
vised training phase, facilitates faster convergence, and ulti-
mately leads to higher performance on the target task. This
advantage is more pronounced when the dataset for pre-
training and the shift from source to target domain is larger.
With k=10 labeled samples per class, self-supervised SLR
training improves classification performance by +6% on
BENGE-8k and by +7% on EuroSAT over randomly ini-
tialized adapters. On the EuroSAT-SAR dataset, we find
an improvement of +16%. For a fair evaluation, the same
number of samples for self-supervised and supervised train-
ing of the SLR adapters is used in this experiment. How-
ever, our self-supervised adapter training method is not lim-
ited by the number of available labeled samples. It also has
lower computational costs than supervised fine-tuning, as
75% of each input image is dropped for reconstruction and
not processed by the model encoder.

Segmentation We fine-tune SLR adapters on the
BENGE-8k Sentinel-1 SAR dataset with land-cover masks
(see Fig. 6). For SatMAE, using SLR adapters improves
performance from 66.57% to 68.45% with a frozen
encoder (+1.88%) and up to 70.63% when training the
SLR adapters along with the segmentation head. This

corresponds to a +2.36% improvement over fine-tuning of
the full model.

Adapter Design We compare our SLR adapters
with other parameter-efficient training methods:

Method Accuracy

BitFit [48] 80.34± 2.4
(IA)3 [20] 76.72± 3.5
Norm tuning [9] 79.00± 3.1
LoRA [17] 85.86± 0.3
SLR (ours) 87.14± 0.1

Table 5. Performance of different pa-
rameter efficient fine-tuning methods
when adapting an ImageNet MAE to
SAR data (EuroSAT-SAR).

LoRA [17] adds
low-rank ma-
trices to the
model, (IA)3 [20]
re-scales interme-
diate activations,
BitFit [48] only
trains bias pa-
rameters, and
NormTuning [9]
modulates the
normalization
layers. When
necessary, we
slightly adapt the original methods to ensure a fair eval-
uation. LoRA matrices are added to the same linear
transforms where we place our SLR adapters (i.e., to both,
the MSA and MLP blocks of the transformer). (IA)3

activation scaling is applied to the query, key and value
projections of the foundation model. The results indicate
that SLR adapters achieve the best performance when
adapting a visual foundation model from RGB to the SAR
data modality (see Tab. 5). Additionally, SLR is designed
to combine domain adaptation and few-shot capabilities
through its scaling parameters.

Parameter Efficiency In our experiments, we use ViT-
L encoder models, which consist of 303M parameters in
the standard setting. For linear evaluation, we add a lin-
ear classifier, introducing D · nc + nc additional param-
eters, where D is the model’s embedding dimension and
nc is the number of classes for the task at hand. Our SLR
adapters introduce 2 ·D · r + 2 ·D parameters for each lin-
ear projection in the model. For ViT-L, we add 194 adapters
throughout the model. Using different bottleneck values
r 2 {8, 16} based on the target data modality, gives an
additional 3.9M or 7.1M parameters in total. This corre-
sponds to ⇡1% and ⇡2% of the model’s total parameters,
respectively. Using SLR adapters thus drastically reduces
the storage requirements when training models for multi-
ple data modalities compared to individual fine-tuning of
the full model for each data modality. In the linear eval-
uation setting, the SLR adapters significantly improve per-
formance across data modalities, while introducing negligi-
ble computational overhead for training and inference. In
our experiments, we find no significant difference in train-
ing time between standard linear evaluation and SLR linear
evaluation (using a single NVIDIA Tesla V100 GPU).
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Input Ground Truth SatMAE FT SatMAE-SLR

Figure 6. Segmentation examples on Sentinel-1 SAR imagery
from the BENGE-8k dataset. Predictions for 8 different land-
cover classes obtained with SatMAE combined with a fully con-
volutional segmentation head. Comparison between full SatMAE
fine-tuning and fine-tuning of SLR adapters.

5. Discussion
We investigate the problem of adapting visual foundation
models to remote sensing downstream tasks involving dif-
ferent data modalities. The large number of different het-
erogeneous data modalities in the remote sensing domain
makes it difficult to design foundation models that can read-
ily adapt to any of them. Furthermore, domain adaptation
might also be necessary within a single data modality to ac-
commodate different sensor types, due different spatial or
spectral resolutions and other effects. Recently, a number
of data modality-specific foundation models have been pre-
sented. In this work, we take an orthogonal approach and
propose to explicitly adapt an existing foundation model for
the data modality of interest with a self-supervised recon-
struction objective. To alleviate the computational cost and
to enable supervised training on small target datasets, we re-
duce the trainable parts of the model to a fraction of its total
parameter count for the adaptation process. We focus on
ViT foundation models trained with masked-autoencoding,
but the proposed approach is generally applicable to neural
networks with dense layers and not specific to geospatial or
computer vision data modalities. For example, our method
could easily be applied in other domains with multi-modal
data, as, for instance, encountered in autonomous driving or
robotics scenarios.

Parameter efficient training methods make it possible
to train and store large numbers of modality-specific or
task-specific models that are derived from the same foun-

dation model with small memory footprint. More gener-
ally, utilizing exchangable adapters to introduce specialized
knowledge into a general foundation is a first step towards
a more modular deep learning framework where models
for specific problems are created by combining individ-
ual pre-trained building blocks. Such a framework would
be well suited for the geospatial computer vision domain,
where training independent foundation models for each data
modality of interest would incur huge computational cost.

Broader Impact and Limitations Advances in geospa-
tial foundation models can improve our understanding of
geophysical variables and improve estimates of socioeco-
nomic indicators. This contributes to fields such as environ-
mental sciences or public policy. In particular, applications
where little labeled data is available stand to benefit from
these developments. As our abilities to collect and anal-
yse remote sensing data improve, we need to be mindful
of implications on surveillance technology and individual
privacy rights. This work focuses on static remote sensing
data without direct observations of people or their individ-
ual activities. The proposed method is limited by public
access to a pre-trained foundation model and performance
might degrade when the difference between source and tar-
get data distribution gets very large (e.g., adaptation of a
vision foundation model to audio data).

6. Conclusion

Geospatial foundation models promise to simplify the anal-
ysis of remote sensing imagery by providing a strong, task
agnostic starting point for building specialized deep learn-
ing models. We still face significant challenges when ap-
plying foundation models on data modalities that were not
seen during the pre-training stage. The standard solution to
this problem, i.e., supervised fine-tuning on the target task,
incurs high computational cost and fails altogether on small
datasets. In this work, we show that self-supervised train-
ing of a small number of additional adapter parameters suf-
fices to adapt foundation models to new remote sensing data
modalities. This provides a resource-efficient way to apply
existing large visual models on new remote sensing tasks
with small labeled datasets, or in settings where computa-
tional constraints prevent fine-tuning of the full model. The
presented method represents a memory-efficient improve-
ment over fine-tuning of the full model. We demonstrate
improved performance across different data modalities and
target tasks and strongly outperform existing approaches in
few-shot learning scenarios. We believe that these results
will be also valuable beyond the analysis of remote sens-
ing data in any setting where visual foundation models are
applied across different data modalities.
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Gaudel-Vacaresse, et al. Copernicus Sentinel-2A calibration
and products validation status. Remote Sensing, 9(6):584,
2017. 1

[12] Harm Greidanus and Naouma Kourti. Findings of the
DECLIMS Project—Detection and Classification of Marine

Traffic from Space. Proceedings of SEASAR 2006, pages
23–26, 2006. 1

[13] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr
Dollár, and Ross Girshick. Masked Autoencoders are Scal-
able Vision Learners. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pages
16000–16009, 2022. 2, 3, 5

[14] Xuehai He, Chunyuan Li, Pengchuan Zhang, Jianwei Yang,
and Xin Eric Wang. Parameter-efficient Model Adaptation
for Vision Transformers. In Proceedings of the AAAI Con-

ference on Artificial Intelligence, pages 817–825, 2023. 3
[15] Patrick Helber, Benjamin Bischke, Andreas Dengel, and

Damian Borth. EuroSAT: A Novel Dataset and Deep Learn-
ing Benchmark for Land Use and Land Cover Classification.
IEEE Journal of Selected Topics in Applied Earth Observa-

tions and Remote Sensing, 12(7):2217–2226, 2019. 4, 5, 1
[16] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna

Morrone, Quentin De Laroussilhe, Andrea Gesmundo, Mona
Attariyan, and Sylvain Gelly. Parameter-efficient Transfer
Learning for NLP. In International Conference on Machine

Learning, pages 2790–2799. PMLR, 2019. 3
[17] Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li,

Shean Wang, Lu Wang, Weizhu Chen, et al. LoRA: Low-
Rank Adaptation of Large Language Models. In Interna-

tional Conference on Learning Representations, 2022. 3, 4,
7

[18] Karen E Joyce, Stella E Belliss, Sergey V Samsonov,
Stephen J McNeill, and Phil J Glassey. A Review of the Sta-
tus of Satellite Remote Sensing and Image Processing Tech-
niques for Mapping Natural Hazards and Disasters. Progress

in Physical Geography, 33(2):183–207, 2009. 1
[19] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao,

Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer White-
head, Alexander C Berg, Wan-Yen Lo, et al. Segment Any-
thing. arXiv preprint arXiv:2304.02643, 2023. 2

[20] Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta,
Tenghao Huang, Mohit Bansal, and Colin A Raffel. Few-
shot Parameter-efficient Fine-tuning is Better and Cheaper
than In-context Learning. Advances in Neural Information

Processing Systems, 35:1950–1965, 2022. 3, 7
[21] Ilya Loshchilov and Frank Hutter. Decoupled Weight De-

cay Regularization. In International Conference on Learning

Representations, 2018. 5
[22] Utkarsh Mall, Bharath Hariharan, and Kavita Bala. Change-

Aware Sampling and Contrastive Learning for Satellite Im-
ages. In Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition, pages 5261–5270,
2023. 3
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