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Abstract

Lidar has become a cornerstone sensing modality for
3D vision, especially for large outdoor scenarios and au-
tonomous driving. Conventional lidar sensors are capable
of providing centimeter-accurate distance information by
emitting laser pulses into a scene and measuring the time-
of-flight (ToF) of the reflection. However, the polarization
of the received light that depends on the surface orienta-
tion and material properties is usually not considered. As
such, the polarization modality has the potential to improve
scene reconstruction beyond distance measurements. In this
work, we introduce a novel long-range polarization wave-
front lidar sensor (PolLidar) that modulates the polariza-
tion of the emitted and received light. Departing from con-
ventional lidar sensors, PolLidar allows access to the raw
time-resolved polarimetric wavefronts. We leverage polari-
metric wavefronts to estimate normals, distance, and ma-
terial properties in outdoor scenarios with a novel learned
reconstruction method. To train and evaluate the method,
we introduce a simulated and real-world long-range dataset
with paired raw lidar data, ground truth distance, and nor-
mal maps. We find that the proposed method improves
normal and distance reconstruction by 53% mean angular
error and 41% mean absolute error compared to existing
shape-from-polarization (SfP) and ToF methods. Code and
data are open-sourced here1.

1. Introduction

Sensing and reconstructing large scenes is crucial for
safety-critical applications in autonomous driving [17, 52,
59], drones [32, 44], remote sensing [20, 57], scene un-
derstanding [8, 24, 54] and dataset generation [11, 12, 36]
for 3D vision. Scanning lidar sensors have been broadly
adopted as a cornerstone sensing modality that provides
precise distance information. These sensors operate by
measuring the ToF of laser pulses emitted into and returned

*These authors contributed equally to this work.
1https://light.princeton.edu/pollidar/

from the scene. The emitted light is typically polarized and
the polarization changes upon reflection depending on sur-
face normals and material properties [3, 34]. Off-the-shelf
lidar sensors only detect intensity, as such, ignore the ad-
ditional polarization information. In this paper, we revisit
the abandoned geometric and material information in the
polarization state for the reconstruction of large automotive
scenes up to 100m range.

Although the benefit of polarization has been investi-
gated extensively in other fields [14, 34, 37], polarization
is largely unexplored in the context of lidar sensing in vi-
sion and robotics. Specifically, lidar and polarization have
been explored in meteorology [47, 48, 50], biology [28]
and maritime sciences [56] by analyzing the depolariza-
tion. Besides, a line of work investigates polarization cam-
era images for shape estimation [1, 10, 29, 35, 45], stereo
depth estimation [53], depth completion [58], and dehaz-
ing [5, 21, 22, 49, 55]. These methods have in common
that they utilize passive sensors, making them ineffective
at night time. Only a few existing works [5, 6] use active
polarimetric ToF systems for scene reconstruction. How-
ever, these existing time-resolved polarization methods are
designed for indoor scenes with object-level contents, pro-
hibiting the measurement of large outdoor scenes.

In this paper, we introduce a novel sensing modality that
combines polarization analysis with lidar sensors for scene
reconstruction, illustrated in Fig. 1. We devise a polariza-
tion wavefront lidar sensor (PolLidar) that is capable of op-
erating in outdoor settings. The proposed sensor modulates
the polarization of the emitted and received light. In con-
trast to polarization cameras, the PolLidar is not limited to
a discrete number of polarization states but can measure po-
larization continuously by finely controlling waveplates and
linear polarizers basically able to perform full ellipsometry
[13, 25]. The sensor reads the raw wavefront signal directly
as a voltage from the Avalanche Photodiode (APD). We em-
ploy this sensing technique to capture a polarization dataset
consisting of long-range automotive scenes to assess the
benefit of polarization. Along with the raw wavefronts, we
provide pairwise ground truth distance and normal informa-
tion from a Velodyne VLS-128 reference sensor, see Fig. 2.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 1. PolLidar sensing and scene reconstruction. We design our PolLidar sensor with a unique capability: it modulates the polariza-
tion of light during both the emission and reception stages. To this end, a HWP and QWP are used to emit light of a certain polarization,
whereas a QWP and LP are used to determine the polarization of the received light. To capture the received signal, we employ an ADC at
the APD for precise raw wavefront measurement. This is unlike traditional Lidar systems that primarily focus on distance measurements
and do not provide both the polarization characteristics and the wavefront of the light. Subsequently, a novel lidar geometry reconstruction
approach predicting normals, distance and material properties is introduced in Sec. 4.

To recover scene properties from polarization wavefront
measurements, we combine the proposed sensor with a
novel reconstruction approach that operates on the raw po-
larimetric wavefronts. The proposed reconstruction method
uses the polarized wavefronts to estimate surface normals
and accurate distance. The estimated normals can then
be utilized for predicting material properties, including in-
dex of refraction, diffuse and specular albedo, and surface
roughness. For training, we extend the CARLA simula-
tor [26] with a realistic polarization model of light to gener-
ate a synthetic long-range polarization dataset.

We assess the method with experiments on both syn-
thetic data and real-world data. We find that the proposed
method improves distance estimation by 41% mean abso-
lute error compared to conventional ToF methods and 53%
mean angular error for normal estimation compared to SfP
and point cloud baselines on automotive scenes.

Specifically, we make the following contributions

• We devise a polarization wavefront lidar sensing ap-
proach that measures time-resolved polarization proper-
ties to recover precise distance and normals for long-
range scenarios as found in automotive scenes.

• We propose a neural reconstruction approach for distance
and normals operating directly on raw wavefronts instead
of post-processed ToF peaks.

• We introduce the first automotive polarization lidar
dataset, consisting of real-world data and simulation data.
We validate our model with the proposed dataset for long-
range distance estimation and dense normal reconstruc-
tion. Compared to baseline methods, our model improves
distance and normal reconstruction by 41% mean abso-
lute error and 53% mean angular error, respectively.

2. Related Work

Polarization Lidars. Polarization lidar sensors have been
explored in diverse fields. Early studies, such as Schot-
land’s [50], leveraged these polarimetric measurements for
cloud property analysis, while approaches as [50] study
the bioaerosols in the atmosphere [28] and in [56] the scat-
tering coefficient of oceans are measured using polariza-
tion lidar [56]. Recently, Baek et al. [5, 6] combine a
prototypical polarization lidar with a temporal-polarimetric
BRDF model to achieve accurate scene reconstruction. Jeon
et al. [30] propose a polarimetric indirect ToF imaging
method that utilizes polarization to improve depth estima-
tions through scattering media. However, the imaging tech-
nique, i.e., the design of the optical path in [5, 6], and the
indirect ToF measurement principle in [30], fundamentally
limit these devices to indoor usage. In contrast, the pro-
posed method is the first designed for scene reconstruction
in large outdoor scenes up to 100m.

Scene Reconstruction with Passive Polarization Sensors.
Exploiting the relationship between the polarization of re-
flected light and the surface normals, shape from polar-
ization (SfP) methods have achieved scene reconstruction
from polarization images captured by linear-polarization
cameras [2, 38, 42]. Early SfP methods focus on esti-
mating the surface normal of objects under assumptions of
either pure specular reflection [42] or pure diffuse reflec-
tion [1, 38]. These methods usually assume an unpolarized
light source and suffer from polarization ambiguity issues.
Recent works [3, 33, 35] leverage deep learning to solve the
ambiguity problem. By training on real-world datasets, the
network can better distinguish the ambiguity and mitigate
the need for inputting unknown material properties such as
refractive index. Baek et al. [4] perform joint optimization

21242



of appearance, normals, and refractive index. Deschaintre
et al. [16] propose a learning-based inverse learning frame-
work with the front-flash illumination. Dave et al. [15]
combine polarization with implicit neural representations to
collectively reconstruct the geometry and appearance from
multiple images. In general, these reconstruction methods
focus on scenes with few objects that are placed to exhibit
strong polarization cues with a high degree of polarization
(DoP). In outdoor scenes, however, the DoP varies signifi-
cantly limiting the quality of the reconstruction to high DoP
regions. The proposed method allows to exploit the ex-
ploitation of polarization cues in both high and low DoP
regions.

In [31, 58], passive polarization sensors are combined
with other imaging modalities. Kadambi et al. [31] utilize
normals from polarization to enhance the details of depth
from a Microsoft Kinect sensor. Yoshida et al. [58] use po-
larization to fill in missing regions in the depth maps. Fur-
thermore, polarization cues are leveraged to augment low-
quality depth maps from two-view stereo [23, 61], recip-
rocal image pairs [18], multi-view stereo [14, 39], or li-
dars [51]. Recently, Huang et al. [27] and Tian et al. [53]
propose stereo polarimetric methods, which utilize two po-
larization images to solve the ambiguity in SfP. However, as
passive sensors are dependent on ambient light, these meth-
ods struggle in low-light conditions. The proposed active
sensing method allows for accurate reconstructions inde-
pendently of ambient illumination.

3. Polarimetric Wavefront Lidar
In environmental science, polarimetric lidars are employed
for gathering polarization data over extensive ranges, often
spanning several kilometers but with a trade-off in spatial
resolution. Contrarily, polarimetric lidars for scene recon-
struction usually support high spatial resolution, yet their
range is limited to a few meters. The proposed PolLidar
sensor in Fig. 1 uniquely bridges these application domains.
It is designed to allow for a balanced performance optimal
for both long-range capabilities up to 223 m and high spa-
tial resolution of 150 rows and 236 columns over a 23.95°
and 31.53° vertical and horizontal field-of-view, making it
particularly suitable for autonomous driving applications.

Our sensor differs from the ToF systems described in
[5, 6]. Specifically, we propose separate modules for emis-
sion and reception instead of a shared optical setup. This
separation allows for a larger optical aperture in each mod-
ule, enhancing optical sensitivity and extending the oper-
ational range in outdoor scenarios. Instead of the galvo-
mirror used in [5], a MEMS micro-mirror is used in the
emitter for scene scanning. The receiver employs a dig-
ital micro-mirror device (DMD) following [46] to selec-
tively deflect the returning light towards the photodiode.
Using the DMD allows for apertures (�0.55”) comparable

Camera Intensity ToF

Ground Truth

ToF Normal

PolLidar

0 0.450.23
Intensity [V]

0 3015
Distance [m] Normals

Figure 2. PolLidar dataset. We capture a long-range polarimetric
lidar dataset in typical automotive scenes with object distances up
to 100m. On the left is a camera reference image, followed by Pol-
Lidar intensity for the horizontally polarized state θ

{1,2,3,4}
1 = 0

and sensor-derived ToF distances. On the right, ground truth data
from accumulated scans from a Velodyne VLS-128 lidar, provid-
ing ToF and surface normals for comparison.

to galvo-mirrors effectively reducing light loss.
To make outdoor applications possible, we operate at a

wavelength of 1064 nm and added a narrow bandpass filter,
leaving the visible band targeted by existing work. These
modifications are essential to suppress ambient light and
render the emitted light invisible to the human eye, align-
ing with automotive illumination standards. The maximum
power output adheres to Class-1 eye safety regulations. The
laser power remains adjustable according to scenario re-
quirements, offering a balance between achieving maxi-
mum range and minimizing saturation which offers a level
of control typically not available in off-the-shelf lidars.

On the emission side, the horizontally polarized laser
light undergoes modulation by passing through both a half
(HWP) and quarter-wave plate (QWP). The receiving mod-
ule is designed to capture changes in polarization, facilitated
by a sequence of a QWP, a linear polarizer (LP), and a band-
pass filter, as illustrated in Fig. 1. The rotation of each po-
larization element is finely adjustable in increments of 0.01
degrees. We use a back-side illuminated Avalanche Photo-
diode (APD) with an adjustable bias for sensitivity adjust-
ments and read the raw signal with an attached PCIe-5764
FlexRIO-Digitizer analog-to-digital converter (ADC), sam-
pling at 1 Gs/s. This allows us to measure raw wavefronts
with a length of 1488 bins of 1 ns width, i.e., 15 cm per bin,
and a range of 223 meters.

Our prototype design is optimized for a highly config-
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Figure 3. PolLidar forward model and simulator. Temporal polarimetric reflectance of the scene can be modeled as the sum of specular
Ms and diffuse Md reflection. Receiver and emitter of the PolLidar can be described with the Mueller matrices Pi and Ai that are func-
tions of the rotation angles θ{1,2,3,4}i of HWP, QWPs and LP, respectively. We employ the resulting PolLidar forward model in a simulator
based on CARLA that generates synthetic polarimetric raw wavefronts. To this end, we extract material properties and normals from
CARLA and feed them into the forward model. The resulting temporal wavefronts are subsequently downsampled in spatial dimension to
model beam divergence and noise is added to simulate APD and ADC.

urable selection of polarization states by finely controlling
the polarization elements at the expense of measurement
time. The acquisition of a frame, as described in Sec. 4.1,
results in a capture time of 5 min. We refer to the Supple-
mentary Material for an analysis on how future setups can
achieve real-time capability. Although adding polarization
requires additional complexity, we argue that the potential
benefits extend beyond the scope of this paper, aiding recon-
struction in scenarios with multi-path reflections or scatter-
ing media [5].

3.1. Polarimetric Lidar Forward Model

We model polarization with the Stokes-Mueller formalism,
with light and reflectance described by a Stokes vector
s ∈ R4×1 and a Mueller matrix M ∈ R4×4. [7, 13]. Re-
cently, Baek et al. [6] introduced a temporal-polarimetric
reflectance model M(τ,ωi,ωo) describing how light po-
larization and intensity change when impinging on a surface
with given incident and outgoing direction of light (ωi and
ωo), and with temporal delay (τ ) of diffuse reflection. As
shown in Fig. 3, the reflectance M can be modeled as a sum
of specular and diffuse reflection (Ms and Md)

M (τ,ωi,ωo) = Ms(τ,ωi,ωo) +Md(τ,ωi,ωo) (1)

Ms (τ,ωi,ωo) =
D(θh;m)G(θi, θo;m)

4 cos θi cos θo
Ds(τ)FR (2)

Md (τ,ωi,ωo) = Cn→oF
o
TD

d(τ)Fi
TCi→n, (3)

where θh = cos−1(h · n), θi = cos−1(n · ωi), θo =
cos−1(n · ωo) and n is the surface normal. D and G are
functions to describe the surface, where m is the roughness.
Ci→n and Cn→o are the coordinate-conversion Mueller
matrices [13], and Fi

T , Fo
T are the Fresnel transmission

Mueller matrices for incident and outgoing light, depend-
ing on refractive index η. Ds and Dd are the depolarization
Mueller matrices for specular and diffuse reflections [6].

Given its long-range working distance, we can assume
that the incident and outgoing direction of light in our sen-
sor are identical, and we approximate the reflectance model
(1) with a single viewing direction ω = ωi = ωo. After
scaling M by the cosine shading term cosϕ and attenuation
such that H (τ,ω,ω) =

(
cosϕ / d2

)
M (τ,ω,ω), the lidar

forward model can be written as

I(t,ω) =

[∫ t′

0

H(τ,ω,ω)slaser(ω, t′ − τ)dτ

]
0

, (4)

where t′ = t − 2d/c, d is the distance between laser and
scene, and c is the speed of light. slaser denotes the Stokes
vector of the emitted laser light. The operator [...]0 denotes
taking the first element of the resulting vector.

We use rotating ellipsometry to infer all elements of the
Stokes vectors [13]. As illustrated by Fig. 3, a HWP and a
QWP are rotated to modulate the polarization of the emitted
light. Analogous on the receiving side, a QWP and a LP are
used to measure light with a specific polarization incident
on the APD. Hence, the image formation of the PolLidar
can be modelled as

Ii(t,ω) = [AiH(t′,ω)Pislaser(ω, 0)]0 , (5)

where Ai and Pi are the i-th Mueller matrices of the an-
alyzing optics and the polarizing optics defined as Ai =

L(θ4i )Q(θ3i ) and Pi = Q(θ2i )W(θ1i ), with θ
{1,2,3,4}
i as the

rotation angles of the emitter HWP and QWP and the re-
ceiver QWP and LP, respectively. W, Q, and L are the
Mueller matrices of the HWP, QWP, and LP [13]. The inte-
gral is omitted as a result of using pulsed laser illumination.
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Figure 4. Neural polarization wavefront lidar reconstruction. We capture raw polarization wavefronts of the scene I. We apply a
peak-based segmentation technique to obtain a sliced polarization wavefront Ĩ and distance priors d. Via ellipsometric reconstruction, we
estimate a sliced Mueller matrix Hmeas. Finally, we concatenate all the polarization priors with viewing direction V as the input to a neural
network predicting distance and normals for the scene. We supervised the network with a normal loss Lnormal and a distance loss Ldist.

3.2. Polarimetric Lidar Simulator

In order to use the PolLidar in a learning-based frame-
work, a sufficient amount of training data is required. How-
ever, the finely controllable polarization elements come at
the cost of longer measurement times as the motors move
relatively slow. To acquire a large polarization wavefront
dataset, we integrate the lidar forward model from Eq. (5)
into the CARLA simulator [19] to generate vast amounts
of synthetic training data. Specifically, we extend the full
wavefront lidar model for CARLA as introduced by [26].
As presented in Fig. 3, we extract the material properties m,
Ds and Dd using custom material cameras. However, ma-
terials in CARLA do not have refractive indices µ assigned
by default. We circumvent this problem by extending the
ray-tracer to return the material ID of each hit point. Based
on the material ID, we look-up the corresponding refractive
index µ in a database [41]. Additionally, we extend the ray-
tracer to return normals n for each hit point.

With material properties and normals in hand, we sim-
ulate the scene using the polarimetric lidar forward model.
To model the beam divergence of the laser beam, we down-
sample neighboring rays to eventually render the temporally
resolved polarimetric raw wavefronts. Next, we model shot
and read-out noise by applying Poisson and Gaussian noise
to the wavefronts, respectively. We tune the noise charac-
teristics such that they closely resemble the real device. Ad-
ditional details are provided in the Supplementary Material.

4. Neural Polarization Lidar Reconstruction

To leverage polarized raw wavefront data, we devise a
learning-based approach for reconstructing normals and
distance as presented by Fig. 4. First, we preprocess the
wavefronts as described in Sec. 4.1. Next, we train a neu-
ral network to predict normals and distance from polarized
wavefronts as discussed in Sec. 4.2.

4.1. Preprocessing Wavefronts

When capturing a frame, we perform rotating ellipsome-
try by collecting raw wavefronts for 36 different rotation
angles θi subsequently denoted as I = {Ii}36i=1, where
Ii ∈ RH×W×T with H=150, W=236 and T=1488. The
temporal resolution T and the repeated measurement for
each angle θi results in 53,568 samples for each ray in I. To
tackle this large dimensional space, we first perform peak-
based segmentation to obtain sliced wavefronts as shown in
Fig. 4. Specifically, to reduce the temporal dimension, we
first locate the peak within the wavefront. Then, we segment
a window of size 51 centered around the peak, resulting in a
sliced wavefront Ĩ = {Ĩi}36i=1, where Ĩi ∈ RH×W×51. We
preserve the temporal index of the peak tpeak as it contains
the distance information d ∈ R36×H×W×1.

As the raw wavefront Ĩ implicitly encodes the polariza-
tion optics from emitter and receiver, we apply ellipsometric
reconstruction to recover the time-dependent Mueller ma-
trix H. To this end, we use the temporal measurements Ii
collected at various rotation angles of the polarizing optics
to invert the image formation model presented in Eq. (5).
Following the approach of Baek et al. [7], we recover the
Mueller matrix Hmeas ∈ RH×W×51×16 by solving a least-
squares optimization problem as follows

minimize
Hmeas

N∑
i=1

(Ii − [AiHmeasPislaser]0)
2
. (6)

4.2. Neural Geometry Reconstruction

Subsequent to the pre-processing, we reconstruct the geom-
etry of the scene by inputting the signals to a neural recon-
struction network. To this end, the temporal dimension is
flattened and the all inputs are concatenated as input x

x = Ĩ⊕ d⊕Hmeas ⊕V, (7)
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Figure 5. Qualitative evaluation on synthetic data. Baek et al. [6] is unable to reconstruct normals in areas with low DoP, e.g., walls of
buildings facing the sensor. PCA [60] applied in this setting are strongly dependent on point cloud density. Thus, distant poles and cars
in the second row cannot be reconstructed accurately. The proposed approach leverages polarization cues to reconstruct normals in sparse
regions and is robust against low DoP areas. We estimate accurate material properties for different surfaces and objects (right).

where ⊕ denotes concatenation along the feature dimension
and V is the viewing direction. We then predict normals
n̂ and distance d̂ with a neural network. The network is a
variation of a TransUnet that combines the U-Net and trans-
former architecture components. Specifically, we use 3 en-
coder layers to encode the features. At the bottleneck, we
use 8 transformer layers. At last, we use 3 decoder layers
with skip-connection to predict normals and distance.

To train the network, we supervise normals and distance
predictions with a cosine similarity loss for the surface nor-
mals and a mean absolute loss for distance

Lnormal = |1− (c⊙ ngt) · (c⊙ n̂))|1, (8)

Ldist = |c⊙ dgt − c⊙ d̂)|1, (9)

where c is the confidence mask for the normals where
ground truth normals are not available.

We implement the proposed method in PyTorch. We
train the model for 200 epochs on a Nvidia A100 GPU. We
use the Adam optimizer with a learning rate of 1e-4 and we
set the batch size to 1. We crop images to 128×128 patches
in each iteration for augmentation. We apply different laser
powers and biases during training to increase robustness
against saturation and low-intensity readings. More details
are presented in the Supplementary Documentation.

5. Assessment
To assess the effectiveness of the proposed reconstruction
method, we first validate the method on synthetic data with
perfect ground truth. Next, we discuss material estimation
before validating the method with the experimental device.
Finally, we ablate the different inputs to show the benefit of
polarized raw wavefronts.

5.1. Synthetic Evaluation

We first validate the proposed neural geometry reconstruc-
tion method on synthetic data with perfect ground truth. We

Method Angular Error [°] ↓ Accuracy [%] ↑
Mean Median RMSE 3.0◦ 5.0◦ 10.0◦

SfP-DoP [2] 49.82 35.00 65.39 4.29 7.60 12.63
Baek et al. [6] 31.03 8.32 53.21 27.12 44.44 61.03
PCA [60] 18.64 8.02 33.60 55.89 60.64 66.84
Proposed 8.71 4.31 17.65 65.49 70.19 78.15

Table 1. Quantitative evaluation for normals on synthetic data.
The SfP baseline [2] is unable to reconstruct normals in real-world
as the underlying assumptions do not translate to real-world sce-
narios. Baek et al. [6] is designed for object-level ToF imaging
and fails in low DoP regions. PCA [60] achieves improved results
but with quality depending on point cloud density. The proposed
method leverages both the neighborhood of points and the polar-
ization cues; thus outperforming all the baselines.

compare against three SfP baseline methods to evaluate the
quality of the reconstructed normals. Specifically, we eval-
uate against Baek et al. [6] as a baseline designed for object-
level scene reconstruction for a polarimetric ToF prototype.
This approach fits the recovered Mueller matrix Hmeas to
the polarimetric lidar forward model by jointly estimating
material properties and normals. Next, we compare against
the classical SfP approach from [2], which recovers sur-
face normals from the DoP by assuming a scene-wide con-
stant refractive index and diffusive reflection. As reported
in Tab. 1, classical SfP approaches do not generalize well to
outside scenes. This can be attributed to real-world geom-
etry exhibiting regions of high but also very low DoP. Low
DoP regions occur when the surface normal and the viewing
direction of the lidar align, see Supplementary Dcoumenta-
tion. Highlighted by the qualitative findings in Fig. 5, the
method from Baek et al. [6] is unable to reconstruct nor-
mals in low DoP regions, e.g., buildings of walls that face
the sensor, whereas for high DoP regions, as e.g., the side
of a vehicle, satisfying performance is achieved.

Moreover, we compare against conventional lidar by av-
eraging wavefronts from all polarization states and applying
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Figure 6. Qualitative evaluation on experimental data. PCA [60] applied on measured captures from our PolLidar results in erroneous
predictions of surface normals, especially prominent for the fine structures visible in the zoom-ins of the first two rows, see. e.g., the
transition of ground and metal ramp in the first row and the metal roof support in the second row. In contrast, the proposed method is able
to resolve these fine details. In the last row, we show a lost cargo scenario with an upright object blocking the road in 50m distance. Our
method correctly classifies the object as facing toward the vehicle, whereas PCA predicts a flat surface with downwards oriented normals.

peak-finding. Treating our PolLidar as conventional makes
for an adequate comparison as the number of scanned points
is equal for both conventional and PolLidar. Subsequent for
normal reconstruction, we apply PCA [60] as a point-cloud
based method that considers a neighborhood of points. This
method performs well in areas with flat geometry and high
point density but degrades significantly at long ranges with
sparse distance, e.g., cars in far distances in the second row
of Fig. 5 and geometry transition regions, e.g., the area be-
tween road and car. PCA also struggles with thin structures
like the pole in the second row of Fig. 5. The proposed
method leverages the additional polarization cues to resolve
normals in regions with sparse points. We also achieve sat-
isfying reconstruction results for regions with weak polar-
ization information by taking a local neighborhood and cues
from a normal-dependent widened pulse into account. As
a result, the proposed approach outperforms PCA [60] by
53% on the mean angular error as shown in Tab. 1.

For evaluating distance estimation, we compare against
the conventional argmax-peak-finding typically performed
directly on the device by low-level electronics [9]. This ap-
proach is limited by the temporal resolution of the sensor
and we find a mean absolute distance error of 32cm. The
proposed method leverages the raw wavefront data and the
relationship between distance and normals to generate high-
quality distance. We find that the proposed method yields
a mean absolute distance error of 19cm outperforming the
conventional approach by 41% mean absolute error. Addi-
tional metrics are provided in the Supplementary Material.

5.2. Material Property Estimation

With estimated surface normals in hand, we reconstruct the
material properties, namely index of refraction µ, rough-
ness m and the depolarization matrices Ds and Dd, of the
polarimetric lidar forward model. To this end, we follow
Baek et al. [6] and estimate material properties by rendering
the Mueller matrix Hrender = Hs

render +Hd
render that best ex-

plains the reconstructed Mueller matrix Hmeas. In the large
scenes we tackle, we find that the DoP is mostly governed
by diffuse reflection. We leverage this heuristic to disentan-
gle the specular and diffusive Mueller matrices. To this end,
we solve the following minimization problem

minimize
µ,m,|Ds|,|Dd|

λd
∣∣cdop ⊙ (Hmeas −Hd

render)
∣∣
1
+

λs
∣∣(Hmeas −Hd

render)−Hs
render

∣∣
1
,

(10)

where λd, λs are scalar weights and cdop a mask focusing
on regions with high diffusive DoP. The weights are chosen
such that in the first phase of the minimization, the diffusive
loss drives the estimation of the index of refraction µ which
later helps to better disentangle material properties that oc-
cur solely in the specular component of the Mueller matrix.
Note that in our simulation, only the scalar amplitude, de-
noted by |Ds| and |Dd|, of the depolarization matrices vary
and are subsequently optimized for. Fig. 5 validates that the
proposed approach is able to successfully recover the mate-
rial properties of different objects and surfaces. As we do
not optimize the surface normals, this further validates the
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Method Angular Error [°] ↓ Accuracy [%] ↑
Mean Median RMSE 3.0◦ 5.0◦ 10.0◦

SfP-DoP [2] 65.92 63.76 70.13 0.02 0.05 0.24
Baek et al. [6] 37.04 13.97 57.25 17.51 27.93 43.36
PCA [60] 18.75 4.86 35.73 41.18 52.87 63.74
Proposed 15.76 4.27 28.73 45.94 55.42 63.80

Table 2. Quantitative evaluation for normals on experimental
data. For normal reconstruction with the real device, compara-
ble trends to synthetic data are observable. Due to noisier ground
truth and sensor imperfections, the overall error is slightly larger.
However, the proposed method recovers accurate normals on real
experimental data, outperforming all baseline approaches.

quality of the reconstructed normals as recovering material
properties without accurate normals is infeasible.

5.3. Experimental Evaluation

Next, we evaluate the proposed approach on real-world
data. We pair the PolLidar sensor with a Velodyne VLS-
128 reference lidar. Fig. 2 shows PolLidar data with ground
truth distance and normals. In total, we capture 60 frames
with 3 biases each and scene-adjusted laser power paired
with ground-truth distance and normal information. For
ground truth, we accumulate point clouds from the refer-
ence lidar, generate dense lidar maps, and extract normals
from the meshed lidar map.

Fig. 6 reports qualitative reconstruction results. Similar
to the synthetic evaluations, PCA [60] introduces artifacts,
whereas the proposed approach is able to recover the sur-
face geometry correctly, e.g., the first row of Fig. 6 for the
transition area between ground and metal ramp. Further-
more, the proposed approach is able to reconstruct normals
in sparse regions, e.g. for the metal support structure of the
roof in the second row. These findings are consistent with
the quantitative results in Tab. 2, where the proposed ap-
proach outperforms the best baseline by 16% mean angular
error. For autonomous driving, accurate normals allow us to
distinguish obstacles from the road and are crucial for deter-
mining if areas of the road can be overridden, e.g., detecting
lost-cargo objects on roads [40, 43]. We show such a sce-
nario in the last row of Fig. 6, where normals of a roadblock
in 50m distance are predicted correctly as facing towards
the vehicle by the proposed approach. In contrast, PCA [60]
estimates the roadblock as flat with downward pointing nor-
mals likely misclassifying the object as traversable.

For distance estimation, the mean absolute error of con-
ventional argmax-peak-finding amounts to 24 cm, whereas
our method yields a mean absolute error of 20 cm outper-
forming the conventional distance estimation by 17%.

5.4. Ablation Experiments

We further provide an ablation study in Tab. 3. First, the
impact of polarization cues is studied. In particular, we

Ablated modules Mean angular error [◦]
Wavefront Polarization Mueller

✓ 10.64
✓ ✓ 9.73

✓ ✓ 9.47
✓ ✓ ✓ 8.71

Table 3. Ablation studies for different modules on synthetic
data. The quality of the proposed method degrades when the po-
larization information, Mueller matrix, or wavefront is withheld.

remove the polarization information by replacing the raw
wavefronts Ĩ with the mean over the different θi. Remov-
ing the polarization cues, increases mean angular error by
22%. Furthermore, we ablate the ellipsometric reconstruc-
tion. Specifically, we remove the Mueller matrix from the
inputs. As the network needs to learn to disentangle the po-
larization optics of the emitter and receiver from the scene,
the mean angular error of surface normal increases by 12%.
Finally, we analyze the impact of using raw wavefronts by
setting the window size to 1. Tab. 3 shows that the wave-
front carries crucial information for scene reconstruction.

6. Conclusion

This paper introduces a novel long-range polarization wave-
front lidar sensor that measures time-resolved polarization-
modulated wavefronts. To recover high-resolution scene in-
formation from these raw polarimetric wavefronts, we de-
vise a learning-based approach to recover distance, surface
normals, and material properties. To train and evaluate the
method, we introduce a large synthetic dataset and a real-
world long-range dataset with paired raw lidar data, ground
truth depth and normal maps. We validate that the proposed
method improves normal and depth reconstruction by 53%
and 41% in mean angular error and mean absolute distance
error compared to existing shape-from-polarization (SfP)
and ToF methods. Confirming the potential of the proposed
polarimetric wavefront sensing method with a sequential
acquisition setup, future work may devise parallelized ac-
quisition setups that capture a subset of polarization states,
allowing for real-time polarimetric lidar captures.
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