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Abstract

Annotating lots of 3D medical images for training
segmentation models is time-consuming. The goal of weakly
supervised semantic segmentation is to train segmentation
models without using any ground truth segmentation masks.
Our work addresses the case where only image-level
categorical labels, indicating the presence or absence of
a particular region of interest (such as tumours or lesions),
are available. Most existing methods rely on class activation
mapping (CAM). We propose a novel approach, ToNNO,
which is based on the Tomographic reconstruction of a
Neural Network’s Output. Our technique extracts stacks
of slices with different angles from the input 3D volume,
feeds these slices to a 2D encoder, and applies the inverse
Radon transform in order to reconstruct a 3D heatmap of
the encoder’s predictions. This generic method allows to
perform dense prediction tasks on 3D volumes using any 2D
image encoder. We apply it to weakly supervised medical
image segmentation by training the 2D encoder to output
high values for slices containing the regions of interest.
We test it on four large scale medical image datasets and
outperform 2D CAM methods. We then extend ToNNO by
combining tomographic reconstruction with CAM methods,
proposing Averaged CAM and Tomographic CAM, which
obtain even better results.

1. Introduction
The advent of 3D medical imaging, such as computed
tomography (CT), magnetic resonance imaging (MRI) or
positron emission tomography (PET) has revolutionized
clinical practice by enabling precise visualization and
quantitative analysis of the internal structures of the body.
Many scenarios involve segmenting particular regions of
interest. For example, in radiotherapy workflows, it is
necessary to segment organs and tumours in order to
compute a treatment plan that maximizes the radiation dose

(a) Input (b) LayerCAM [23] (c) ToNNO

Figure 1. Our method, which allows to obtain high resolution
segmentations without using any ground truth segmentation masks,
is completely orthogonal to class activation mapping methods such
as GradCAM [45] or LayerCAM [23].

received by the tumours while sparing the surrounding
healthy tissues. In multiple sclerosis, segmentation of brain
lesions allows to estimate lesion load for monitoring patients
[40]. Furthermore, automatic segmentation methods may be
useful as a verification step in order to detect tumours or
lesions that were missed by human experts.

However, the volumetric nature of 3D medical images
(also referred to as volumes) makes their manual
segmentation slow and painstaking. Deep learning has
become an important tool to automate this task. Deep
learning techniques, though, typically still require large
amounts of manually segmented training data, which can
be prohibitive. Furthermore, manual segmentation can
be subjective and vary a lot between different experts.
Weakly supervised semantic segmentation methods aim to
circumvent this issue by training semantic segmentation
models without using any ground truth segmentation masks,
relying instead on bounding boxes, scribbles, point-wise
annotations, or image-level labels. Our work focuses on the
latter.

To this end, we propose ToNNO (Tomographic
reconstruction of a Neural Network’s Output), a generic
method that produces a 3D heatmap which represents the
predictions of a 2D encoder (such as a ResNet [16]) for
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different slices of a given input volume. While many methods
adopt an encoder-decoder structure, our method allows to
perform dense prediction tasks on 3D images using only
a 2D encoder. Furthermore, it enables to tap into the large
amount of available 2D neural network implementations and
pretrained weights. Our method is inspired by computed
tomography. We extract 2D slices from a 3D image at many
different angles, feed each of them to the 2D encoder, and use
a tomographic reconstruction technique, namely the inverse
Radon transform, in order obtain a volumetric heatmap that
represents the predicted slice logits in 3D.

We then apply this method to weakly supervised medical
image semantic segmentation. Using only binary image-level
labels that indicate whether or not the 3D images contain a
given region of interest (e.g., tumour, lesion, etc.), we first
train a 2D classifier to predict whether or not individual
slices of these images contain the region of interest. Then,
we apply ToNNO and show that it allows us to obtain a high
resolution segmentation of the regions of interest, as shown
in Figure 1.

ToNNO is orthogonal to class activation mapping (CAM)
[64], which is currently the most common family of methods
for weakly supervised medical image segmentation. As
a baseline, we apply GradCAM [45] and LayerCAM
[23] to the 2D classifier that we trained for ToNNO. We
find that in most cases, ToNNO outperforms these two
methods. Using the ideas behind ToNNO, we also propose
to average the class activation maps produced by GradCAM
[45] and LayerCAM [23] across many different angles,
boosting the results of these methods by large amounts.
Furthermore, we find that incorporating the filtering step—a
key ingredient of the tomographic reconstruction technique
that we use—into the averaging process allows to correct
the inherent blurriness of class activation maps in order to
obtain sharp averaged CAM heatmaps even for the deepest
layers.

Thus, our contribution is threefold. First, we propose
a framework to train a 2D classifier on slices extracted
at any angle from the 3D volumes, using volume-level
labels. Second, we propose ToNNO, a novel method to
reconstruct 3D segmentations using this trained 2D classifier.
Third, we incorporate CAM methods into our reconstruction
framework, proposing Averaged CAM and Tomographic
CAM.

2. Related Work
Weakly supervised semantic segmentation. This
paradigm aims to segment 2D or 3D images without
using ground truth segmentation masks. Multiple forms of
supervision can be used instead: orthogonal segmentation
masks [4], bounding boxes [8, 10, 24, 36, 42, 46, 50],
scribbles [3, 28, 41, 51, 62, 63], point-wise annotations
[2, 3, 35, 61], or, in its weakest and most challenging form,

image-level labels [1, 27, 38, 65]. When using image-level
labels, most methods are based on deep learning and class
activation mapping (CAM) [5, 23, 34, 45, 55, 64]. They
make use of a classifier that was trained to classify between
the different image-level labels and exploit activations
and/or gradients of intermediate layers in order to obtain
spatial information about the regions that cause the classifier
to make its decision. For medical weakly supervised
segmentation, CAM methods are most often applied to 2D
slices [47, 52], sometimes deriving slice-level labels from
3D segmentation masks [6, 7, 14]. In this work, we apply
GradCAM [45], and LayerCAM [23] which was shown to
outperform GradCAM by large margins. One drawback
of CAM methods is that the heatmaps that they generate
usually have a resolution that is lower than the input.

3D medical image segmentation. It can be achieved
with 3D encoder-decoder style neural networks [32], which
maintain the 3D nature of the input data throughout the
depth of the model. But 3D models can be hard to fit into
the memory of GPUs for high resolution input data [20].
Thus, many of these methods rely on three 2D models
that produce segmentations for each slice of the input
volume in each viewing direction (axial, sagittal and coronal),
which are then assembled back into a 3D segmentation
[9, 20, 26, 43, 53, 59, 60]. In contrast, our method trains
a single 2D encoder for slices which can have any 3D
orientation.

Tomography. Tomographic reconstruction allows to
recover volumetric information from slice-wise information.
It is formalized by the Radon transform [18, 39] and
most importantly, its inverse. Applications of tomographic
reconstruction techniques include computed tomography
(CT) imaging and electron tomography (ET). However, CT
imaging is based on the 2D-1D Radon transform, meaning
that 2D cross-sections of the patient are reconstructed
using 1D integrals of the absorption of X-rays, and ET is
based on either the 2D-1D or the 3D-1D Radon transform.
These cases of the Radon transform have been extensively
studied [13, 21, 48, 54]. Our work, however, uses the rather
uncommon 3D-2D Radon transform, where a 3D volume
is reconstructed using 2D slice integrals. To the best of our
knowledge, no previous work has combined deep learning
with the inverse Radon transform for dense prediction tasks
on 3D images.

3. Method
3.1. Intuition
We assume that we have a dataset of volumes with
associated binary labels {(V1, y1), ..., (VN , yn)}, where
8i, Vi 2 Rdi⇥hi⇥wi and yi 2 {0, 1}. Our goal is to obtain a
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(a) Histograms of logits for 100,000 slices of the MosMed dataset
(validation set) extracted from multiple positive and negative volumes.

(b) Logits produced by the trained classifier for each slice of the volume
shown in the background (Duke dataset) along the vertical and horizontal
axis allow to pinpoint the location of the tumour.

Figure 2. Visualisation of logits produced by the 2D classifier g✓

segmentation of the regions that distinguish the positive class
from the negative class. For example, if the positive class
consists of images of cancer patients and the negative class
consists of images of healthy patients, our goal is to segment
the tumours. Our method starts by training a 2D classification
neural network g✓, with parameters ✓, to distinguish between
slices of positive volumes and slices of negative volumes. In
order to do that, we sample random slices (which can have
any 3D orientation) from the training volumes and associate
to each slice the ground truth label of the volume from which
it came. Note that this effectively introduces label noise, as in
positive volumes, all slices get assigned a positive label even
if they don’t contain any regions of interest. But we have
no way of deriving more precise labels, as per the problem
definition, only volume-level labels are available. We then
optimize ✓ to minimize the binary cross-entropy loss of each
slice with respect to its assigned label.

After training, the distributions of the logits produced
by the classifier for slices coming from the positive and
negative classes are different, as shown in Figure 2a. When
feeding each slice of a given volume to the classifier, we
obtain a logit profile along the slice axis that can allow us to
pinpoint the location of the regions of interest along this axis
(see Figure 2b). If we repeat this process for different slice
axes, we can narrow down the location in three dimensions.
This process is formalized by the theory of tomographic
reconstruction, whose principal mathematical tool is the
Radon transform.

Our weakly supervised segmentation method thus
consists in two steps. First, we train the classifier with stacks
of slices that can have any 3D orientation, which can be

seen as applying random 3D rotations to the volumes during
training. Then, we reconstruct a heatmap by applying the
inverse Radon transform to logits obtained for stacks of
slices across many different orientations.

3.2. Radon transform and its inverse
Let f : R3 ! R be a 3D function. For the sake of simplicity,
we assume it to be infinitely differentiable with compact
support. Let S2 be the unit sphere of R3. For a unit vector
bn 2 S2 and s 2 R, let ⇠(s, bn) =

�
x 2 R3

,x · bn = s
 

be the plane orthogonal to bn containing the point sbn. We
define the 3D-2D Radon transform of f as the function
Rf : R⇥ S2 ! R by

Rf(s, bn) :=
Z

x2⇠(s,bn)
f(x) dx (1)

It can be shown [18, Theorem 3.6] that f can be recovered
from Rf using the filtered backprojection formula:

f(x) = c

Z

bn2S2

@
2Rf

@s2
(x · bn, bn) dbn (2)

where c is a negative constant. For a function
' : R⇥ S2 ! R, we thus define R�1

' : R3 ! R by

R�1
'(x) := c

Z

bn2S2

@
2
'

@s2
(x · bn, bn) dbn (3)

It holds that for all bn, x 2 ⇠(x · bn, bn). Thus, for a given
x, this integral integrates the function @

2
'/@s

2 over all
planes containing the point x and is called the backprojection
operator.

3.3. Implementation
Now, let V : [d] ⇥ [h] ⇥ [w] ! R (where for an integer
n, we define [n] = {0, 1, ..., n � 1}) be a discrete 3D
volume, such as a medical image. The Radon transform
cannot be directly applied to V , as V is not defined on
R3. Let eV : R3 ! R be an interpolation of V , such that
eV (�1,�1,�1) = V (0, 0, 0) and eV (1, 1, 1) = V (d�1, h�
1, w � 1), and eV (x) = 0 if x /2 [�1, 1]3. The Radon
transform of eV is well-defined, but not straightforward to
compute numerically. We can approximate ReV (s, bn) by
extracting a discrete 2D slice of eV and summing its pixels.
For that, let u and v be two vectors orthogonal to bn. We
define the slice SV (s, bn,u,v) : [hS ]⇥ [wS ] ! R by

SV (s, bn,u,v)(i, j) := eV (sbn+ i
0u+ j

0v) (4)

where i
0 := 2 i

hS�1 � 1 and j
0 := 2 j

wS�1 � 1 map integer
coordinates i and j to the range [�1, 1]. SV (s, bn,u,v) is
a 2D image, which can be efficiently extracted with the
function grid sample of PyTorch [37] to be used as input
for a neural network. It is the slice of V which is oriented by
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Figure 3. Overview of ToNNO. 3D volumes are represented as 2D images and 2D slices as 1D rows of pixels. First, slices are extracted
from the input volume (left). By summing the pixels of each slice (top), we can approximate the Radon transform of the input volume V ,
and applying the inverse Radon transform R�1 allows to reconstruct V . The idea of this work is to replace the sum by a trained neural
network before applying the inverse Radon transform (bottom).

u and v, whose normal vector is bn, and which contains the
point sbn. The lengths of u and v determine the scale of the
slice and the angle between them controls the shear (which
allows us to conveniently introduce augmentations during
training). For tomographic reconstruction, we choose them
perpendicular to each other, with unit length. Therefore, let
bn 7! (bu(bn), bv(bn)) be a function such that (bn, bu(bn), bv(bn))
is an orthonormal basis (see Appendix A.1). We define the
approximate Radon transform of V as

R⌃V (s, bn) := 1

hSwS

hS�1X

i=0

wS�1X

j=0

SV (s, bn, bu(bn), bv(bn))(i, j)

(5)⇡ ReV (s, bn)

3.4. ToNNO
The idea of this work is to replace the sum of Equation (5)
with a trained 2D neural network that maps a 2D image to a
real number, before applying the inverse Radon transform
(see Figure 3). We define

Rg✓V (s, bn) := g✓ (SV (s, bn, bu(bn), bv(bn))) (6)

The output of our method is a volume
G : [D]⇥ [H]⇥ [W ] ! R (in practice, to facilitate
evaluation, we set the output shape to be equal to the input
shape, that is, D = d, H = h and W = w) such that

G(i, j, k) ⇡ R�1(Rg✓V )(i0, j0, k0) (7)

where i0 = 2 i

D�1 � 1, j0 = 2 j

H�1 � 1 and k
0 = 2 k

W�1 � 1
map integer coordinates to the range [�1, 1].

The integral over bn 2 S2 of Equation (3) can be
approximated by a sum over a set of L unit vectors that

are evenly distributed over the unit sphere S2 . To get such a
set of unit vectors, we use the Fibonacci lattice: for ` 2 [L],
let y` = 2 `

L�1 � 1 2 [�1, 1], r` =
p
1� y

2
`
, ✓` = `↵

where ↵ = ⇡(3 �
p
5) is the golden angle, x` = r` cos ✓`

and z` = r` sin ✓`. We then set bn` = (x`, y`, z`). We then
have

R�1(Rg✓V )(i0, j0, k0)

⇡ c|S2|
L

L�1X

l=0

@
2Rg✓V

@s2

✓✓
i
0

j
0

k
0

◆
· bn`, bn`

◆
(8)

where |S2| is the surface area of the unit sphere.
It remains to estimate the quantity @

2Rg✓V (s, bn`)/@s2.
In order to do that, for a fixed unit vector bn`, we sample
the function s 7! Rg✓V (s, bn`) at M + 2 regular intervals
sm = 2 m

M�1 � 1,m 2 {�1, 0, ...,M}, which corresponds
to extracting a stack of M + 2 regularly spaced slices with
normal vector bn` and feeding each of them to the neural
network. Letting pm(bn`) := Rg✓V (sm, bn`) , we use finite
differences to estimate the second derivative, defining, for
m 2 {0, ...,M � 1}

qm(bn`) :=
pm+1(bn`) + pm�1(bn`)� 2pm(bn`)

1/(M � 1)
(9)

so that

qm(bn`) ⇡
@
2Rg✓V

@s2
(sm, bn`) (10)

Now, let s 7! eq(s, bn`) be an interpolation of m 7! qm(bn`),
such that eq(�1, bn`) = q0(bn`), eq(1, bn`) = qM�1(bn`) and
eq(s, bn`) = 0 for s /2 [�1, 1] (which again, can be efficiently
computed using the function grid sample of PyTorch).
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Averaged

Tomographic

Projection size
= 224 ⇥ 224

Projection size
= 112 ⇥ 112

Projection size
= 56 ⇥ 56

(equivalent to CAM
applied at layer 1)

Projection size
= 28 ⇥ 28

(equivalent to CAM
applied at layer 2)

Projection size
= 14 ⇥ 14

(equivalent to CAM
applied at layer 3)

Projection size
= 7 ⇥ 7

(equivalent to CAM
applied at layer 4)

Projection size
= 3 ⇥ 3

Projection size
= 1 ⇥ 1

(R⌃ , Equation (5))

Figure 4. Input reconstructions for different average pooling kernel sizes.

We finally define

G(i, j, k) :=
c|S2|
L

L�1X

l=0

eq
✓✓

i
0

j
0

k
0

◆
· bn`, bn`

◆
(11)

⇡ R�1(Rg✓V )(i0, j0, k0)

The correctness of the implementation can be verified by
substituting Rg✓ for R⌃ (Equation (5)) and checking that in
this case, G ⇡ V .

3.5. Averaged CAM and Tomographic CAM

Class activation mapping (CAM) methods such as GradCAM
[45] and LayerCAM [23] are currently the most common
method for weakly supervised semantic segmentation. For a
given slice, they provide a heatmap of shape hCAM⇥wCAM,
examples of which are shown in columns 3 and 5 of
Figure 6. hCAM and wCAM correspond to the resolution of
the features at the layer from which the class activation maps
are extracted. For a ResNet with input shape 224 ⇥ 224,
the resolution at the i-th layer is hCAM = wCAM =
224/2i+1. We propose to average these CAM heatmaps
across multiple rotations. For a given normal vector bn`,
we extract the M + 2 slices SV (sm, bn`, bu`, bv`) and obtain
the heatmap for each slice by applying LayerCAM to the
neural network g✓. We denote by p

ab

m
(bn`) the value of the

location (a, b) 2 [hCAM] ⇥ [wCAM] of the m-th heatmap.
Let (s, u, v) 7! ep(s, u, v, bn`) be an interpolation of the
3D volume (m, a, b) 7! p

ab

m
(bn`). A point with coordinates

(i0 j0
k

0) in the canonical coordinate system has coordinates
s = (i0 j0

k
0) · bn`, u = (i0 j0

k
0) · bu`, v = (i0 j0

k
0) · bv` in the

coordinate system (bn`, bu`, bv`). We thus define the average
heatmap, that we call Averaged CAM:

GavgCAM(i, j, k) (12)

:=
c|S2|
L

L�1X

l=0

ep
⇣⇣

i
0

j
0

k
0

⌘
· bn`,

⇣
i
0

j
0

k
0

⌘
· bu`,

⇣
i
0

j
0

k
0

⌘
· bv`, bn`

⌘

Using class activation maps from deeper layers (and thus
of lower spatial resolution) leads to blurrier results, as can be
seen in Figures 11, 13, 15, and 17 in the Appendix. Figure 5
confirms that the performance of Averaged LayerCAM
quickly deteriorates when it is applied at deeper layers.
We find that we can partially correct this by applying the
second derivative along the slice axis separately for each
location (a, b), that is, we define q

ab

m
by replacing pm by

p
ab

m
in Equation (9). We then define Tomographic CAM,

by substituting ep with eq (which is the interpolation of q, as
defined for p) in Equation (12):

G
0
avgCAM(i, j, k) (13)

:=
c|S2|
L

L�1X

l=0

eq
⇣⇣

i
0

j
0

k
0

⌘
· bn`,

⇣
i
0

j
0

k
0

⌘
· bu`,

⇣
i
0

j
0

k
0

⌘
· bv`, bn`

⌘

Figure 5 shows that Tomographic LayerCAM indeed allows
to maintain good performance for deeper layers.

Figure 5. Dice score for different layers of LayerCAM, Averaged
LayerCAM and Tomographic LayerCAM.

For gaining further insight into this, we can assume
that the value at position (a, b) 2 [hCAM] ⇥ [wCAM]
roughly represents the amount of activation for a region
of shape 224/hCAM ⇥ 224/wCAM centered on the pixel
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(a · 224/hCAM, b · 224/wCAM) in the input image. Thus,
we can obtain a ”CAM” version of R⌃ of Equation (5) by
average-pooling the input image with a kernel size and stride
of (224/hCAM, 224/wCAM). We can then use the formulas
of Averaged CAM and Tomographic CAM (Equations (12)
and (13)) to reconstruct the input image. The results are
presented on Figure 4. As can be seen, when the CAM maps
have high resolution, then simple averaging does allow to
recover the input. But when the CAM maps have lower
resolution, incorporating the second derivative becomes
necessary. In between, the ”Averaged” reconstructions are
blurry, and the ”Tomographic” reconstructions (i.e., with
second derivative) are too sharp, as if a filter had been
applied on the image. Future work could look into a way of
reconstructing these intermediate cases, for example using
iterative reconstruction techniques.

3.6. Hyperparameters
Tomographic reconstruction We experiment with
different numbers of slices (M in Equation (9)) and angles
(L in Equation (8)). Reconstructions of one sample of the
MosMed dataset are shown in Figure 8 of the Appendix for
(M,L) 2 {25, 50, 100, 200} ⇥ {500, 1000, 2000, 5000}.
Increasing the number of slices M increases the sharpness
of the reconstruction but also increases the amount of
noise. The number of angles L reduces the noise. In our
experiments, we choose M = 100 and L = 2000 and
we set the output shape to be equal to the shape of the
input volume. For Averaged CAM and Tomographic CAM,
we set L = 1000 because obtaining the class activation
maps involves more computations. All interpolations
are performed with trilinear interpolation. With these
parameters, the reconstruction time is around 40 seconds for
ToNNO and 1 minute for Averaged and Tomographic CAM
on a NVIDIA GeForce RTX 3090 GPU. This is slower than
slice-wise CAM methods, which take less than a second per
volume on a GPU.

Classifier choice The neural network should have three
characteristics: fast inference (as many inferences are needed
for tomographic reconstruction), availability of pre-trained
weights, and absence of batch normalization (BN) layers
[22]. We hypothesize that the latter is important because
BN breaks the independence between samples within a
batch, leading to a low-loss but less informative solution,
as reported in [17, 19]. For example, if one slice is identified
by the classifier as containing a discriminative region, then
intra-batch information leakage caused by BN could enable
the classifier to also output high logits for slices of the
volume that do not contain any discriminative region, leading
to a lower loss but useless predictions. In the end, we select
two ResNets [16, 56] from the timm [57] library, for which
ImageNet [11] pretrained weights are available:

• The ResNet-10-T [56] which is a lightweight ResNet. It
comes with batch normalization layers, so we explore two
modifications: freezing them or replacing them with group
normalization layers [58] (still initializing the other layers
with the pretrained weights).

• The ResNet-50 [16] with group normalization. Because of
heavier overfitting, we train it for only 40% of the number
of iterations of the ResNet-10-T.

We experimented with more recent backbones, such as
EfficientNet [49], ConvNeXt [30], ViT [12] and Swin [29],
but were unable to surpass the more simple ResNets. Careful
tuning of training hyper-parameters may allow them to
achieve better performance but this is not the focus of our
work.

Our results in Table 1 show that the ResNet-10-T with
group normalization and frozen batch normalization are on
par, and better than with vanilla batch normalization. We
did not find the ResNet-50 to be significantly better than the
ResNet-10-T. The ResNet-10-T with random initialization
achieves much lower performance, confirming the benefit
of using pretrained weights. In all the other experiments
presented in this paper, we use the ResNet-10-T with frozen
batch normalization and ImageNet pretrained weights.

Model F1-score Dice/IoU BA
R-10-T, batch norm 0.48 0.31 0.84
R-10-T, frozen batch norm 0.55 0.39 0.84
R-10-T, group norm 0.54 0.36 0.85
R-10-T, not pretrained 0.28 0.27 0.68
R-50, group norm 0.56 0.40 0.84

Table 1. Comparison of different model configurations. The
metrics were averaged over the four datasets. Per-dataset results
are presented in Appendix A.5.

4. Experiments
4.1. Datasets
We use 4 different datasets for our experiments:
• Multiple Sclerosis (MS) (brain MRI) This large

private dataset consists of 9113 studies. The goal is
to segment gadolinium-enhancing lesions, which are
typically hyperintense on the post-gadolinium injection T1
weighted scan. This abnormal gadolinium uptake is due
to blood-brain barrier breakdown and is a sign of acute
multiple sclerosis activity.

• AutoPET-II (whole body PET-CT) This public dataset
[15] consists of 1,014 FDG-PET/CT pairs. The objective
of this exam is to segment FDG-avid tumours.

• MosMedData COVID-19 (thoracic CT) This public
dataset [33] consists of 1110 studies of thoracic CT scans.
The goal is to segment pulmonary COVID-19 lesions.
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Input Ground truth GradCAM GradCAM
binarized

LayerCAM LayerCAM
binarized

ToNNO ToNNO
binarized

Averaged
LayerCAM

Averaged
LayerCAM
binarized

Tomographic
LayerCAM

Tomographic
LayerCAM
binarized

Figure 6. Examples of heatmaps and segmentations obtained with each method. From top to bottom: Multiple Sclerosis, AutoPET,
MosMed and Duke datasets. The images were cropped. For GradCAM, LayerCAM, Averaged LayerCAM and Tomographic LayerCAM, we
chose the layer which gave the best results. The binarized heatmaps are obtained using the process described in the Appendix A.7. In the
heatmaps, blue represents negative values and red represents positive values. More examples are provided in the Appendix.

• Duke breast cancer MRI This public dataset [44] consists
of breast MRIs of 922 biopsy-confirmed invasive breast
cancer patients. The goal is to detect the tumours.

We split each dataset into training and validation sets at
the patient level. Dataset characteristics are presented in
Appendix A.3 and preprocessing details are explained in
Appendix A.4. For the Multiple Sclerosis and AutoPET
datasets, ground truth segmentation masks are available for
all samples. Patients with non-empty segmentation mask are
considered positive while the rest are considered negative.
For the MosMed dataset, ground truth segmentation masks
are available for 50 patients, which we all put in the
validation set. The positive/negative labels of all patient are
available separately. For the Duke dataset, all patients are
positive for breast cancer, and exactly one bounding box per
patient, delimiting the main tumour, is available. Our method
needs both positive and negative samples, so we separate the
left and right breast of each patient and consider the breast
with bounding box to be positive.

4.2. Training procedure

During a training step, we sample a batch of B

samples {(Vi1
, yi1), ..., (ViB

, yiB)} with replacement from
our training dataset. We then extract Mtrain randomly
oriented slices of shape 224 ⇥ 224 from each volume and
apply augmentations. We concatenate the B ⇥Mtrain slices
in a batch and perform a training step by associating to each
slice the label of the volume from which it came. More
details can be found in Appendix A.6.

4.3. Baselines

We compare our method to class activation methods,
namely GradCAM and LayerCAM. We apply them to the
ResNet-10-T with frozen batch normalization at the output

of layers 1, 2, 3 and 4, to each axial slice of the input volume,
and obtain the output volume by stacking the class activation
maps back along the axial axis. To be input to the classifier,
each slice is resampled to match the input shape of the neural
network (224⇥ 224), and the resulting class activation map
is upsampled to match the original slice shape. The output
volume thus has the same shape as the input volume.

In Appendix A.8, we also provide results for GradCAM++
[5] and ScoreCAM [55]. Furthermore, we tried to apply the
CAM methods along the 3 spatial axes, averaging the outputs.
In some cases, this resulted in significant improvements
(Appendix A.8).

4.4. Evaluation
In order to compute segmentation metrics, we first binarize
the heatmaps using the process described in Appendix A.7.
We then compute the connected components of the binarized
heatmaps and the ground truth segmentation and report
precision, recall and F1-score. We also report the dice score.
For the Duke dataset, as no ground truth segmentation
masks are available (we only have one bounding box
annotation per patient), we replace the dice score with
the intersection-over-union of the predicted bounding box
which best matches the ground truth bounding box. In the
different tables, this metric is called MaxIoU. As there is
at most one ground truth bounding box per patient, despite
there sometimes being multiple tumours, many predicted
connected components that are considered as false positives
may actually be true positives. Thus, precision and F1-score
are less relevant for this dataset.

4.5. Results
Main results are summarized in Table 2, and results for each
method applied at each layer can be found in the Appendix.
ToNNO outperforms LayerCAM (which largely outperforms
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Dataset Method Precision Recall F1-score Dice/MaxIoU Balanced accuracy

Multiple
Sclerosis

LayerCAM (layer 1) 0.76 0.78 0.73 0.41 0.89
ToNNO 0.82 (+0.06) 0.88 (+0.10) 0.82 (+0.09) 0.53 (+0.12) 0.90 (+0.01)
Averaged LayerCAM (layer 1) 0.86 (+0.10) 0.87 (+0.09) 0.84 (+0.11) 0.52 (+0.11) 0.91 (+0.02)
Tomographic LayerCAM (layer 2) 0.87 (+0.11) 0.87 (+0.09) 0.84 (+0.11) 0.58 (+0.17) 0.94 (+0.05)

AutoPET

LayerCAM (layer 2) 0.59 0.29 0.35 0.31 0.80
ToNNO 0.52 (-0.07) 0.41 (+0.12) 0.39 (+0.04) 0.32 (+0.01) 0.74 (-0.06)
Averaged LayerCAM (layer 2) 0.65 (+0.06) 0.33 (+0.04) 0.40 (+0.05) 0.40 (+0.09) 0.83 (+0.03)
Tomographic LayerCAM (layer 1) 0.68 (+0.09) 0.47 (+0.18) 0.49 (+0.14) 0.39 (+0.08) 0.74 (-0.06)

MosMed

LayerCAM (layer 2) 0.68 0.32 0.39 0.35 0.90
ToNNO 0.69 (+0.01) 0.45 (+0.13) 0.50 (+0.11) 0.35 0.93 (+0.03)
Averaged LayerCAM (layer 2) 0.72 (+0.04) 0.49 (+0.17) 0.53 (+0.14) 0.48 (+0.13) 0.95 (+0.05)
Tomographic LayerCAM (layer 3) 0.72 (+0.04) 0.52 (+0.20) 0.55 (+0.16) 0.41 (+0.06) 0.89 (-0.01)

Duke

LayerCAM (layer 2) 0.17 0.81 0.24 0.29 0.58
ToNNO 0.43 (+0.26) 0.77 (-0.04) 0.51 (+0.27) 0.37 (+0.08) 0.79 (+0.21)
Averaged LayerCAM (layer 2) 0.37 (+0.20) 0.84 (+0.03) 0.47 (+0.23) 0.42 (+0.13) 0.75 (+0.17)
Tomographic LayerCAM (layer 3) 0.41 (+0.24) 0.81 (=) 0.51 (+0.27) 0.42 (+0.13) 0.79 (+0.21)

Table 2. Main quantitative results of our method and best performing baseline method (LayerCAM). For LayerCAM, Averaged
LayerCAM and Tomographic LayerCAM, we selected the layer which provided the best results. Detailed results for each layer are provided
in the Appendix. The numbers in color indicate the difference with LayerCAM.

GradCAM as can be seen in the Appendix) in most cases.
Averaged LayerCAM and Tomographic LayerCAM achieve
even better results. Tomographic LayerCAM achieves
the best results in terms of F1-score, with an average
improvement of 0.14 over LayerCAM. In terms of recall,
Tomographic LayerCAM achieves particularly large gains
over LayerCAM for the AutoPET and MosMed datasets.

All methods achieve their best results on the Multiple
Sclerosis dataset. This could be attributed to several factors:
the training dataset is an order of magnitude larger than
the other datasets and the shape of the lesions is simple.
Our method can be compared to the results presented in
[35], which uses point-wise lesion annotations while we
use only image-level labels. Although they do not use the
same dataset and the same evaluation process, the results
that we achieve are within the same order of magnitude as
theirs (F1-score of 0.86 for their method versus 0.84 for
Tomographic LayerCAM).

Examples of heatmaps and associated binary
segmentations for each method and dataset are shown in
Figure 6, and examples of heatmaps for each layer can
be found in the Appendix. ToNNO and Tomographic
LayerCAM provide much sharper heatmaps than baseline
2D CAM methods and Averaged CAM. While this is an
advantage for segmenting the small lesions of the Multiple
Sclerosis dataset, it results in undersegmentation of the large
lesions of the MosMed dataset.

5. Conclusion and future work
In this work, we have presented ToNNO, a novel method that
allows to perform dense prediction tasks on 3D images using
a 2D encoder. We have shown that in the case where the
encoder is trained on a weakly supervised classification task,
our method can achieve better results than state-of-the-art
CAM methods. We have also proposed Averaged and
Tomographic CAM, which allow to integrate CAM methods
into our framework in order to achieve even better results.

We believe that ToNNO could be applied in other ways.
For example, it could allow to obtain dense features for 3D
images using an encoder that is pretrained either on large
scale computer vision datasets such as ImageNet [11], or by
using self-supervised learning techniques directly on slices
of 3D medical image datasets. ToNNO, contrary to CAM
methods, could also be used to obtain quantitative heatmaps
in the case where the encoder is pretrained in a quantitative
way, for example on a regression task.

Future work could concentrate on finding a canonical
way—for example using iterative methods—to perform
tomographic reconstruction with class activation maps, as
we have seen that neither Tomographic CAM nor Averaged
CAM are perfect generalizations of ToNNO.

References
[1] Jiwoon Ahn and Suha Kwak. Learning pixel-level semantic

affinity with image-level supervision for weakly supervised
semantic segmentation. In CVPR, pages 4981–4990.
Computer Vision Foundation / IEEE Computer Society, 2018.
2

11435



[2] Amy L. Bearman, Olga Russakovsky, Vittorio Ferrari, and Li
Fei-Fei. What’s the point: Semantic segmentation with point
supervision. In ECCV (7), pages 549–565. Springer, 2016. 2

[3] Yuri Boykov and Marie-Pierre Jolly. Interactive graph cuts for
optimal boundary and region segmentation of objects in N-D
images. In ICCV, pages 105–112. IEEE Computer Society,
2001. 2

[4] Heng Cai, Shumeng Li, Lei Qi, Qian Yu, Yinghuan Shi, and
Yang Gao. Orthogonal annotation benefits barely-supervised
medical image segmentation. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition, CVPR 2023,
Vancouver, BC, Canada, June 17-24, 2023, pages 3302–3311,
2023. 2

[5] Aditya Chattopadhyay, Anirban Sarkar, Prantik Howlader,
and Vineeth N. Balasubramanian. Grad-cam++: Generalized
gradient-based visual explanations for deep convolutional
networks. In WACV, pages 839–847. IEEE Computer Society,
2018. 2, 7, 14

[6] Yu-Jen Chen, Xinrong Hu, Yiyu Shi, and Tsung-Yi
Ho. AME-CAM: attentive multiple-exit CAM for weakly
supervised segmentation on MRI brain tumor. In MICCAI
(1), pages 173–182. Springer, 2023. 2

[7] Zhang Chen, Zhiqiang Tian, Jihua Zhu, Ce Li, and
Shaoyi Du. C-CAM: causal CAM for weakly supervised
semantic segmentation on medical image. In CVPR, pages
11666–11675. IEEE, 2022. 2

[8] Julian Chibane, Francis Engelmann, Tuan Anh Tran, and
Gerard Pons-Moll. Box2mask: Weakly supervised 3d
semantic instance segmentation using bounding boxes. In
ECCV (31), pages 681–699. Springer, 2022. 2

[9] Hejie Cui, Xinglong Liu, and Ning Huang. Pulmonary vessel
segmentation based on orthogonal fused u-net++ of chest CT
images. In Medical Image Computing and Computer Assisted
Intervention - MICCAI 2019 - 22nd International Conference,
Shenzhen, China, October 13-17, 2019, Proceedings, Part VI,
pages 293–300. Springer, 2019. 2

[10] Jifeng Dai, Kaiming He, and Jian Sun. Boxsup: Exploiting
bounding boxes to supervise convolutional networks for
semantic segmentation. In 2015 IEEE International
Conference on Computer Vision, ICCV 2015, Santiago, Chile,
December 7-13, 2015, pages 1635–1643, 2015. 2

[11] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li
Fei-Fei. Imagenet: A large-scale hierarchical image database.
2009 IEEE Conference on Computer Vision and Pattern
Recognition, pages 248–255, 2009. 6, 8

[12] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image
is worth 16x16 words: Transformers for image recognition
at scale. In 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria, May 3-7,
2021. OpenReview.net, 2021. 6

[13] J. Frank. Electron Tomography: Methods for
Three-Dimensional Visualization of Structures in the
Cell. Springer New York, 2008. 2

[14] Marcel Früh, Marc Fischer, Andreas Schilling, Sergios
Gatidis, and Tobias Hepp. Weakly supervised segmentation

of tumor lesions in PET-CT hybrid imaging. J. Med. Imaging
(Bellingham), 8(5):054003, 2021. 2

[15] Sergios Gatidis and Thomas Kuestner. A whole-body
FDG-PET/CT dataset with manually annotated tumor lesions,
2022. 6, 12

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 1, 6

[17] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross
Girshick. Momentum contrast for unsupervised visual
representation learning. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages
9729–9738, 2020. 6

[18] Sigurdur Helgason. The Radon Transform. Springer US,
1999. 2, 3
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