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Figure 1. We present a method to model 3D radiance field distributions using neural point denoising diffusion (left). Since our representa-
tion disentangles coarse object shape from local appearance, we can sample from the individual distributions separately (right).

Abstract

Controllable generation of 3D assets is important for
many practical applications like content creation in movies,
games and engineering, as well as in AR/VR. Recently, dif-
fusion models have shown remarkable results in generation
quality of 3D objects. However, none of the existing models
enable disentangled generation to control the shape and ap-
pearance separately. For the first time, we present a suitable
representation for 3D diffusion models to enable such dis-
entanglement by introducing a hybrid point cloud and neu-
ral radiance field approach. We model a diffusion process
over point positions jointly with a high-dimensional feature
space for a local density and radiance decoder. While the
point positions represent the coarse shape of the object, the
point features allow modeling the geometry and appearance
details. This disentanglement enables us to sample both in-
dependently and therefore to control both separately. Our
approach sets a new state of the art in generation com-
pared to previous disentanglement-capable methods by re-
duced FID scores of 30-90% and is on-par with other non-
disentanglement-capable state-of-the art methods.

1. Introduction
3D assets are used in many practical applications, ranging
from engineering to movies and computer games, and will
become even more important in virtual spaces and virtual

telepresence that will be enabled by AR/VR technology in
the future. However, manually creating such assets is a
labor-intensive and costly task that requires expert skills. It
is even more important that such content cannot just be gen-
erated but that the generation can also be controlled to ob-
tain the desired outcome. With the impressive image gener-
ation capabilities of diffusion models [9, 13, 33–35, 48], it is
appealing to consider such models. Generally, the extension
to 3D is still limited and not straightforward [11, 27, 37].
Even more so, none of the current diffusion models allow
for disentangled generation of shape and appearance and
controlling them separately.

The general challenge for 3D diffusion models lies in
selecting the right 3D representation. One track of work ex-
plores diffusion models to generate 3D point clouds [4, 23,
27, 47, 49]. While such methods are able to generate the
sparse point clouds well, they are not able to model dense
geometry or appearance. Another track uses implicit repre-
sentations [10, 11, 15], triplanes [8, 37] or voxel grids [26]
to define the geometry and appearance continuously for
each coordinate in a volume that encloses the object. The
downside of all of these representations is that they do not
provide disentanglement of shape and appearance. The rea-
son for this limitation is the missing invariance of a single
factor of variation to changes in others: Global neural field
representations, for example, model shape and appearance
in joint parameters. Thus, one of these factors cannot be
changed independently. Voxel grids or triplanes provide
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limited invariance of appearance variables to voxel-sized
shifts but fail to be invariant to sub-voxel shifts or more
complex, non-rigid sub-voxel deformation.

In contrast, we propose a method that enables individual
generation of shape and appearance by introducing a hy-
brid approach that consists of a neural point cloud hosting a
continuous radiance field. The point cloud explicitly disen-
tangles coarse object shape from appearance. Feature vec-
tors model the geometry and appearance of local parts [5]
and, while the point positions determine where a part is, the
point features describe how the details of a part look like.
Notably, the point positions can undergo complex deforma-
tions without requiring changes in point features. With this
representation, we are able to control the generation of both
aspects separately, as illustrated in Fig. 1.

To establish our model, we first train a category-level
Point-NeRF autodecoder [44] by sharing its weights across
many instances of ShapeNet [38] or PhotoShape [30] ob-
jects. The obtained neural point clouds then serve as a
dataset to train a diffusion model that learns to denoise
the point positions and features simultaneously. Different
to previous diffusion models, our model operates on high-
dimensional latent spaces. In summary, our contributions
are:
1. We propose the first approach for object generation that

leverages a hybrid approach consisting of a neural point
cloud combined with a neural renderer and a diffusion
model that operates in a high-dimensional latent space.

2. We identify many-to-one mappings as a crucial obsta-
cle when applying denoising diffusion to autodecoded,
high-dimensional latent spaces and present effective reg-
ularization schemes to overcome this issue.

3. We show that our approach is capable of successfully
disentangling geometry and appearance by allowing to
control them separately and that the generation qual-
ity our approach significantly outperforms the previous
methods GRAF [36] and Disentangled3D [41] by a large
margin, while being on-par in generation quality with
state-of-the-art methods incapable of disentangling.

2. Related work

Disentangled generation. Disentangled generation of
shape and appearance has been studied in multiple works
and is commonly achieved by modeling distinct architec-
ture parts and latent codes [14, 29, 51]. GRAF [28, 36]
presented the first generative model for radiance fields that
allows to separately control both factors. Disentangled3D
(D3D) [41] provides a more explicit disentanglement by
leveraging a canonical volume and deformation. In contrast
to ours, none of the approaches uses diffusion models or
point clouds. We can show that our diffusion model clearly
outperforms these previous GAN-based methods.

Probabilistic diffusion models. In recent years, diffu-
sion models [39, 40] have emerged as a successful class
of generative models. They first define a forward diffu-
sion process in the form of a Markov chain, which gradually
transforms the data distribution to a simple known distribu-
tion. A model is then trained to reverse this process, which
then allows to sample from the learned data distribution.
DDPM [13] proposes a diffusion model formulation with
various simplifications that enable high quality image syn-
thesis. Follow-up works improved on synthesis quality via
refinements of the architecture and sampling procedure to
even outperform state-of-the-art generative adversarial net-
works [9, 16]. In order to scale diffusion models to high
resolutions, LDM [34] moves the diffusion process from the
image to a latent space with smaller spatial dimensions. In
this work, we adopt the DDPM diffusion formulation and
apply it to 3D objects on a high-dimensional latent space in
the form of neural point clouds.

NeRF and Point-NeRF. NeRF [25] represents geometry
and appearance as a radiance and density field that can be
volumetrically rendered to photorealistic images. Point-
NeRF [44] extends NeRF to a parameterization by a point
cloud that is obtained from MVSNet [46]. This reduces am-
biguity and allows for a much faster reconstruction. The
Point-NeRF MLPs are originally trained on a single scene.
In this work, we train them jointly on many objects as a
category-level autodecoder [43]. In addition, we regularize
the neural point cloud features to be optimally suitable for
the diffusion model, which we use to generate objects.

3D diffusion. There are currently two trends of applying
diffusion to 3D: (1) Test-time distillation using large pre-
trained image generators [20, 21, 24, 32, 50] and (2) diffu-
sion models on datasets of 3D models [2, 4, 6, 8, 10, 15,
23, 26, 27, 37, 47, 49]. Our approach can be assigned to the
second category, and therefore we focus on this direction in
the following.

Diffusion on point clouds. Unlike alternative 3D rep-
resentations, such as dense voxel grids or meshes, point
clouds are sparse, unlimited to pre-defined topologies, and
flexible w.r.t. modifications. Therefore, there are several re-
cent works combining these advantages with the generative
power of diffusion models [4, 23, 27, 47, 49]. Except for
differences in network architecture and the relation to score
matching or diffusion models, first approaches [4, 23, 49]
all define the diffusion process directly on 3D point coor-
dinates. In contrast to that, LION [47] applies the idea of
LDM [34] to point clouds by denoising latent codes of a
hierarchical VAE. However, with only a single dimension,
their latent codes are not very expressive and very low di-
mensional. Following the great success of text-to-image
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generation, Point-E [27] trains a transformer-based archi-
tecture for generation of RGB point clouds conditioned
on complex prompts. Unlike all of these approaches, our
method generates point clouds with high-dimensional fea-
tures encoding detailed shape and appearance.

Diffusion for 3D object shape and appearance. Previ-
ous approaches for object shape and appearance synthesis
opt for other 3D representations. Functa [10] and Shap-
E [15] generate the weights of implicit (neural) representa-
tions such as radiance fields or signed distance functions.
DiffRF [26] uses a 3D-UNet to denoise explicit voxel grids
storing density and color. The usual training pipeline for
these approaches involves first fitting 3D representations to
a dataset of multi-view images. Recently, SSDNeRF [8]
showed improvements by optimizing the diffusion model
and individual NeRFs for each training object in a joint sin-
gle stage. RenderDiffusion [2] avoids the question about
single- or two-stage training by defining the diffusion pro-
cess again in image space, but it appends the triplane repre-
sentation from EG3D [6] to the usual diffusion architecture
for 3D view conditioning. In contrast to implicit represen-
tations, voxel grids and triplanes, our neural point clouds
enable the disentanglement of shape and appearance.

3. Method
In this section, we describe Neural Point Cloud Diffusion
(NPCD), our generative model for 3D shape and appear-
ance via diffusion on neural point clouds. An overview of
the method is shown in Fig. 2. At the center of our method
is an autodecoder with a neural point representation for the
latent codes, which is further described in Sec. 3.1. We dis-
cuss characteristics of autodecoder schemes in Sec. 3.2 and
provide regularization schemes that enable denoising diffu-
sion on the feature space. Subsequently, in Sec. 3.3 we then
present a diffusion model to denoise the neural point posi-
tions and features. After the diffusion model is trained, we
can sample 3D shape and appearance independently from
each other as described in Sec. 3.4.

3.1. Category-Level Point-NeRF Autodecoder

We begin by outlining our representation as an extension of
Point-NeRF [44]. A single object is represented by a neural
point cloud P = {(p1, f1), ..., (pM , fM )} = (P,F) where
each 3D point i ∈ {1, ...,M} with position pi ∈ R3 is
associated with a neural feature fi ∈ RD. We denote the full
matrix of point positions as P ∈ RM×3 and the full matrix
of features as F ∈ RM×D. In contrast to PointNeRF, we
assume the point positions P to be given for training objects
and F to be manually initialized before optimization. We

We provide code for our method at https://github.com/lmb-
freiburg/neural-point-cloud-diffusion.
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Figure 2. Overview of neural point cloud diffusion (NCPD).
In the center we have a neural point cloud representation, where
each point has a position (■) and an appearance feature (■). The
neural point cloud can be generated with a diffusion model (top)
and can be rendered via ray integration (bottom).

explore different initialization strategies in Sec. 4.6. The
neural point representation can be rendered from arbitrary
views, as described in the following.

Volume rendering. To render a pixel of an image we fol-
low the Point-NeRF [44] procedure. Given camera param-
eters, we march rays through the scene and sample shading
points q along the ray. For each shading point, the features f
of the neighboring points p of the neural point cloud are first
aggregated to a shading point feature fq via a multi-layer
perceptron (MLP) Fϕ and a weighted combination based
on inverse distances:

fq =
∑

i=1

wiFϕ(fi,q− pi)∑
i=1

wi
,where wi =

1

||q− pi||2
. (1)

This feature is then mapped mapped to a color c and density
σ by separate MLPs Hγ and Gψ:

c = Gψ(fq) σ = Hγ(fq) (2)

The obtained radiances are then numerically integrated to
the pixel color as described in NeRF [25]. Given camera
parameters v, we denote the full rendering function that ren-
ders an image as Rv

ϕ,ψ,γ(P,F).

Optimization. Optimization is done on a dataset ofN ob-
jects O1, ..., ON . Each object Oj consists of a neural point
cloud Pj = (Pj ,Fj) and K views Vj1, ..., VjK . Each view
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Vjk = (Ijk,vjk) consists of a ground truth image Ijk and
corresponding camera parameters vjk. The optimization
objective is to jointly find the point features F and network
parameters ϕ, ψ, γ that minimize the image reconstruction
error for all views of all objects:

F̂, ϕ̂, ψ̂, γ̂ = argmin
F,ϕ,ψ,γ

∑

j,k

L
(
R

vjk

ϕ,ψ,γ(Pj ,Fj), Ijk

)
, (3)

with L being the mean squared error between rendered and
ground truth pixel colors. In contrast to Point-NeRF, we
share parameters ϕ, ψ, γ of the rendering MLPs over all ob-
jects as an autodecoder with (Pj ,Fj) as latent codes.

3.2. Autodecoding for diffusion

The objective given above in Eq. (3) describes an under-
constrained optimization problem. We found that, without
further regularization, many-to-one mappings between fea-
tures F and renderings Rv

θ,ψ,ϕ(P,F) emerge. Thus, there
are multiple possible point features fi representing the same
local appearance information. We support this hypothesis
with an empirical verification in Sec. 4.6 and Tab. 4. The
many-to-one mappings pose a challenge for the denoising
model, as it is trained to produce point estimates of the fea-
tures fi that are in that case ambiguous.

Most existing latent diffusion methods circumvent this
issue by using an autoencoder [34, 47] instead of optimiz-
ing representations via backpropagation. Since encoder net-
works are functions by design, and thus assigning each in-
put value only one output, they do not produce many-to-one
mappings between latent representation and output. How-
ever, we argue that the autodecoder principle is preferred in
many situations, since it does not require an encoder (which
is difficult to design for representations like neural points)
and often leads to higher quality.

Therefore, we present and analyze a list of strategies to
eliminate many-to-one mappings from autodecoder formu-
lations, which are outlined in the following paragraphs.

Zero initialization. The first simple, albeit effective strat-
egy is to initialize features F with zero instead of randomly
sampled values. We can show that this is very effective and
encourages convergence to the same minimum.

Total variation regularization (TV). Inspired by TV
regularization on triplanes [37], we design a TV regular-
ization baseline for our neural point clouds by adding

LTV (F) = λTV

M∑

i=1

∑

n∈V(i)

∥fi − fn∥1
∥pi − pn∥2

, (4)

with weighting λTV to the objective in Eq. (3) for each ob-
ject, where V(i) is a local neigborhood of points around the
point with index i. Intuitively, it encourages that neighbor-
ing point features are varying only slightly.

Variational autodecoder (KL). We introduce a varia-
tional autodecoder by storing vectors of means µi and
isotropic variances Σi instead of features fi for each point.
For rendering, we obtain the features fi by sampling from
the corresponding Gaussians using the reparameterization
trick [18]. Additionally, we add a KL divergence loss

LKL({µi,Σi}Mi=1) = λKL

M∑

i=1

KL(N (µi,Σi),N (0, ID)) ,

(5)
for each object with weighting λKL, to minimize the evi-
dence lower bound [18]. Intuitively, the consequences from
this regularization are twofold. First, the latent space is
regularized to follow a unit Gaussian distribution, reducing
many-to-one mappings in the representation. Second, the
decoder learns to be more robust to small changes in f due
to the sampling procedure. Note that our diffusion model
regresses µi, but we write fi in the following for simplicity.

3.3. Neural point cloud diffusion

In this section, we describe our diffusion model for neu-
ral point cloud representations. As input, we assume a set
of optimized representations {Pj}Nj=1 from the first stage.
The diffusion model learns the distribution of these repre-
sentations, which allows us to generate neural point clouds.

Denoising diffusion background. Diffusion models [39,
40] learn the distribution q(x) of data x by defining a for-
ward diffusion process in form of a Markov chain with steps
q(xt|xt−1) that gradually transform the data distribution
into a simple known distribution. A model pθ(xt−1|xt)
with parameters θ is then trained to approximate the steps
q(xt−1|xt) in the Markov chain of the reverse process,
which allows to sample from the learnt distribution.

In case of Gaussian diffusion processes, the forward dif-
fusion process gradually replaces the data with Gaussian
noise following a noise schedule β1, .., βT :

q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtI) . (6)

Further, it is possible to sample xt directly from x0:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I) , (7)

with αt := 1 − βt and ᾱt :=
∏t
s=1 αs. For small enough

step sizes in the noise schedule, the steps in the Markov
chain of the reverse process can be approximated with
Gaussian distributions:

pθ(xT) = N (xT ;0, I), (8)
pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) . (9)

The objective hence is to learn µθ(xt, t) and Σθ(xt, t).
DDPM [13] proposes a diffusion model formulation with
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various simplifications. Specifically, DDPM suggests to fix
Σθ(xt, t) and the noise schedule βt to time-dependent con-
stants. Further, DDPM reparametrizes Eq. (7) to

xt(x0, ϵ) =
√
ᾱtx0 +

√
1− ᾱtϵ with ϵ ∼ N (0, I) (10)

and trains the model to directly predict ϵθ(xt, t), from
which µθ(xt, t) can be computed.

Neural point cloud diffusion. Given the background in
DDPM, we turn to describing our neural point cloud diffu-
sion. Conceptually, the neural points clouds P = (P,F)
take the place of data points x0 in the above DDPM diffu-
sion model formulation.

The distribution of both modalities, point positions P
and appearance features F, is learnt jointly. During train-
ing, we sample Gaussian noise ϵP for all point positions
and ϵF for all point features and use it to obtain the noised
neural point cloud Pt = (Pt,Ft) at a specific timestep t in
the diffusion process via Eq. (10). The denoiser network
Tθ((Pt,Ft), t) = (ϵPθ , ϵ

F
θ ) takes the noised neural point

cloud and timestep as input and estimates the noise ϵPθ and
ϵFθ that was applied to the points and features. The network
is optimized by minimizing the average mean squared error
on both noise vectors.

Denoiser architecture. As architecture for the denoiser
network, we use a Transformer [27, 31, 42]. As input, the
transformer receivesM+1 tokens, one token per point plus
one additional token encoding t. Point tokens are obtained
by concatenating the point position and feature of each point
in the noisy point cloud and projecting them with a linear
layer. Similarly, the t token is obtained by projection with
its own linear layer onto the same dimensionality. After
encoding, all tokens are processed by transformer layers,
including self-attention and MLPs. Finally, the resulting
output tokens corresponding to the M points are projected
back to the dimensions of the input point positions and fea-
tures and interpreted as noise predictions ϵPθ and ϵFθ .

3.4. Disentangled generation

Given a trained NPCD model, we can naively sample from
the joint distribution p(P,F) of point positions and features
by sampling positions and features from a unit Gaussian
distribution and using the transformer for iterative denois-
ing (c.f. Fig. 1 for a visualization). To achieve individual
generation of shape and appearance, one needs to sample
from conditional distributions p(P|F) or p(F|P) instead.

For appearance-only sampling from p(F|P) with given
point positions P0, we obtain the initial noisy neural point
cloud by sampling FT from a unit Gaussian distribution and
computing PT from P0 via the forward process in Eq. (7).

Throughout the diffusion process, we update the point
features Ft−1 from the denoiser outputs according to the

reverse diffusion process in Eq. (9), but update the point
positions Pt−1 from the given P0 via the forward diffusion
process in Eq. (7) instead of the denoiser outputs. Sampling
from p(P|F) is done analogously. Further details are pro-
vided in the supplementals.

Intuitively, this is comparable to masked image inpaint-
ing, using an approach similar to RePaint [22]. Instead of
masking image parts, we mask one modality of our repre-
sentation. Note that this is enabled by the neural point rep-
resentation, which allows to disentangle the variables for
coarse shape and local appearance.

4. Experiments
In this section, we provide experimental results for the pre-
sented NPCD method. We begin by introducing the ex-
perimental setup in Sec. 4.1 and used metrics in Sec. 4.2.
Then, we evaluate the main contribution of our method
in Sec. 4.3, i.e. the distentangled generation of coarse
geometry and appearance. We compare against previ-
ous generative approaches that allow disentangled gener-
ation, namely GRAF [36] and Disentangled3D [41], and
show our superior generation quality. Next, we compare
against recent diffusion models without disentangling capa-
bilities in Sec. 4.4. Here, we compare against DiffRF [26],
Functa [10] and SSDNeRF [8]. Many existing 3D genera-
tive models model only shape but not appearance. Thus, to
complement existing comparisons, we also provide a shape-
only comparison in Sec. 4.5. Finally, we analyze many-to-
one mappings due to auto-decoded features as a problem
for diffusion models and propose regularization methods as
effective countermeasures in Sec. 4.6.

4.1. Datasets and experimental setup

Data. We use the cars and chairs categories of the
ShapeNet SRN dataset [7, 38]. The cars split contains 2,458
training objects and 704 test objects, while the chairs split
contains 4,611 training and 1,317 test objects. We use the
original renderings with 50 views per training object and
251 views per test object. The images have a resolution of
128x128 pixels. For all training objects, the poses are sam-
pled randomly from a sphere. For all test objects the poses
follow a spiral on the upper hemisphere. We extract point
clouds with 30k points from the mesh and subsample them
to 512 points with farthest point sampling.

Additionally, we use the PhotoShape Chairs dataset [30].
The dataset contains 15,576 objects and features more re-
alistic textures on top of ShapeNet meshes. We use the
same test split as DiffRF [26] with 1, 552 objects. From
the remaining objects, we randomly select 2, 480 objects
for training. We use the same renderings as DiffRF [26],
which consist of 200 views per object on an Archimedean
spiral. We use a resolution of 128x128 pixels and the same
point clouds with 512 points as for SRN chairs.
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(a) (b)

Figure 3. Qualitative examples of disentangled generation on SRN cars, SRN chairs, PhotoShape chairs. (a) Appearance-only gener-
ation: we show a generated object and objects with re-sampled appearance. (b) Shape-only generation: we show a generated object and
objects with re-sampled coarse shape. We can get diverse samples of local appearance or coarse shape when the respective other is given.

Training details. We construct neural point clouds by
zero-initializing features for each point. In the Point-NeRF
autodecoder, we optimize the reconstruction loss in Eq. (3)
with the TV and KL regularizers from Eq. (4) and Eq. (5).
Further details on network architectures and training param-
eters are provided in the supplementals. For the diffusion
model training, we normalize the neural point clouds and
use DDPM [13] diffusion model parameters. Further details
on the denoiser architecture, diffusion model parameters,
and training parameters are provided in the supplementals.

4.2. Metrics

To measure the quality and diversity of the generated sam-
ples of the diffusion model, we report the FID [12] and

KID [3] metrics. FID and KID compare the appearance and
diversity of two image sets by computing features for each
image with an Inception model and comparing the feature
distributions of the two sets. We use the images of the test
set objects as the reference set. For comparability, we fol-
low the evaluation procedures of previous works: on SRN
Cars and Chairs, we generate the same number of objects
as in the test set and render them from the same poses; on
PhotoShape Chairs, we generate 1,000 objects and render
them from 10 poses that are sampled randomly from the
Archimedean spiral poses. Furthermore, for the shape-only
evaluation of our generated point clouds representing the
coarse geometry, we employ 1-nearest-neighbor accuracy
w.r.t. Chamfer and Earth Mover’s Distance [45]. Last, we
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conduct a quantitative analysis by reporting the per-point
mean cosine similarities between optimized neural point
features of 10 random training examples over 100 differ-
ent seeds with a fixed renderer. This measures the extent of
many-to-one mappings, i.e. how far features that represent
the same appearance are away from each other.

4.3. Disentangled generation

A major advantage of using neural point clouds as 3D rep-
resentation is their intrinsic disentanglement of shape and
appearance: the point positions represent the coarse geom-
etry and the features model local geometry and appearance.
As described in Sec. 3.4, this property enables the proposed
method to generate both modalities separately, even though
a joint distribution is modeled with a single diffusion model.
In the following, we present the results of this disentangled
3D shape and appearance generation.

NPCD allows to explicitly control the point positions or
point features throughout the diffusion process. As a con-
sequence, we can re-sample appropriate features that fit to
the given point positions or vice versa, resulting in gener-
ating new samples with one modality fixed. Results for the
appearance-only generation are shown in Fig. 3a and for
the shape-only generation in Fig. 3b. It can be seen that our
method succeeds in generating diverse novel shapes or ap-
pearances when one modality is fixed. Note that our method
performs an actual recombination and does more than re-
trieval of objects from the training dataset.

Previous approaches that are able to generate disentan-
gled 3D shape and appearance are GRAF [36] and Disen-
tangled3D (D3D) [41], which are both GAN-based. We
provide a quantitative comparison to these approaches re-
garding generation quality in Tab. 1 and a qualitative com-
parison in Fig. 4. Our comparisons show that our proposed
method is capable of disentangled generation with superior
quality than these previous approaches.

Model ShapeNet SRN PhotoShape
Cars Chairs Chairs

FID↓ KID/10−3↓ FID↓ KID/10−3↓ FID↓ KID/10−3↓

GRAF [36] 40.95 19.15 37.19 17.85 34.49 17.13
D3D [41] 62.34 41.60 45.73 24.33 59.80 36.07

NPCD (Ours) 28.38 17.62 9.87 3.62 14.45 5.40

Table 1. Comparison to disentanglement-capable approaches.
The numbers show that we clearly outperform previous generative
models that allow disentangled generation.

4.4. 3D diffusion comparison

We compare NPCD with Functa [10], SSDNeRF [8], and
DiffRF [26], previous works that generate 3D shape and ap-
pearance on medium-scale datasets with 3D diffusion mod-

els. We compare against SSDNeRF and Functa on SRN
Cars and against DiffRF on Photoshape Chairs. Quantita-
tive results are provided in Tab. 2. Our proposed method
performs better than Functa and DiffRF methods and worse
than SSDNeRF regarding the FID and KID metrics. How-
ever, none of these methods enable disentangled generation.

Model PhotoShape Chairs
FID↓ KID/10−3↓

DiffRF 15.95 7.93

NPCD (Ours) 14.45 5.40

Model SRN Cars
FID↓ KID/10−3↓

Functa 80.3 -
SSDNeRF 11.08 3.47

NPCD (Ours) 28.38 17.62

Table 2. Comparison to 3D diffusion models for uncondi-
tional 3D shape and appearance generation. Our NPCD model
achieves better scores than DiffRF and Functa. SSDNeRF per-
forms slightly better. However, none of the other models enable
disentangled generation.

4.5. Shape-only comparison

Since our neural radiance field is build on top of a coarse
point cloud, we evaluate the geometry of NPCD samples by
comparing with the state of the art in point cloud generation
in Tab. 3. Even though the point cloud defines only the
coarse structure beneath a fine radiance field, the quality
and diversity of our generated point clouds is comparable
to the ones from approaches that are specialized for shape-
only generation.

Model SRN Cars SRN Chairs
CD↓ EMD↓ CD↓ EMD↓

r-GAN [1] 94.46 99.01 83.69 99.70
PointFlow [45] 58.10 56.25 62.84 60.57
SoftFlow [17] 64.77 60.09 59.21 60.05
DPF-Net [19] 62.35 54.48 62.00 58.53
Shape-GF [4] 63.20 56.53 68.96 65.48
PVD [49] 54.55 53.83 56.26 53.32
LION [47] 53.41 51.14 53.70 52.34

NPCD (Ours) 60.23 52.41 60.50 58.84

Table 3. Shape-only comparison. We evaluate the point cloud
generation part of our approach individually. Despite being just
the coarse structure of a finer radiance field on top, NPCD can
compete with the state of the art in point cloud generation.

4.6. Analysis

As diffusion on hybrid point clouds and local radiance fields
has not been done before, we conduct ablation studies and
analyze various novel design choices. Here, we analyze the
effects of different initialization strategies, feature dimen-
sionality and regularization methods in the category-level
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Figure 4. Comparison against previous generative models that allow disentangled generation.: While we present the first diffusion
model allowing disentangled generation, earlier works are GAN-based. It can be seen that our model generates examples in much higher
quality, as also evident from the metrics in Tab. 1.

Point-NeRF autodecoder and diffusion model. We provide
a more detailed analysis in the supplementals.

Neural point cloud initialization Regarding the initial-
ization of the neural point cloud features, we analyze ini-
tialization with features sampled from a Gaussian distri-
bution against a zero initialization. Interestingly, we find
that these different initializations strongly affect the feature
space of the trained models, which directly translates to dif-
ferences in generation quality (c.f. supplementals). Tab. 4
indicates that the simple measure of zero initialization is
able to largely mitigate the many-to-one mappings in the
MLP decoder and provide much more coherent features.

Neural point cloud regularization As we assume that
the structure of the feature space strongly affects the dif-
fusion model, we analyze the effects of applying KL and
TV regularizations to the neural point features during the
Point-NeRF autodecoder training. Tab. 4 shows that both
regularizations further decrease the ambiguity of the latent
space over the zero initialization. We can summarize that a
combination of TV and KL regularization provides overall
the best results (c.f. supplementals). Overall, we found an
appropriate initialization and regularization to be key ingre-
dients for successful neural point cloud diffusion.

5. Conclusion
We presented a diffusion approach for neural point clouds
with high-dimensional features that represent local parts of
objects and can be rendered to images. We have shown
that, in contrast to all other current 3D diffusion models,
the neural point cloud enables our method to effectively

Init. Reg. λ Cosine sim.

Rand. ✗ - 0.0306
Zero ✗ - 0.7695
Zero TV 3.5e-6 0.9355
Zero KL 1e-6 0.9480
Zero TV,KL 3e-7,1e-7 0.9470

Table 4. Auto-decoded feature similarity. We compute per-point
mean cosine similarities between optimized neural point features
of 10 training examples for 100 different seeds. Zero initialization
and regularization effectively reduce the ambiguity of the auto-
decoded latent space. This improves generation quality signifi-
cantly, as shown in the supplementals.

disentangle the coarse shape from the fine geometry and
appearance and to control both factors separately. In exper-
iments on ShapeNet and PhotoShape we could show that we
clearly outperform previous methods that perform disentan-
gled generation of 3D objects, while being competitive with
unconditional generation methods. Further, we provide an
extensive analysis and identified many-to-one mappings in
auto-decoded latent spaces as the main challenge for the
successful training of a latent diffusion model. Therefore,
we proposed a suitable initialization and regularization of
the neural point features as effective countermeasures.
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