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Figure 1. DiffHuman predicts a probability distribution over 3D human reconstructions conditioned on a single monocular RGB image.
This enables us to sample multiple plausible, diverse and input-consistent reconstructions during inference. Samples from DiffHuman
demonstrate a high level of geometric and colour-wise detail, particularly in unseen and uncertain regions of the human body surface.

Abstract
We present DiffHuman, a probabilistic method for photo-

realistic 3D human reconstruction from a single RGB image.
Despite the ill-posed nature of this problem, most methods
are deterministic and output a single solution, often result-
ing in a lack of geometric detail and blurriness in unseen or
uncertain regions. In contrast, DiffHuman predicts a proba-
bility distribution over 3D reconstructions conditioned on an
input 2D image, which allows us to sample multiple detailed
3D avatars that are consistent with the image. DiffHuman is
implemented as a conditional diffusion model that denoises
pixel-aligned 2D observations of an underlying 3D shape
representation. During inference, we may sample 3D avatars
by iteratively denoising 2D renders of the predicted 3D repre-
sentation. Furthermore, we introduce a generator neural net-
work that approximates rendering with considerably reduced
runtime (55× speed up), resulting in a novel dual-branch
diffusion framework. Our experiments show that DiffHuman
can produce diverse and detailed reconstructions for the
parts of the person that are unseen or uncertain in the input
image, while remaining competitive with the state-of-the-art
when reconstructing visible surfaces.

1. Introduction
Photorealistic 3D reconstruction of humans from a single
image is a central problem for a wide range of applications.

*Work done as an intern at Google Research.

Avatar creation for virtual and mixed reality, games, movie
production, or fitness and health applications all benefit from
reliable and easy-to-use 3D human reconstruction. However,
monocular 3D reconstruction is ill-posed: depth-ambiguities,
(self)-occlusion, and unobserved body parts make it infeasi-
ble to reconstruct the true, veridical 3D shape and appearance
of the subject. In fact, there exist an infinite number of 3D
scenes that could have produced a given image; although not
all of them would represent plausible human and clothing
geometry, and realistic interplay between physical albedo
and lighting. Yet, existing methods [5, 10, 50, 63] still treat
the problem as a one-to-one mapping and return just one
plausible 3D solution. Simply assuming that this single so-
lution is correct can lead to failures in downstream usages
of the 3D reconstruction. Moreover, deterministic methods
often produce detail-less reconstructions of unobserved or
uncertain surface regions, e.g. the back of a person. This is a
well-known effect of applying deterministic training losses to
ill-posed learning problems [8, 11, 37], which causes predic-
tions to fall back towards the mean of the underlying training
distribution when faced with ambiguity. The mean may not
have high probability in a multi-modal distribution and often
represents blurry and over-smooth 3D reconstructions.

In this work, we overcome the shortcomings of deter-
ministic methods by predicting a distribution over possible
3D human reconstructions. Our method DiffHuman uses a
single input image to condition a denoising diffusion model
[18], which generates pixel-aligned front and back observa-
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Figure 2. Method overview. We use a diffusion probabilistic model [18] to predict a distribution over plausible 3D reconstructions
conditioned on a single RGB image. During training, we predict noise-dependent pixel-aligned features g(t)Θ (xt, I) given a noisy observation
set xt consisting of front/back albedo, depth and normal renders, and an RGB image I. These features condition an SDF f

(t)
Θ , which is

dependent on both xt and I. f (t)
Θ and g

(t)
Θ are neural networks that define an implicit surface S(t)

Θ (xt, I). Then, we obtain an estimate of the
denoised observation set x(t)

0Θ
by rendering S(t)

Θ . We may additionally produce a shaded image C(t) by applying a pixel-wise noise-dependent

shading network s
(t)
Θ . During inference, we can sample trajectories over observation sets x0:T ∼ pΘ(x0:T |I) by computing and rendering

S(t)
Θ (xt, I) in each denoising step. Our final 3D samples S ∼ pΘ(S|I) are obtained as the final reconstruction S = S(1)

Θ (x1, I). To mitigate
the computational cost of rendering an implicit surface in every step, we train a “generator” network h

(t)
Θ that imitates rendering by directly

mapping g
(t)
Θ (xt, I) to x

(t)
0Θ

. During inference, we denoise using h
(t)
Θ and only explicitly compute the 3D reconstruction in the last step.

tions of the underlying 3D human. To enable full 3D recon-
struction, we take inspiration from recent work [57, 59] and
integrate rendering of an intermediate implicit 3D represen-
tation into the model’s denoising step. This allows us, at test
time, to reconstruct 3D meshes from a signed distance and
colour field defined by this same intermediate representation.
However, diffusion-via-rendering is notoriously slow. Thus,
we develop a hybrid solution which replaces the expensive
implicit surface rendering with a single forward pass through
an additional generator network, resulting in a 55× speed up
at test time. Our probabilistic approach enables us to sample
multiple input-consistent reconstructions and visualise pre-
diction uncertainty, while significantly improving the quality
of unseen surfaces. In summary, our contributions are:
- We present a probabilistic diffusion model for photorealis-

tic 3D human reconstruction that predicts a distribution of
plausible reconstructions conditioned on an input image.

- We propose a novel dual-branch framework that utilises
an image generation network, alleviating the need for ex-
pensive implicit surface rendering at every denoising step.

- We show that our model produces 3D reconstructions with
greater levels of geometric detail and colour sharpness in
uncertain regions than the current state-of-the-art.

2. Related Work
We give an overview of related work on photorealistic and
probabilistic 3D human reconstruction.
Photorealistic 3D human reconstruction. Methods for
human reconstruction in 3D can be broadly categorised into
three classes: mesh-based, implicit, and NeRF-based.

Several methods [9, 14, 25, 27, 28, 42, 44, 51, 58, 69, 70,
72] attempt to reconstruct humans in 3D by leveraging para-
metric body models [6, 34, 65]. However these approaches
only reconstruct the body geometry under clothing and do
not predict texture. Others focus on learning deformations

on top of parametric models to model hair and clothing [1–
4, 30, 62, 75]. These methods are generally fast to render, but
have the drawback of working with low resolution meshes
that cannot capture fine geometric and texture details, and
more importantly cannot handle garments with topologies
that deviate from the body, such as skirts or dresses.

Implicit methods model 3D surface geometry as the level-
set of a signed-distance function [43] or occupancy field [38].
They are able to model surfaces of arbitrary topology, which
makes them suitable for representing clothed humans. PIFu
[49] and PIFuHD [50] predict occupancy and colour fields
directly from an input image using pixel-aligned features.
Geo-PIFu [16] and PaMIR [74] use a combination of pixel-
aligned features and sampled features from a voxel grid to
mitigate depth ambiguity issues. PHORHUM [5] replaces
the occupancy field with a signed distance function and de-
couples albedo and shading. ARCH [22], ARCH++ [17], and
S3F [10] leverage a human body prior and reconstruct ani-
matable avatars. ICON [63] only predicts surface geometry,
using a normal refinement procedure that alternates between
normal prediction and body pose refinement. ECON [64]
independently reconstructs front and back surfaces, which
are then fused using a body model prior. TECH [21] is a
concurrent optimisation-based method that uses guidance
from a text-to-image diffusion model to reconstruct invisible
surfaces. DiffuStereo [55] reconstructs detailed 3D human
geometry using a multi-view stereo setup, whereas POSE-
Fusion [32] uses a single RGB-D camera. D-IF [67] models
uncertainty in occupancy field predictions based on the dis-
tance of a point from the surface. In contrast, our method
learns a distribution over plausible implicit surfaces for a
given image from which we can sample at test time.

Another line of work for photorealistic 3D human re-
construction uses Neural Radiance Fields (NeRFs) [40] as
the underlying representation. However, these often require
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multi-view setups or long videos to train [23, 24, 33, 61, 66].
Towards the task of monocular reconstruction, SHERF [19]
and ELICIT [20] learn animatable NeRFs from a single im-
age. They are both driven by an underlying body model.
Probabilistic 3D human reconstruction. Several methods
estimate distributions over 3D poses conditioned on an in-
put image. For example, [31] uses mixture density networks
to estimate a distribution over 3D keypoints conditioned
on observed 2D keypoint locations. [60] replaces mixture
density networks with normalising flows. More recent meth-
ods, such as [13] and [54], employ diffusion models for
learning a distribution over 3D poses. 3D Multibodies [7]
predicts a categorical distribution over SMPL [34] parameter
hypotheses conditioned on an input image, while ProHMR
[29] utilises conditional normalising flows to this end. Sen-
gupta et al. [52] output hierarchical matrix-Fisher distribu-
tions that exploit the SMPL kinematic tree. HuManiFlow
[53] predicts normalising flow distributions over ancestor-
conditioned joint rotations, which respect the structure of the
3D rotation group SO(3). All these methods, however, pre-
dict distributions over sparse 3D landmarks, joint rotations
or body model parameters. In contrast, our method learns
a much more expressive distribution over detailed surfaces
corresponding to clothed human geometry and appearance.
3D diffusion models. The success of diffusion models for
2D image synthesis [46, 48] has motivated a few methods
that apply these to 3D generation. A pertinent challenge in
this task is the choice of an appropriate 3D representation.
[36, 71] implement diffusion models for 3D point cloud gen-
eration. DiffRF [41] learns a diffusion model for generating
volumetric radiance fields, but denoising 3D voxel grids is
computationally expensive. HyperDiffusion [12] presents
a method for 3D shape generation that performs diffusion
in the weight space of occupancy networks. However, this
requires offline fitting of an occupancy field to every train-
ing example. [57, 59] integrate rendering of an intermediate
3D representation into the denoising step of a 2D diffusion
model, which enables 3D sampling during inference. Our
method is similar, but we mitigate the cost of diffusion-via-
rendering using a 2D generator neural network.

3. Method
This section details our method for predicting diffusion-
based distributions over implicit surfaces representing hu-
man geometry and appearance. We begin with an overview
of denoising diffusion models and implicit surfaces.

3.1. Background

Denoising Diffusion Probabilistic Models. (DDPMs) [18]
are generative models that learn to sample from a target
data distribution q(x0) via a learned iterative denoising pro-
cess. A forward Markov chain q(x0:T ) progressively adds

Gaussian noise to data samples x0 ∼ q(x0) such that

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI), (1)

where βt ∈ (0, 1) represents the noise variance at a given
timestep t ∈ {1, . . . , T}. The distribution q(xt|x0) can be
derived in closed form from Eq. (1). For sufficiently large
T , the marginal q(xT ) approaches a standard normal distri-
bution. A DDPM approximates the reverse Markov chain,
iteratively transforming samples from a latent distribution
p(xT ) = N (0, I) onto the data manifold by following

pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt). (2)

The reverse transition kernels are defined as
pθ(xt−1|xt) = N (xt−1;µ

(t)
θ (xt),Σ

(t)
θ (xt)), (3)

where the distribution parameters are typically predicted
by a time-dependent neural network with weights θ. This
network is trained to maximise a variational lower bound
(VLB) on the log-likelihood Eq(x0) [log pθ(x0)]. The form
of the VLB loss depends on the parameterisation used to
predict µ(t)

θ (xt). For our purposes, we train a neural network
x̂
(t)
0θ
(xt) to estimate the “clean” sample x0 given the noisy

sample xt. This results in a denoising objective of the form

LVLB = Et,x0,xt|x0

[
∥x0 − x̂

(t)
0θ
(xt)∥22

]
, (4)

which corresponds to a weighted [18] version of the VLB.
During inference, x̂(t)

0θ
(xt) is used to compute µ

(t)
θ (xt).

Following [18], we set Σ(t)
θ (xt) = σ2

t I to time-dependent
constants that depend on the hyperparameters βt. Given µθ

and Σθ, samples x0 ∼ pθ(x0) are obtained using ancestral
sampling, as in Eq. (2). DDPMs can be easily extended to
sample from conditional distributions pθ(x0|y), by passing
a conditioning variable y to the denoising neural network
such that “clean” sample estimates are given by x̂

(t)
0θ
(xt,y).

Neural Implicit Surfaces. A surface S in R3 can be im-
plicitly defined as the zero-level-set or decision boundary of
a function. Given an RGB image I of a subject, an estimate
of the surface geometry of the subject may be obtained using
an image-conditioned signed distance function (SDF). This
can be represented by a coordinate-based neural network
fΘ, which outputs a signed distance value dp and unshaded
albedo colour ap given a query point p ∈ R3. Hereafter,
we use Θ to denote the set of all learnable parameters. The
neural implicit surface corresponding to fΘ is defined as

SΘ(I) =
{
p ∈ R3|fΘ (p; gΘ (I)) = (0,ap)

}
, (5)

where gΘ is a feature extractor CNN that is used to condition
fΘ on the image I with pixel-aligned features gΘ(I), follow-
ing [5, 49]. The feature vector associated with p, which we
denote as gp, is obtained by projecting p onto the image
plane and bilinearly interpolating gΘ(I) at this pixel loca-
tion. The distance value dp and albedo colour ap at p are
concretely obtained as (dp,ap) = fΘ(p, gp).
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Figure 3. Qualitative comparison against deterministic monocular 3D human reconstruction methods [5, 10] that predict geometry,
surface albedo and shaded colour. PHORHUM [5] (retrained on our dataset) outputs good front predictions, but exhibits over-smooth, flat
geometry and blurry colours on the back. S3F [10] yields more detailed geometry, but colours are still often blurry. Moreover, both these
methods occasionally paste the front colour predictions onto the back incorrectly (see row 3). Our method outputs multiple diverse samples,
with a greater level of geometric detail and colour sharpness in uncertain regions, that are consistent with the input image after shading.

To decouple unshaded albedo colour and illumination-
dependent shading, an additional neural network sΘ [5] may
be used to estimate a shading coefficient sp at each surface
point p. This is obtained using

sp = sΘ (np, l(I)) , (6)
where np = ∇pdp is the surface normal at p and l(I) is
a scene illumination code estimated from the input image.
The latter may be computed using the bottleneck of gΘ(I),
as in [5]. Then, the shaded colour at a point p is given by
cp = ap⊙sp, where ⊙ denotes element-wise multiplication.

Given an image-conditioned SDF fΘ, various methods
exist to extract and/or render the corresponding surface S.
An explicit mesh approximation of S is typically generated
by running Marching Cubes [35] in a densely sampled 3D
bounding box [5, 49, 50]. Standard graphics pipelines can
be used to render various properties of the mesh, such as
surface albedo, shaded colour, surface normal or depth maps.
In addition, S may be directly rendered using sphere tracing
[15], without generating an explicit mesh. Sphere tracing can
be formulated as a differentiable operation [68], enabling the
use of 2D rendering losses during training.

3.2. Implicit Surface Diffusion via Rendering

Our aim is to estimate the 3D surface geometry and appear-
ance S of a human subject given a single RGB image I. This
is an ill-posed problem, since multiple 3D reconstructions
can plausibly explain a 2D input image, e.g. due to occlusion
or depth ambiguity. Thus, we seek to predict a probability
distribution over 3D geometry and appearance conditioned

on the RGB image, pΘ(S|I). Our method, DiffHuman, im-
plements pΘ(S|I) using the framework of DDPMs [18], and
enables us to sample multiple plausible 3D reconstructions.

We represent S as an implicit surface SΘ(I) defined by
the corresponding neural networks fΘ and gΘ, as detailed
in Eq. (5). If we wish to directly apply a DDPM to learn
pΘ(S|I), we need to define forward and reverse diffusion
processes over S. This requires a suitable representation
of S that can be noised and denoised. In the framework of
implicit surfaces, the neural network fΘ is fixed and acts
as a decoder for the pixel-aligned features gΘ(I). The latter
could be an adequate choice for a representation; however,
they are unknown before the network is trained. Specifically,
we do not have access to ground-truth pixel aligned features
gΘ(I) for a given I a priori, and thus cannot add noise to or
denoise them directly.

Instead, we model a distribution over image-based, pixel-
aligned observations of S that cover the true S well. Specif-
ically, we consider three types of observations of the front
and back of S with respect to a fixed camera π: (i) unshaded
albedo colour images AF and AB , (ii) surface normal im-
ages NF and NB , and (iii) depth maps DF and DB . These
are concatenated together to form an observation set

x0 = {AF ,AB ,NF ,NB ,DF ,DB}. (7)
In practice, this observation set is represented as an array
x0 ∈ [−1, 1]H×W×C . Given a surface S , the corresponding
x0 = render(S, π) can be obtained via rendering. Since x0

is effectively a multichannel image, a conventional image-
based DDPM may be directly applied to learn pΘ(x0|I).
This would involve training a neural network x̂

(t)
0Θ

(xt, I) to
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estimate the “clean” observation set x0 by denoising xt,
as detailed in Sec. 3.1. We modify this denoising step by
incorporating a neural implicit surface as an intermediate 3D
reconstruction and obtain the denoised estimate via rendering
of this surface. This enables us to sample from a learned
distribution over 3D surfaces during inference.

Specifically, given a noisy observation set xt and con-
ditioning image I, we first compute noise-dependent pixel-
aligned features g(t)Θ (xt, I). These are used to condition an
SDF f

(t)
Θ (p; g

(t)
Θ (xt, I)), which is dependent on both xt and

I. The networks f (t)
Θ and g

(t)
Θ define a neural implicit surface

S(t)
Θ (xt, I), which is given by adding noise-dependence to

Eq. (5). Then, we obtain an estimate of the denoised obser-
vation set with

x̂
(t)
0Θ

(xt, I) = render
(
S(t)
Θ (xt, I), π

)
. (8)

Furthermore, we can obtain a shaded image C(t) by apply-
ing a timestep-dependent shading network s

(t)
Θ to the front

albedo and normal predictions that comprise x̂
(t)
0Θ

:

C(t) = AF ⊙ s
(t)
Θ (NF , l(I)). (9)

f
(t)
Θ and g

(t)
Θ are trained by minimising the following DDPM

loss in each training iteration:

Lrender
VLB =

∥∥∥x0 − render
(
S(t)
Θ (xt, I), π

)∥∥∥2
2
, (10)

which follows from Eq. (4). Images and corresponding
clean observation sets are sampled from a target data dis-
tribution x0, I ∼ q(x0, I) and a timestep is sampled from
t ∼ U({1, ..., T}). Noised observations are sampled from
xt ∼ q(xt|x0). Moreover, we can supervise on C(t) to en-
sure that all 3D samples from our predicted distribution are
consistent with the conditioning image after rendering and
shading. Please refer to the Suppl. Mat. for details.

Once f (t)
Θ and g

(t)
Θ are trained, we can ancestrally sample

reverse process trajectories over observation sets x0:T ∼
pΘ(x0:T |I), by computing and rendering S(t)

Θ (xt, I) in each
denoising step. Notably, 3D samples S ∼ pΘ(S|I) are given
by the final reconstruction S = S(1)

Θ (x1, I).
The above formulation of diffusion via rendering is simi-

lar to [57, 59]. These approaches implement diffusion over
multiple images of an underlying 3D scene from different
views, and incorporate rendering of an intermediate volu-
metric 3D representation [39] into the reverse process. Our
method considers various pixel-aligned observations of a
3D human from the same view and reconstructs interme-
diate implicit surfaces during denoising. We also incorpo-
rate probabilistic scene illumination estimation via Eqn. 9.
Nonetheless, all these approaches involve rendering of a neu-
ral 3D representation in every single denoising step, which is
computationally expensive during inference. Consequently,
Sec. 3.3 introduces a hybrid diffusion model that integrates
both rendering and learned generation in the denoising pro-

cess, enabling 3D sampling at considerably reduced runtime.

3.3. Hybrid Implicit Surface Diffusion

The diffusion-via-rendering formulation introduced in
Sec. 3.2 involves rendering an implicit surface in every de-
noising step. This is memory- and time-intensive, both when
the surface is directly rendered using sphere tracing, and also
when an explicit mesh is extracted with Marching Cubes
and subsequently rasterised. Sphere tracing requires K suc-
cessive evaluations of f (t)

Θ per pixel, where K equals the
number of tracing steps until a surface is found or the ray is
terminated; K ≈ 30 in our experiments resulting in 7.9M
function evaluations for an image of 512× 512px. Marching
Cubes, on the other hand, requires one f

(t)
Θ evaluation per

3D grid point. This can be accelerated via octree sampling,
but still requires > 105 function evaluations for a mesh of
medium spatial resolution.

To mitigate this computational overhead, we note that we
are ultimately only interested in 3D reconstruction samples
obtained at the end of the denoising process S = S(1)

Θ (x1, I).
Thus, explicitly computing and rendering S(t)

Θ in every de-
noising step during inference is wasteful. Instead, we intro-
duce an additional “generator” neural network h

(t)
Θ that is

trained to imitate the rendering of an implicit surface con-
ditioned on pixel-aligned features. Concretely, h(t)

Θ directly
maps noise-dependent pixel-aligned features g(t)Θ (xt, I) to
an estimate of the denoised observation set

x̄
(t)
0Θ

(xt, I) = h
(t)
Θ

(
g
(t)
Θ (xt, I)

)
, (11)

where x̄
(t)
0Θ

should approximate x̂
(t)
0Θ

obtained via rendering

(Eq. (8)). h(t)
Θ is trained with the following objective:

Lgenerate
VLB =

∥∥∥x0 − h
(t)
Θ

(
g
(t)
Θ (xt, I)

)∥∥∥2
2
. (12)

During inference, we sample reverse process trajectories
x1:T ∼ pΘ(x1:T |I) using generated denoised estimates x̄(t)

0Θ
instead of rendering. We only explicitly compute 3D recon-
struction samples S = S(1)

Θ (x1, I) at the end of the reverse
process, using the final noisy observations x1. Marching
Cubes is simply applied once to extract the final mesh. In
general, a forward pass through the neural network h

(t)
Θ is

computationally cheaper than explicit rendering via sphere
tracing or Marching Cubes and rasterisation. The computa-
tional cost savings sum together over the reverse process,
which may involve hundreds of denoising steps.

Generating denoised estimates with the composition
of neural networks h

(t)
Θ ◦ g

(t)
Θ is reminiscent of the stan-

dard denoising network architecture used in conventional
DDPMs. However, we simultaneously apply both Lrender

VLB
and Lgenerate

VLB during training, resulting in a hybrid diffusion
framework that combines rendering and generation. This
ensures that g(t)Θ (xt, I) continue to be features that validly
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Figure 4. Qualitative comparison against deterministic monocular 3D human reconstruction methods that predict only surface
geometry: PIFuHD [50], ICON [63] and ECON [64]. Samples from our method generally exhibit greater geometric detail in uncertain
regions, while maintaining a high level of consistency with the input image in shaded renders. Moreover, deterministic methods often fall
back towards the mean of the training data distribution when faced with ambiguous and challenging inputs [8, 11, 37]; e.g. predicting
trousers from the back instead of a long skirt in row 3. This can be mitigated by learning to predict a distribution over reconstructions instead.

condition an SDF and h
(t)
Θ learns to decode these features

into the observation sets corresponding to the SDF.

3.4. Implementation Details

Our networks are trained with a synthetic training dataset,
consisting of HDRI-based illuminated renders of real body
scans from [45] and our own captured data. We use ∼ 5.9K
scans of ∼ 1.1K identities to render ∼ 450K training exam-
ples, each consisting of a 512× 512px image (with masked-
out background) and an observation set x0. The back-views
in x0 are created by inverting the z-buffer, and thus ren-
dering the scans back-to-front. [45] provides ground-truth
albedo textures, which we use to generate AF and AB in x0.
Our scans approximately capture albedo using even ambient
lighting. However, this is not perfect and causes our model
to sometimes yield shading artefacts in albedo predictions.

In addition to L∗
VLB, we use 3D losses on dp, ap and np

to improve training stability (see Suppl. Mat. for details).
During training, we render 32× 32px patches using differ-
entiable ray tracing [68] to form x̂

(t)
0Θ

for Lrender
VLB . We apply

Lgenerate
VLB on the full resolution generation x̄

(t)
0Θ

. gΘ and hΘ

are U-Nets [47] with 13 encoder-decoder layers each and
skip connections. Both networks double the filter size in
each encoder layer, starting from 64 up to 512 for gΘ and
up to 128 for hΘ. gΘ outputs a pixel-aligned feature map in
R512×512×256. fΘ and sΘ are MLPs, following [5].

At test time, we perform 100 DDIM [56] denoising steps.
At each step, we can choose to denoise via render or
generate and we ablate different strategies in Sec. 4.1. For
faster inference, we use Marching Cubes and rasterisation,
instead of sphere tracing, in render. If we render at higher

noise (large t), we run Marching Cubes on a 2563 grid. For
small t, we use 5123. The final denoising step always has
to be a render step, since generate does not produce 3D
geometry. However, we do not perform a full step of render
at t = 1, but only reconstruct S and omit rasterisation of x0.

4. Experiments

This section quantitatively compares DiffHuman with the
state-of-the-art photorealistic human reconstruction methods,
and visually demonstrates the quality of 3D samples condi-
tioned on internet images. Furthermore, we experimentally
ablate a number of crucial design choices. Please see the
Suppl. Mat. for additional results and experiments.
Test dataset and metrics. We use the test set of [5] for
numerical evaluation, and report both 3D metrics and image-
based (pixel-aligned) metrics.

The 3D metrics consist of bi-directional Chamfer distance
×10−3 (Ch. ↓), Normal Consistency (NC ↑), and Volumetric
Intersection over Union (IoU ↑). Iterative Closest Points is
used to first align 3D predictions with the ground-truth.

3D metrics are sensitive to the assumed camera model. In
contrast, image-based metrics partially ignore errors due to
an incorrect camera, instead focusing on surface structure.
This is better correlated with perceived quality. Image-based
metrics are computed by rendering 3D predictions with each
model’s assumed camera, and comparing the resulting im-
ages against ground-truth 2D renders. Specifically, we report
Structural Similarity Index (SSIM ↑), Learned Perceptual
Image Patch Similarity (LPIPS ↓) [73], and Peak Signal-to-
Noise Ratio (PSNR ↑) for albedo and shaded colour renders.
For normal renders, we report the angular error in degrees
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Figure 5. Visualisation of the reverse process. The denoising trajectory shows noisy samples xt and generated clean predictions x̄(t)
0Θ

at each timestep. Clean predictions are initially very simple, akin to many deterministic approaches, and become detailed over time. The
heatmaps show sample diversity, computed as the per-pixel variance of the observations in x̄

(t)
0Θ

over 10 samples. Diversity is low at the start
of the denoising process (t = 1000), but increases gradually as the samples diverge. Back diversity is, intuitively, greater than the front.

Render
frequency

Runtime 3D Alb. F / B Nor. F / B Sha. F
s / sample Ch. ↓ PSNR ↑ Ang. ↓ PSNR ↑

Per step 496 0.99 22.92 / 20.95 21.59 / 22.88 26.57
Per 10 steps 86 1.12 23.24 / 21.07 19.05 / 22.46 27.08
Per 25 steps 34 1.16 23.26 / 21.06 19.11 / 22.52 27.09
Final step 9 1.16 23.26 / 21.05 19.12 / 22.55 27.09

Table 1. Ablation of hybrid implicit surface diffusion. N = 5
samples are obtained using 100 DDIM [56] steps. We periodically
render every 1, 10 or 25 steps, or only in the final step. All other
denoising steps use generate. While per-step render performs
best on 3D metrics, predominantly using generate results in better
colour. The best and second best results are marked.

(Ang. ↓) and LPIPS. SSIM and LPIPS evaluate structure
rather than pixel-to-pixel errors. The latter can be mislead-
ingly low for over-smooth reconstructions; SSIM and LPIPS,
in our experience, better capture the perceived quality.

For our method, we report metrics using the best-of-N ∈
{1, 5, 10} reconstructions, following [7, 29, 53]. Specifically,
we obtain N different 3D samples for each test image, and
aggregate metrics using the numerical best reconstruction.
The Suppl. Mat. additionally reports mean metrics, and dis-
cusses the use of best-of-N vs. mean metrics for this task.
Baselines. We compare with a large number of recent
approaches to monocular 3D human reconstruction. Only
PHORHUM [5], S3F [10], and PIFu [49] reconstruct surface
color, but the latter does not decompose albedo and shading.
ARCH [22] and ARCH++ [17] do not reconstruct true sur-
face details but use normal mapping to enhance the visual
fidelity of results. For fairness, we evaluate the estimated
normals instead of true surface normals for these methods.
We also compare against a version of PHORHUM retrained
with our larger dataset, resulting in a strong baseline method.

4.1. Ablation Studies

Since we retrained PHORHUM [5] on our larger synthetic
dataset, we consider it as an ablation of our main design
choice: probabilistically modelling the reconstruction pro-
cess using a diffusion model that predicts distributions
over 3D human reconstructions. Even though the retrained
PHORHUM model turned out to be a very strong baseline,
DiffHuman is able to produce reconstructions with higher

visual fidelity and better numerical performance, especially
for unseen regions. Better performance for unseen regions
can be explained by our probabilistic approach being less
prone to averaging effects caused by the inherent aleatoric
[26] uncertainty in an ill-posed problem.

Additionally, we ablate our hybrid diffusion strategy: the
generator network h

(t)
Θ and denoising via generate instead

of render. In Tab. 1 we compare the use of render in
every denoising step, every 10, every 25, and only at the
final step (to extract the final mesh with Marching Cubes).
We use generate for all other steps. The performances
of all variants are comparable, suggesting that h

(t)
Θ has

learned to imitate render sufficiently well. Nonetheless,
Ch. is slightly better when using render in every step, while
colour metrics are improved with lower render frequency.
This is expected: render actually reconstructs 3D geome-
try whereas generate only synthesises observations. Errors
in this approximate synthesis operation may accumulate
over the course of the denoising process. On the other hand,
generate may also “fix” inconsistent colour extracted from
the signed-distance and colour field. Crucially, the use of
generate results in an up to 55× speed up at comparable
quality. We use the “final step” strategy for all remaining ex-
periments. The Suppl. Mat. shows that 3D samples obtained
via per-step and final step rendering are visually similar.

4.2. Reconstruction Accuracy

Tab. 2 and Tab. 3 compare recent methods in terms of image-
based metrics and 3D metrics respectively. DiffHuman yields
improved performance for image-based back metrics, es-
pecially with growing number of samples N , while front
metrics are stable for all N . This is because the back is unob-
served – more samples means a higher chance of finding the
correct reconstruction – while the front is visible and thus
variation is lower. We do not split observed and unobserved
parts for 3D metrics, but also find a global improvement
with higher N . Our retrained PHORHUM also performs
well, and often slightly better than N = 1. This is again
expected, as DiffHuman is conducting a much harder task:
while PHORHUM outputs a single solution, DiffHuman
models the distribution over possible 3D reconstructions.
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Method Albedo Front Albedo Back Normals Front Normals Back Shaded Front
SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ Ang. ↓ LPIPS ↓ Ang. ↓ LPIPS ↓ SSIM ↑ LPIPS ↓ PSNR ↑

PIFu [49] – – – – – – 26.69 0.17 28.49 0.26 0.83 0.16 24.57
PIFuHD [50] – – – – – – 23.04 0.10 26.33 0.22 – – –
Geo-PiFU [16] – – – – – – 30.17 0.19 31.93 0.26 – – –
ARCH [22] – – – – – – 32.20 0.20 33.96 0.27 0.72 0.23 19.28
ARCH++ [17] – – – – – – 27.20 0.17 30.62 0.24 0.83 0.17 22.69
PHORHUM [5] 0.85 0.12 22.23 0.76 0.22 20.19 20.53 0.11 23.55 0.20 0.85 0.13 24.01
PaMIR [74] – – – – – – 22.88 0.14 27.26 0.23 – – –
ICON [63] – – – – – – 23.57 0.14 26.98 0.23 – – –
ECON [64] – – – – – – 22.27 0.15 26.98 0.23 – – –
D-IF [67] – – – – – – 24.52 0.15 27.84 0.23 – – –
S3F [10] 0.60 0.36 15.33 0.63 0.39 15.99 23.76 0.25 23.72 0.27 0.61 0.33 17.38
PHORHUM (retr.) 0.85 0.11 22.57 0.73 0.21 19.74 18.41 0.12 22.82 0.19 0.86 0.10 25.23
DiffHuman: N = 1 0.84 0.12 22.44 0.71 0.23 19.77 19.70 0.14 24.34 0.18 0.89 0.10 26.81
DiffHuman: N = 5 0.86 0.11 23.26 0.74 0.22 21.05 19.12 0.13 22.55 0.16 0.90 0.10 27.09
DiffHuman: N = 10 0.86 0.11 23.47 0.75 0.21 21.24 18.91 0.13 22.34 0.15 0.90 0.09 27.15

Table 2. Quantitative comparison against other monocular 3D human reconstruction methods in terms of pixel-aligned metrics.
Since DiffHuman predicts a distribution over 3D reconstructions, we report metrics using the best of N = 1, 5 and 10 samples drawn for
each test image. We render only in the final denoising step, and use generate otherwise. The best and second best results are marked.

Method Ch. ↓ IoU ↑ NC ↑
PIFu [49] 3.21 0.61 0.77
PIFuHD [50] 4.54 0.62 0.78
Geo-PIFu [16] 4.98 0.54 0.72
ARCH [22] † 3.58 0.57 0.75
ARCH++ [17] † 3.48 0.59 0.77
PaMIR [74] † 2.88 0.61 0.77
PHORHUM [5] 1.29 0.73 0.85
ICON [63] † 2.44 0.62 0.78
ECON[64] † 3.48 0.61 0.76
D-IF [67] † 2.97 0.58 0.78
S3F [10] † 2.35 0.63 0.80
PHORHUM (retrained) 1.10 0.73 0.87
DiffHuman: N = 1 1.98 0.69 0.83
DiffHuman: N = 5 1.16 0.72 0.86
DiffHuman: N = 10 1.09 0.73 0.86

Table 3. Quantitative comparison against other monocular 3D
human reconstruction methods in terms of 3D metrics. Since
DiffHuman predicts a distribution over 3D reconstructions, we
report metrics using the best of N = 1, 5 and 10 samples drawn
for each test image. We render only in the final denoising step,
and use generate otherwise. The best and second best results
are marked. Methods marked with † use a parametric body model.

Furthermore, the 3D ground-truth is but one plausible recon-
struction in a monocular setting. Our method is able to yield
other 3D solutions that are input-consistent, but differ from
the ground-truth resulting in worse metrics. Nevertheless,
DiffHuman is competitive even for N = 1, and produces
qualitatively better reconstructions, as discussed below.

4.3. Qualitative Results and Diversity

We show the qualitative performance of DiffHuman in
Figs. 3 and 4 side-by-side with state-of-the-art approaches.
All competing methods only return one solution, while
DiffHuman allows us to sample multiple diverse results. We
show two reconstructions per image. Consistent with the nu-
merical results in Tab. 3, DiffHuman can shine the most when
reconstructing unobserved back-sides. Despite performing
well numerically, our retrained PHORHUM baseline does
not produce good reconstructions of uncertain regions, with

blurry colours and a lack of geometric detail. Methods that
explicitly estimate a back normal map [50, 63, 64] produce
over-smooth back reconstructions. In contrast, samples from
DiffHuman exhibit fine wrinkles and details both for ob-
served and unobserved regions, as shown by rows 1 and 2 in
Fig. 4. PHORHUM and S3F [10] tend to simply clone front
colours to the person’s back-side – a reasonable approach
for some but not all garments. E.g. in the 3rd row of Fig. 3,
the subject’s shirt is cloned onto the jacket in the back. In
contrast, DiffHuman reliably colours unobserved regions
without such artefacts. Moreover, we can obtain diverse re-
constructions, shown by the different dresses and hairstyles
in Fig. 1 and row 2 of Fig. 3. We visualise diversity over
the denoising process in Fig. 5. The Suppl. Mat. contains
additional qualitative results, as well as unconditional and
edge-conditioned samples from DiffHuman. These exhibit
greater diversity than image-conditioned samples, as RGB
images are strong conditioning signals.

5. Conclusion
We presented DiffHuman, a probabilistic method for pho-
torealistic 3D human reconstruction from a single RGB im-
age. We build on top of recent advances in diffusion-based
generative modelling and propose a novel pipeline for fast
sampling of 3D human shapes. Our model is numerically
competitive with the state-of-the-art, while improving the
visual fidelity and the level of detail of unseen surfaces.
Furthermore, we can sample multiple input-consistent but
diverse 3D human reconstructions. Our novel hybrid implicit
surface diffusion speeds up 3D sampling at test time com-
pared with diffusion-via-rendering [57, 59], giving a general
framework for computationally cheaper diffusion over im-
plicit 3D representations. A limitation of our method is that
it currently requires examples with known 3D geometry for
training, which constrains the amount of data that can be
used. In future work, we plan to overcome this by leveraging
data with partial 2D and 2.5D supervision.
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