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Abstract

Recent advances in generative models trained on large-
scale datasets have made it possible to synthesize high-
quality samples across various domains. Moreover, the
emergence of strong inversion networks enables not only
a reconstruction of real-world images but also the modifi-
cation of attributes through various editing methods. How-
ever, in certain domains related to privacy issues, e.g., hu-
man faces, advanced generative models along with strong
inversion methods can lead to potential misuses. In this pa-
per, we propose an essential yet under-explored task called
generative identity unlearning, which steers the model not
to generate an image of specific identity. In the gener-
ative identity unlearning, we target the following objec-
tives: (i) preventing the generation of images with a cer-
tain identity, and (ii) preserving the overall quality of the
generative model. To satisfy these goals, we propose a
novel framework, Generative Unlearning for Any IDEntity
(GUIDE), which prevents the reconstruction of a specific
identity by unlearning the generator with only a single im-
age. GUIDE consists of two parts: (i) finding a target
point for optimization that un-identifies the source latent
code and (ii) novel loss functions that facilitate the unlearn-
ing procedure while less affecting the learned distribution.
Our extensive experiments demonstrate that our proposed
method achieves state-of-the-art performance in the gen-
erative machine unlearning task. The code is available at
https://github.com/KHU-AGI/GUIDE.

1. Introduction
Recently, 2D or 3D Generative Adversarial Networks
(GANs) [4, 19–21] pre-trained on large datasets, e.g., FFHQ
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Figure 1. Given a single source image containing a specific iden-
tity, we remove that identity from the pre-trained 3D generative
adversarial network (e.g., EG3D [4]). Our method effectively un-
learns identity even from in-the-wild images where the source im-
age is absent in the pre-training dataset.

[19] or AFHQ [5], have drawn substantial attention due to
their remarkable generation performance and highly disen-
tangled representation space. However, their advancements
have raised privacy concerns [15], especially regarding the
potential misuse of generative models to represent and ex-
ploit individual identities. For instance, deepfakes [48, 49]
can create very believable images or videos of people in
made-up situations, causing major concerns about ethics
and privacy.

To alleviate privacy issues in generative models, machine
unlearning task has been actively studied. Machine un-
learning involves the process of selectively removing spe-
cific knowledge or erasing the influence of certain data from
the training dataset of pre-trained models. It is beneficial
especially when the data are harmful, private, or biased
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[11, 12, 26, 31]. Despite a focus on discriminative tasks in
most machine unlearning research, a few studies have ven-
tured into generative models, attempting to erase high-level
concepts such as socially inappropriate content or artistic
styles that present copyright challenges [9, 25].

Nevertheless, generative models still exhibit ongoing
privacy issues. Even if an identity of someone is not used
in the pre-training of the generative models, it can be easily
reconstructed in the pre-trained models via GAN inversion
models [29, 34, 35, 45, 46, 52]. Furthermore, the recon-
structed image can be manipulated or edited easily via im-
age editing methods [30, 39, 40]. To prevent potential ex-
ploits of an identity, it is necessary to erase a certain identity
from the pre-trained generative models.

To consider the above issue, we introduce an essential
task of unlearning any identity from the pre-trained 2D or
3D GANs [4, 20], called generative identity unlearning.
Unlike typical machine unlearning tasks, which focus on
unlearning the training samples our generative identity un-
learning task unlearns any identity on pre-trained GANs,
even if it was not shown during the pre-training. Our goal is
to remove the whole identity associated with a given single
image from the generator while minimally impacting the
overall performance of the pre-trained model.

To achieve our goal, we propose a novel generative
unlearning framework, Generative Unlearning for Any
IDEntity, named GUIDE. GUIDE replaces the source iden-
tity with an anonymous target identity, erasing the original
identity effectively. To this end, we propose a new explo-
ration method to determine an effective target latent code,
called Un-Identifying Face On latent space (UFO). UFO
utilizes the GAN inversion method [52] to embed the given
identity into the source latent, and then decides the target
latent using both the source and the average latent codes.
We empirically find that the proposed UFO can identify the
promising target to erase any given source identity robustly.

Given the source and target latent code, we update the
generator to shift from the source identity to the target iden-
tity. To this end, we propose three novel loss functions: (i)
local unlearning loss, (ii) adjacency-aware unlearning loss,
and (iii) global preservation loss. (i) guides our model di-
rectly shifting the source identity to the target identity. (ii)
utilizes other latent codes adjacent to the source and target
latent codes to effectively unlearn the entire identity from a
single image. To minimize side effects from the unlearning
process, (iii) additionally regularizes the generator to retain
generation performance for latent codes relatively far from
the source and target latent codes. Through comprehensive
experiments on diverse identities, including Random, InD,
and OOD, we confirm that GUIDE can successfully remove
the identity of the source image from the pre-trained gener-
ative model, and shows qualitatively and quantitatively su-
perior performances.

Our contributions can be summarized as follows:
• For the first time, we propose a novel task, generative

identity unlearning, which tackles machine unlearning in
generative models in the aspect of privacy protection. In
our task, we aim to prevent the pre-trained generative
models from synthesizing the given identity by utilizing
only a single image.

• For the effective and robust elimination of the identity, we
propose a novel method - Un-Identifying Face On Latent
Space (UFO). We configure the unlearning procedure by
formulating how to represent and shift the identity in the
latent space. We find that setting the extrapolated latent
code between the source and average latent codes as an
optimization target facilitates the unlearning procedure.

• We propose three loss functions - local unlearning loss,
adjacency-aware unlearning loss, and global preserva-
tion loss to effectively unlearn the identity from the pre-
trained model while less affecting the generation perfor-
mance on other identity.

• We show that our proposed framework, GUIDE achieves
state-of-the-art performance both qualitatively and quan-
titatively, through extensive experiments. We demon-
strate that GUIDE can remove the specific identity suc-
cessfully in the generative models while minimizing the
negative effect on other identities.

2. Related Work
Generative Models and Privacy Issue. In image synthe-
sis field, GAN-based generative models have achieved re-
markable performance not only in 2D [18–21, 32, 33, 36,
37] but also in 3D [4, 42, 47, 55, 56] domain. The applica-
tion of various image editing methods [30, 40, 50] to strong
generative models, people can easily generate edited images
of specific individuals and various artistic styles [38, 41], as
well as extract copyrighted content [3] without the permis-
sion of the individual or the original creator.

Recently, with the rise of the importance of AI ethics,
several works have addressed this issue [9, 25, 28, 44, 53].
ESD [9] erases specific visual concepts from diffusion
model by using negative guidance about the undesired con-
cepts. Kumari et al. [25] modifies the conditional distri-
bution of the model a specific target concepts to match the
anchor concept. Forget-Me-Not [53] fine-tunes U-Net to
minimize each of the intermediate attention associated with
the target concepts to remove. Additional works in GANs
[28, 44] focus on unlearning specific features, e.g., “Bang”,
“Hat” or “Beard” rather than forgetting specific identity.
The above methods primarily concentrate on the elimina-
tion of specific concepts or high-level features. In other
words, these cannot preclude models from generating spe-
cific individuals while maintaining the generation perfor-
mance of realistic human faces. Unlike the existing works,
our work targets to unlearn only specific individuals without
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shifting the overall distribution of generated images.

Machine Unlearning. Machine unlearning aims to selec-
tively forget specific acquired knowledge or diminish the
impact of certain training data subsets on a trained model.
Since previous research [8, 22, 51] shows that machine
learning models might accidentally share private informa-
tion when faced with certain attacks or inputs, machine un-
learning becomes crucial.

While previous machine unlearning is mainly focused
on supervised learning tasks [2, 6, 10–14, 43], the interest
in unlearning techniques within unsupervised learning, i.e.,
generative models, is growing [24, 28, 44]. However, most
of the existing methods need full dataset access for retrain-
ing, which is hard to acquire and computationally expensive
[2, 10, 14, 43]. For example, Kong and Chaudhuri [24] uti-
lizes data redaction and augmentation algorithms, which re-
quires a full training dataset. Despite the existence of a fea-
ture unlearning model [28] which does not need full dataset
access, unlearning only an individual feature is not enough
to forget a whole specific identity. To this end, we pro-
pose an algorithm that enables forgetting the specific iden-
tity only with a single image. Furthermore, our approach
distinguishes itself from existing research by applying un-
learning to unseen images, enabling the erasure of specific
identities without prior exposure to those images.

3. Method
Firstly, in Section 3.1, as shown in Figure 2, we introduce
the problem we aim to address, named generative identity
unlearning. In Section 3.2, we introduce un-identifying face
on latent space, which designates an appropriate target la-
tent for unlearning. Then, in Section 3.3, we introduce la-
tent target unlearning, along with our proposed novel losses
to unlearn the generator. The total overview of our method
is illustrated in Figure 3.

3.1. Problem Formulation

Given a set of images x depicting a specific identity, we ran-
domly select a single source image xu ∈ x as an exemplar
of the identity. Initially, using off-the-shelf inversion net-
work [52] E corresponding to the unconditional generator,
i.e., EG3D [4], we embed xu to the source latent code wu

in the latent space of EG3D:

wu = E(xu). (1)

Since EG3D [4] consists of the mapping network Map(·),
StyleGAN2 [19] backbone G(·) and the neural renderer
with a super-resolution module R(·), we can denote the re-
constructed image x̂ from wu as following:

x̂ = R(G(wu); c), (2)

: Same Identity           : Different Identity           : Image 𝑥! : Image 𝑥"

𝐺!

𝐺"

𝑅∘𝐺! (𝑤")
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Inversion Generation
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𝑅∘𝐺" (𝑤#)𝑤#𝑥#

𝐸 𝑅
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Figure 2. An illustration of generative identity unlearning. Upon
GUIDE, the identity of the image generated from wu, i.e., inver-
sion of the source image xu by inversion network E, should ex-
hibit a distinct identity when passed through the pre-trained gen-
erator Gs compared to the unlearned generator Gu. Furthermore,
other images xo, not used in unlearning but sharing the same iden-
tity with xu, also should vary an identity through GUIDE.

where c denotes camera poses. For convenience, we omit
the explicit notation of camera poses in this paper, i.e., x̂ =
(R ◦G)(wu). We target to derive an unlearned G, i.e., Gu,
from the pre-trained EG3D generator G, i.e., Gs, while fix-
ing Map and R. With proper unlearning, an image gener-
ated by unlearned EG3D using wu, i.e., x̂u = (R◦Gu)(wu)
should have a distinct identity from the image generated by
original EG3D using wu, i.e., (R ◦Gs)(wu).

In our task formulation, two considerations are
paramount. First, we aim to eliminate the entire identity
from the generator only utilizing a single image. To vali-
date this, we incorporate other multiple images xo ∈ x for
testing and its corresponding latent code wo = E(xo). By
utilizing xo, we can verify whether Gu has successfully un-
learned the identity as a whole, rather than just unlearning
the specific image xu. Second, we strive to maintain the
generation performance of the pre-trained model. To assess
this, we sample multiple images from fixed latent codes us-
ing both the unlearned and pre-trained generators. We then
estimate the distribution shift between the images generated
before and after the unlearning process.

3.2. Un-Identifying Face On Latent Space

The successfully unlearned model should not generate the
image with the identity of x, even when wu is used as a la-
tent. Consequently, we initiate our approach to manipulate
x̂u to be another image rather than the image with iden-
tity in x by unlearning G. To design the objective function
for unlearning, we first need to establish the objective for
unlearning, which involves defining the target image x̂t, de-
rived from wt, which the unlearned image x̂u, derived from
wu, should mimic after unlearning. While there exist var-
ious options for setting x̂t, e.g., a random face or even a
non-human image, we choose the mean face generated by
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Figure 3. An overview of GUIDE. Starting with a source image, we employ a GAN inversion network E, specifically GOAE [52], to
embed this image into the latent space of a pre-trained generative model, namely EG3D [4], obtaining the source latent code wu. The
target latent code wt is designated through the UFO process. To facilitate identity removal in wu, we shift its identity to match that of
wt with our Latent Target Unlearning (LTU) process. Three loss functions of LTU are designed for this purpose: (i) The generator is
optimized to produce an image from the source latent code, denoted as (R ◦ Gu)(wu), that is similar to the image from the target latent
code, represented as (R ◦Gs)(wt). (ii) To achieve unlearning across the entire identity, we consider latent codes near both the source and
target latent codes, denoted as wu,a and wt,a, respectively. (iii) To prevent model corruption during the unlearning process, we additionally
sample latent codes from a random noise vector, represented as wr,g , and optimize Gu to preserve its generation ability on wr,g .
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Figure 4. An illustration of Un-identifying Face On Latent Space
(UFO). We define the identity of the source latent code by subtract
it from the average latent code. We set the target latent code for
our unlearning process by measuring an extrapolation between the
source and average latent code with a fixed distance d.

the mean latent w̄ of Map, i.e., (R ◦ Gs)(w̄), as x̂t. This
setting is inspired by inversion methods [1, 29] which ap-
ply the identity to the mean face through inversion stages.
Since our goal is to de-identify the image, we argue that it is
intuitive and reasonable to send the image back to the mean
face, which is opposite to the inversion.

However, this simple approach might be problematic
when wu is close to w̄, where the unlearned image might
still resemble the original identity. To this end, we propose
a novel method named Un-identifying Face On latent space
(UFO), which can set x̂t robustly regardless of the distance
between wu and w̄, as shown in Figure 4. The following are
the processes of UFO: First, in the de-identification process,
we extract the identity latent wid = wu − w̄ by subtracting
w̄ from wu. Then we propose a process of en-identification,

setting the target in the opposite direction of the existing
wid to foster a more pronounced change in identity, creat-
ing an entirely new identity. In other words, we chose w̄
as the stopover point and established the final target point
at the extrapolation of wu and w̄. The finalized target point
can be expressed as:

wt = w̄ − d · wid

∥wid∥2
, (3)

where d is defined as the distance that balances un-
identification with preservation of the source distribution,
as determined by our empirical results. Finally, we can
set x̂t = (R ◦ Gs)(wt). We empirically demonstrate that
whether the given identity is in close proximity to the aver-
age latent code within the latent space or not, UFO sets the
desirable target latent code for the generative unlearning.

3.3. Latent Target Unlearning

After setting x̂t, we need to robustly design the unlearn-
ing process that can effectively make x̂u to be similar to
x̂t, while maintaining the generation performance of Gu.
We coin this process as Latent Target Unlearning (LTU),
which targets to unlearn images from the specific latent
while keeping generation results from other latent codes.
LTU utilizes the following three losses to achieve this goal:

Local Unlearning Loss. To force x̂u to be x̂t, we use the
widely-used reconstruction losses, i.e., Euclidean loss L2,
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Figure 5. An illustration of determining latent codes near a latent
code w in adjacency-aware unlearning loss. We first sample a la-
tent code wr,a which is derived from a random noise vector zr,a
via the mapping network Map(·), i.e. wr,a = Map(zr,a). Next,
we compute the direction between w and wr,a, and we scale it to
fall within range between 0 and αmax. This yields the distance
vector ∆ to compute the adjacent latent code wa = w +∆.

perceptual loss Lper [54], and identity loss Lid [7]. Using
Lrecon, we compare the tri-plane features Fu = Gu(wu)
and Ft = Gs(wt), derived from source and target latent
codes, respectively. The local unlearning loss is defined as:

Llocal(x̂u, x̂t) = λL2LL2(Fu, Ft)

+ λperLper(x̂u, x̂t) + λidLid(x̂u, x̂t).
(4)

By adopting Llocal, we can successfully un-identify the
given source identity in x̂t.

Adjacency-Aware Unlearning Loss. The above equation
considers only one pair of source and target latent codes.
However, images of a similar identity to the source iden-
tity can be obtained by introducing marginal perturbations
to the latent code. For the successful unlearning of the
given identity, we need to consider the neighborhood of
both the source and the target latent codes. Consequently,
as shown in Figure 5, we sample Na latent codes in the
vicinity of the wu. Specifically, with the scale αi sampled
from the uniform distribution with hyperparameter αmax,
i.e. αi ∼ U(0, αmax), we define the distances ∆ to com-
pute the adjacent latent codes as:

∆ = {αi ·
wi

r,a − wu

∥wi
r,a − wu∥2

}Na
i=1, (5)

where wi
r,a is a latent code sampled from the random noise

vector zir,a. Using these distances ∆, we can compute Na

latent codes for both the source and the target latent codes.
Similar to the local unlearning loss, we optimize the gener-
ated tri-plane features and images from wi

u,a = wu + ∆i

and wi
t,a = wt +∆i to be similar:

x̂i
u,a = R(F i

u,a), x̂
i
t,a = R(F i

u,a), (6)

Ladj(wu, wt) =
1

Na

Na∑
i=1

Llocal(x̂
i
u,a, x̂

i
t,a), (7)

where F i
u,a = Gu(w

i
u,a), F

i
t,a = Gs(w

i
t,a) denotes for tri-

plane features, and Llocal in Equation 4. From Ladj , we can
further consider possible variations of the source identity.

Global Preservation Loss. While the local unlearning
loss and adjacency-aware unlearning loss mentioned above
facilitate the removal of the source identity, we propose a
global preservation loss to mitigate side effects arising from
these unlearning loss functions. In the global preservation
loss, we constrain the generator to maintain generation per-
formance for latent codes that are relatively distant from
both the source and target latent codes.

To be precise, we sample Ng latent codes {wi
r,g}

Ng

i=1

from random noise vectors {zir,g}
Ng

i=1. We ensure that these
do not overlap with the adjacent latent codes used in the
adjacency-aware unlearning loss. Unlike the unlearning
loss functions, we find that adopting only Lper achieves
a balanced performance between identity shift and model
preservation. The global preservation loss is computed as:

x̂i
u,g = (R ◦Gu)(w

i
r,g),

x̂i
s,g = (R ◦Gs)(w

i
r,g),

Lglobal(Gu, Gs) =
1

Ng

Ng∑
i=1

Lper(x̂
i
u,g, x̂

i
s,g).

(8)

In summary, our final objective is:

Ltotal = Llocal + λadjLadj + λglobalLglobal. (9)

4. Experiments
4.1. Experimental Setup

Baseline. Since we propose generative identity unlearn-
ing task for the first time, to evaluate the effectiveness of
GUIDE, we constructed a simple baseline. In the baseline,
we used the target latent code as the average one for the un-
learning. During the unlearning, we updated the pre-trained
generator using Llocal as described in Equation 4.

Implementation Details. We built GUIDE based on the
3D generative adversarial network [4] pre-trained on FFHQ
dataset [19]. We used GOAE [52] as a GAN inversion net-
work to obtain the latent code from an image. The image
resolution we used in our experiments is 512x512 with a
rendering resolution of 128x128. We used Adam optimizer
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Figure 6. Qualitative results of GUIDE and the baseline in generative identity unlearning task. For the given source image each (the first
row), GUIDE and the baseline tried to erase the identity in the pre-trained generator. The images in the second and third row are the target
and unlearned images, respectively.

[23] with a learning rate of 10−4 in the unlearning proce-
dure. The hyperparameters used in the experiments were:
d = 30, αmax = 15, λL2 = 10−2, λper = 1, λid = 10−1,
Na = Ng = 2, and λadj = λglobal = 1.

Dataset and Scenarios. We evaluated GUIDE in three
scenarios: Random, where we set an unlearning target
image from a randomly sampled noise vector; InD (in-
domain), where we sampled an image from the FFHQ
dataset [19] used for pre-training; and OOD (out-of-
domain), where the unlearning target image was sampled
from the CelebAHQ dataset [18]. For InD and OOD, we
used the GAN inversion network to obtain corresponding
latent codes. For OOD scenario, we also conducted multi-
image test since there were multiple images with a same
identity in CelebAHQ. On the other hand, we performed
only single-image test in the Random and InD scenarios.

Evaluation Metrics. We evaluated GUIDE on two key
aspects. Firstly, we estimated the efficacy of our approach
in preventing the generator from producing images similar
to the unlearning target. We quantitatively measured simi-
larity of identities (ID) using face recognition network, Cur-
ricularFace [17], between images generated from the same
latent codes before and after unlearning. Moreover, we uti-
lized IDothers to estimate the erasure of a identity from im-
ages which are unseen during training but containing the
same identity of the source image. Secondly, we assessed
whether our method preserves overall generation perfor-
mance using the Fréchet Inception distance (FID) score
[16]. Different from the existing usages, we utilized two
variants of FID. First, we evaluated the distribution shift
of generated images the pre-trained generator and the un-

Source Others
O
ur
s

B
as
el
in
e

Figure 7. Qualitative results of GUIDE and the baseline on a multi-
image test using CelebAHQ dataset. We additionally utilized im-
ages that are unseen during unlearning, to show how thoroughly
erase the given identity.

learned generator via FIDpre. Furthermore, we measured
the distribution shift with respect to the real FFHQ images,
which we denoted as ∆FIDreal.

4.2. Main Experiment

4.2.1 Qualitative Results
We conducted a comparative analysis of GUIDE against the
baseline in the generative identity unlearning task. Initiat-
ing from the provided source image, we aimed to eliminate
the identity within the pre-trained generator, as illustrated
in Figure 6. We presented the resulting unlearned image,
along with the target image optimized in our loss functions.
Notably, GUIDE effectively erases identities whether syn-
thetic, presented during pre-training, or unseen.
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Methods Random In-Domain (FFHQ) Out-of-Domain (CelebAHQ)
ID (↓) FIDpre (↓) ∆FIDreal (↓) ID (↓) FIDpre (↓) ∆FIDreal (↓) ID (↓) FIDpre (↓) ∆FIDreal (↓)

Baseline 0.19 ± 0.09 11.73 ± 2.74 7.46 ± 2.20 0.16 ± 0.07 9.00 ± 1.15 4.15 ± 1.18 0.12 ± 0.06 9.52 ± 1.53 4.75 ± 0.89

+ extrapolated wt 0.12 ± 0.06 14.28 ± 3.34 9.63 ± 2.53 0.05 ± 0.06 12.78 ± 1.82 6.76 ± 1.41 0.02 ± 0.05 13.02 ± 3.20 7.31 ± 1.98

+ Ladj 0.14 ± 0.07 19.65 ± 4.90 13.94 ± 3.59 0.04 ± 0.06 13.53 ± 2.08 7.35 ± 1.70 0.01 ± 0.05 13.63 ± 3.52 7.83 ± 2.19

+ Lglobal (GUIDE) 0.14 ± 0.06 10.80 ± 2.70 6.64 ± 1.60 0.06 ± 0.06 8.00 ± 1.20 3.05 ± 0.81 0.03 ± 0.05 7.88 ± 1.96 3.34 ± 1.10

Table 1. Quantitative results of GUIDE and the baseline in the generative identity unlearning task, tested in a single-image setting using
one image per identity. Starting from the baseline, we gradually introduced components of GUIDE.

O
ur
s

B
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el
in

e

Source Synthesized from 𝐺!

Unlearned Synthesized from 𝐺"

Figure 8. Qualitative comparison between GUIDE and the base-
line on the preservation of the generation quality of other iden-
tities. GUIDE generates images almost identical to those syn-
thesized by Gs, whereas the baseline often results in noticeable
changes, e.g., beard shape, hairstyle change, hat.

To evaluate the thoroughness of identity removal, we
performed a multi-image test using identities from the Cele-
bAHQ dataset. This test involved assessing the ID similar-
ity not only for the unlearned image derived from the source
image but also for other images sharing the same identity.
As shown in Figure 7, GUIDE showed superior general-
ization for unseen images compared to the baseline. This
improvement is attributed to the adjacency-aware unlearn-
ing, which facilitated the unlearning process not just for the
given images but also for their neighborhood.

In Figure 8, we conducted an experiment to assess the ef-
fect of the unlearning process on other identities. While the
baseline had a significant impact on other identities through
the unlearning, GUIDE showed a relatively lesser effect.
We attribute this to the global preservation loss, which con-
strained the distribution shift on other latent codes.

4.2.2 Quantitative Results

In Table 1, we compared GUIDE to the baseline by gradu-
ally applying the components of GUIDE. By configuring wt

through extrapolation, we achieved performance improve-
ments in ID similarity across three scenarios. Notably, we
observed a significant difference in ID similarities in the

Methods ID (↓) IDothers (↓) FIDpre (↓) ∆FIDreal (↓)
Baseline 0.12 ± 0.06 0.28 ± 0.08 9.52 ± 1.53 4.75 ± 0.89

+ extrapolated wt 0.02 ± 0.05 0.15 ± 0.07 13.02 ± 3.20 7.31 ± 1.98

+ Ladj 0.01 ± 0.05 0.14 ± 0.07 13.63 ± 3.52 7.83 ± 2.19

+ Lglobal (GUIDE) 0.03 ± 0.05 0.17 ± 0.08 7.88 ± 1.96 3.34 ± 1.10

Table 2. Quantitative results of GUIDE and the baseline in the
generative identity unlearning in a multi-image setting, i.e., using
a single image for unlearning and the other images for testing. We
used CelebAHQ dataset for this test.

random scenario, indicating that in cases where a latent
code was close to w̄, i.e., as in the random scenario, there
was insufficient removal of identity. The effectiveness of
employing an extrapolation between the source latent code
and the average latent code was evident in such instances.

The adjacency-aware unlearning loss further enhanced
the unlearning an identity. This loss was designed to cover
the vicinity of the source latent code, thereby promoting un-
learning on the source latent code itself. Finally, the appli-
cation of the global preservation loss effectively reduced the
estimated distribution shift using FIDpre and ∆FIDreal.

Moreover, we conducted a multi-image test in an OOD
scenario. In this particular experiment, we introduced addi-
tional metric - IDothers aimed at quantifying ID similarities
for the unseen images associated with the source identity.
As presented in Table 2, the introduction of the adjacency-
aware unlearning loss resulted in a remarkable improve-
ment in IDothers, emphasizing the effectiveness of this un-
learning approach for handling unseen images.

4.3. Ablation Study

Effect of d in Determination of wt. We conducted an ab-
lation study by comparing target images derived from var-
ied values of d. Setting d to 0 denotes utilizing the w̄ as
wt in the unlearning process. For d < 0, we designated
wt as an interpolated latent code between the ws and the
w̄. Conversely, for d > 0, we employed an extrapolated
wt, as detailed in Section 3.2. As illustrated in Figure 9,
when d < 0, the target image closely aligns with the given
source images. However, as d deviates from 0, the quality
of the target image rapidly deteriorates, resulting in a pro-
nounced collapse in the distribution of the pre-trained gen-
erator. Consequently, the effectiveness of unlearning with
such target images diminishes in removing identity from the
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Figure 9. Ablation study to figure out the effectiveness of d. We
visualized target images corresponding to each source image with
different values of d. The target images were generated using tar-
get latent codes derived from interpolated latent codes, the average
latent code (d = 0), or extrapolated latent codes (d > 0). Interpo-
lation and extrapolation were carried out between the source and
the average latent code. In the case of interpolation, the center be-
tween the source and the average latent code was computed.

αmax ID (↓) IDothers (↓)
0 0.1205 ± 0.0603 0.2754 ± 0.0791

10 0.0892 ± 0.0620 0.2123 ± 0.0762

15 0.0878 ± 0.0375 0.2094 ± 0.0692

20 0.0900 ± 0.0538 0.2105 ± 0.0924

30 0.0926 ± 0.0561 0.2111 ± 0.0653

Table 3. Ablation study to figure out the effectiveness of Ladj and
αmax. We compared the performance based on how successfully
the given identity was erased, using ID and IDothers metric. The
row where αmax = 0 denotes the baseline. We used CelebAHQ
dataset in this experiment.

source images. Setting d to 0 might suggest the use of w̄ as
an effective target for erasing identity. However, our ab-
lation studies indicate that when the source image closely
aligns with w̄, the unlearning procedure fails to thoroughly
eliminate the identity. Conversely, when d > 0, wt con-
tains a distinct identity compared to the source image while
maintaining a consistent distance from w̄. Among the in-
stances where d > 0, our ablation studies reveal that setting
d = 30 achieves a balanced performance between effective
unlearning and preservation of the generation performance
of the pre-trained model.

Effect of αmax in Ladj . In Table 3, we scrutinized the
effectiveness of the adjacency-aware unlearning loss. To
ensure a fair comparison, we employed w̄ as wt in this ex-
periment, and we used Llocal and Ladj in the unlearning
procedure. Rows corresponding to αmax = 0 represent ex-
perimental results without the incorporation of Ladj in the
unlearning procedure. The introduction of Ladj resulted in
consistent performance gains in IDothers. This observation
highlights the efficacy of considering not only the pair of
source and target latent codes but also their surroundings
for unlearning the entire identity.

Llocal Lglobal FIDpre (↓) ∆FIDreal (↓)
✓ 9.52 ± 1.53 4.75 ± 0.89

✓ ✓ 4.63 ± 0.43 1.48 ± 0.29

Table 4. Ablation study to figure our the effectiveness of Lglobal.
We compared how preserved the performance of the pre-trained
model through the unlearning process, via FIDpre and ∆FIDreal.
We used CelebAHQ dataset in this experiment.

Effect of Lglobal. To assess the effectiveness of the global
preservation loss, a similar experiment was conducted as
the previous experiment, i.e., setting w̄ as wt. The results
are presented in Table 4. The application of Lglobal demon-
strated consistent performance improvements in both FIDpre
and ∆FIDreal. This suggests that imposing constraints on
the generator to maintain its generation performance in la-
tent codes distant from our primary focus is effective in re-
ducing distribution shifts in generative models.

5. Conclusion
In this paper, we introduced a novel task, referred to as gen-
erative identity unlearning, designed to address privacy con-
cerns in pre-trained generative adversarial networks. This
task requires thoroughly removing the identity of a single
source image from the pre-trained generator. To achieve
this, we proposed a new framework, GUIDE (Generative
Unlearning for any IDEntity). To unlearn the single iden-
tity, we first defined the target latent code via extrapolation,
moving away from the average latent by the pre-defined dis-
tance in the direction from the source to the average latent.
Using this, our GUIDE successfully unlearned the given
identity via Latent Target Unlearning (LTU), which opti-
mized the pre-trained model to preserve the overall genera-
tive ability but not to generate the same identity within the
local space. Experimental results demonstrated the effec-
tiveness of GUIDE with promising outcomes. We antici-
pate that our work will be widely applied in research or the
industry field, providing users with a sense of freedom from
privacy concerns through identity removal.
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