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Abstract

Neural field is an emerging paradigm in data represen-
tation that trains a neural network to approximate the given
signal. A key obstacle that prevents its widespread adoption
is the encoding speed—generating neural fields requires an
overfitting of a neural network, which can take a significant
number of SGD steps to reach the desired fidelity level. In
this paper, we delve into the impacts of data transformations
on the speed of neural field training, specifically focusing
on how permuting pixel locations affect the convergence
speed of SGD. Counterintuitively, we find that randomly
permuting the pixel locations can considerably accelerate
the training. To explain this phenomenon, we examine the
neural field training through the lens of PSNR curves, loss
landscapes, and error patterns. Our analyses suggest that
the random pixel permutations remove the easy-to-fit pat-
terns, which facilitate easy optimization in the early stage
but hinder capturing fine details of the signal.1

1. Introduction
Neural field is a form of data representation that parameter-
izes each target signal as a neural network that maps spa-
tiotemporal coordinates to the signal values [33]. For ex-
ample, a colored image can be represented by a model that
maps (X,Y) pixel coordinates to the corresponding (R,G,B)
values. This parameterization enjoys many advantages in
faithfully and efficiently representing high-dimensional sig-
nals with fine detail, and thus is being widely used for mod-
eling signals of various modalities, such as image [4], video
[10], 3D scene [19], or spherical data [8].

A key obstacle that prevents the widespread adoption of
neural fields is their training cost. To represent each da-
tum as a neural field, one must train a neural network using
many SGD iterations. For instance, NeRF requires at least
12 hours of training time on GPUs to represent a single 3D
scene [19]. Representing a set of data thus requires a con-
siderable amount of computation and time, making it very

*equal contribution
1code: https://github.com/effl-lab/DT4Neural-Field

difficult to develop practical applications of neural fields.
Many prior works view the “optimization bias” as a ma-

jor cause behind the long training time of neural fields [29].
In particular, the spectral bias of the SGD-based training is
known to bias the neural network to prioritize fitting the
low-frequency components of the target signal and leave
high-frequency components for the late stage of training
[22]. It has been observed that such a tendency greatly hin-
ders the neural fields from expressing natural data (e.g., im-
ages) with fine, high-frequency details [29, 37].

The prevailing strategy to mitigate such bias is to intro-
duce a useful prior (or inductive bias) that can help neutral-
ize the negative effects of the bias. One popular approach is
to develop new network components that bring a favorable
architectural prior, such as the Fourier features [19], sinu-
soidal activation [27], or spatial encoding [18, 20]. Other
works also attempt to introduce the prior in the form of ini-
tial parameters that have been meta-learned from a large set
of signals [26, 30]. Such meta-learned initializations tend
to have rich high-frequency spectra, which can help fitting
natural signals within a small number of SGD steps [30].

In this paper, we approach the problem from a different
angle. In particular, we ask the following question:

“Can we exploit the optimization bias of SGD,
instead of fighting against it?”

Precisely, we ask whether we can transform the datum in a
way that the optimization bias acts favorably in fitting the
transformed data with a neural field. If there exists such a
transformation, and if it admits an efficiently computable
inverse, we may be able to use the following strategy to
reduce the neural field training cost: we train a neural field
that expresses the transformed signal, and the original signal
can be recovered from the model by applying an inverse
transformation to the signal generated by the model (Fig. 1).
Contribution. As a first step to answer this question, we
conduct an extensive empirical study on how applying sim-
ple data transformations affect the computational cost of
training the corresponding neural field. In particular, we
compare the number of SGD steps needed to fit the trans-
formed data to a certain fidelity level (e.g., PSNR 50 for
images), with the steps to fit the original data. We try to-
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Figure 1. Overall pipeline. We consider a three-step procedure to train neural fields. (1) Apply a data transformation to the target datum.
(2) Train a neural field to fit the transformed data. (3) Reconstruct the original data by generating the transformed datum from the neural
field, and then applying the inverse of the data transformation. By selecting the data transformation carefully, we can significantly reduce
the computational cost required to train a neural field that achieves the desired quality of approximation.

tal seven different data transformations, from the one that
permutes the location of the pixels to the one that scales the
intensity values of each pixel.

From the experiment, we make a surprising observation:
we find that the random pixel permutation (abbr. RPP) pro-
vides a consistent acceleration on a range of datasets and
various neural field architectures with sophisticated encod-
ing schemes. The RPP is in fact the only data transformation
that provided acceleration on every experimental setups that
we considered. We find that the original data requires, on
average, ∼30% greater number of SGD steps to achieve the
similar fidelity level than the RPP data. As RPP tends to bias
the data toward high-frequency, it is quite counter-intuitive
that they can be fit faster than the original signals.

Why does the random pixel permutation accelerate neu-
ral field training? To explain this phenomenon, we articu-
late the following “blessings of no pattern” hypothesis:

Original data often have smooth, representative pat-
terns that facilitate easy optimization, particularly in
the early phase of learning. However, this smooth-
ness quickly transforms into an obstacle when aim-
ing for a sufficiently high level of fidelity. Random
pixel permutation removes these easy-to-fit patterns,
which accelerates optimization in the long run. (⋆)

To corroborate our hypothesis ⋆, we take an in-depth
look into the training dynamics of the original and the RPP

data. We find that, indeed the training speed on the RPP data
is slower than on the original data during the early train-
ing phase (Sec. 4.1). However, after training for a suffi-
cient number of epochs, the neural field trained on RPP data
finds a “linear loss highway” on which the optimization is
very easy; the optimization on original data fails to find one
(Sec. 4.2). Furthermore, we find that the errors in the RPP

images are more evenly distributed over pixels and lack vi-
sually distinguishable structures; errors in original images
tend to have periodic or axis-aligned patterns, which might

be the artifacts of the encoding scheme (Sec. 4.3).
To sum up, our contribution can be summarized as:

1. Through systematic study, we find that simple data trans-
formations can dramatically change the training speed of
neural field (×0.1–×20), even on state-of-the-art neural
fields architectures with sophisticated encodings [20].

2. We discover that random pixel permutations (RPP) pro-
vide consistent acceleration over fitting the original im-
age, providing ×1.08–×1.50 speedups.

3. We conduct an in-depth analysis which sheds light on
how RPP speeds up the training by removing the easy-
to-fit patterns that slow down the training eventually.

Despite the limitation of RPP that it may be difficult to
be applied for applications where generalization is critical,
our study has at least two potential impact areas. First, the
RPP itself may be useful in the applications of neural field
where a strong training fidelity is the core performance cri-
terion, such as data compression [24]. In fact, one of the
core challenges in neural-field-based data compression is
the slow encoding speed (see, e.g., COOL-CHIC [12]). Sec-
ond, our study provides a concrete starting point in devel-
oping a new data transformation that strikes the balance be-
tween the training speed and the generalizability.

2. General framework
The general framework of finding data transformations that
accelerate neural field training can be formalized as an op-
timization problem, as we describe in this section.

2.1. Formalisms

Suppose that we want to use the neural field parameteriza-
tion to approximate some signal x ∈ X . Here, the signal
space X is the space of all signals that have the same data
type. For example, we can let X be the set of all 256× 256
RGB images; in such case, we may have X ⊆ R256×256×3.

The data transformation T : X → X maps an element
in the signal space to another element. We define the trans-
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(a) Original (b) Random pixel permutation (c) Zigzag permutation (d) Inversion

(e) Standardization (f) Linear Scaling (t = 0.5) (g) Centering (t = 1) (h) Gamma correction (γ = 2.0)

Figure 2. Data transformations considered. In each subfigure, we visualize the data transformations by illustrating how the transformed
image (left) and the intensity histogram (right) looks like on a Kodak image.

formation space T as a set of data transformations on X
that has an inverse.

Our goal is to find a data transformation T that min-
imizes the training cost of fitting the transformed signal
T (x). To formalize this, we define the training cost

cost : X × T → R+. (1)

Here, the function cost(x, T ) measures the computational
burden required to train a neural field for T (x), whenever
its outcome is inverted back via T−1, approximates the orig-
inal signal x with the desired level of precision. The burden
may be measured in various ways, e.g., the number of SGD
steps, FLOPs, or wall-clock time. We note that the training
cost of x using T (·) need not be identical to the training cost
of fitting T (x) with the same precision, i.e.,

cost(x, T ) ̸= cost(T (x), Id), (2)

especially when the transformation involves scaling of the
signal. Also, the training cost may heavily depend on the
choice of neural field architectures, hardware type, and the
batch size—using a larger batch size tends to reduce the
number of steps until convergence [25], but it also requires
training with a larger memory.

Given these tools, we work to consider the optimization

minimize cost(x, T ), subject to T ∈ T ∗, (3)

where T ∗ ⊆ T is a subset of the transformation space that
satisfies some desired properties. The set T ∗ can be con-
figured in many different ways, to account for the expected
usages of the trained neural fields. This problem can also
be extended to a version where we have a probability distri-
bution of the signals x, and find a single transformation T
that minimizes the expected cost.
Scope of this paper. While the most general framework
is to solve the optimization (3) directly, the problem is in-
tractible unless we have an expressive, well-paramaterized

transformation space T ∗ that admits an effective optimiza-
tion method. In this paper, we focus on the proof-of-concept
that there exists some choice of T such that

cost(x, T ) < cost(x, Id), (4)

(Sec. 3), and deepening our understanding on when and why
such T (·) can accelerate the training (Sec. 4).

2.2. Example cases

Here are some examples desired properties of data transfor-
mation, and how they relate to practical applications. We
provide a more in-depth discussions in the ??.
Efficient invertibility. The inverse T−1 should be able to
be computed efficiently, e.g., by performing a linear oper-
ation. Ideally, one may wish to be able to combine the in-
verse transformation into the neural field by modifying the
parameters of the trained neural field directly. For instance,
if T (x) = −x, we can incorporate the inverse in the neural
field by negating the final layer weights of the neural field.
This property is useful whenever we expect many repeated
inferences of the neural field, e.g., for real-time interaction.
Retains interpolatability. We want our transform T to ad-
mit a principled way to sample the value of interpolated co-
ordinates from the neural field that approximates the trans-
formed signal. In some neural field applications, e.g., super-
resolution [4], this interpolating capability plays an essen-
tial role. On the other hand, some applications like data
compression do not involve any interpolation [24].

3. Data transformations vs. training speed

In this section, we compare the training cost of the neural
field training on various data transformation schemes. As it
turns out, there indeed exists a nice data transformation that
satisfies ineq. 4: the random pixel permutation (RPP).
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Architecture Dataset
Random

pixel perm.
Zigzag
perm.

Inversion Standardization
Linear Scaling Centering Gamma Correction

t = 0.5 t = 2.0 t = 1.0 t = 2.0 γ = 0.5 γ = 2.0

SIREN
Kodak 1.26× 17.90× 0.72× 2.20× 0.79× 1.39× 0.76× 0.97× 0.36× 0.80×
DIV2K 1.30× 21.74× 0.70× 2.36× 0.82× 1.45× 0.97× 1.22× 0.30× 0.90×
CLIC 1.08× 17.07× 0.68× 2.18× 0.76× 1.36× 0.87× 1.14× 0.24× 0.82×

Instant-NGP
Kodak 1.50× 0.86× 0.21× 0.45× 1.15× 0.75× 1.24× 0.80× 0.29× 0.38×
DIV2K 1.32× 0.80× 0.20× 0.61× 1.12× 0.64× 1.39× 0.97× 0.14× 0.33×
CLIC 1.35× 0.78× 0.07× 0.53× 1.03× 0.68× 0.99× 0.66× 0.12× 0.32×

Table 1. Acceleration factors of data transformations. We compare the average acceleration factor (eq. 5) of seven data transformations
under six different combinations of datasets and models. We take average of cost ratios, instead of ratios of averages, to avoid the statistic
being driven by a small number of outliers that require very long training time. The shaded figures denote the speedup.

3.1. Experimental setup

We focus on the task of 2D image regression. This choice
reduces the computational burden of fitting each datum,
so that we can make experimental validations on multiple
datasets and models with extensive hyperparameter tuning.

For the training cost, we use the number of SGD steps
until we reach the training PSNR over 50dB (a near-perfect
reconstruction for 8-bit images). The number of SGD steps
is an informative indicator of the total FLOPs and runtime
for any fixed choice of hardware, model architecture, and
data. Importantly, we tune the learning rate for each (trans-
formed) image, making it close to the scenario where all
settings have been optimized to minimize the runtime.

For each choice of an image and the data transformation,
we measure the acceleration factor, i.e.,

acc(x, T ) ≜
cost(x, Id)

cost(x, T )
. (5)

Other configurations are as follows.
Datasets. We use three different image datasets:
• Kodak. Consists of 24 different images from the Kodak

lossless true color image suite [11].
• DIV2K. Consists of 100 images in the validation split of

the DIV2K image super-resolution challenge (HR) [1].
• CLIC. Consists of 100 images from the validation split of

the dataset for the Challenge on Learned Image Compres-
sion 2020 (CLIC) [31]. There are total 102 images in the
validation split, but we removed two images that have a
sidelength shorter than 512 pixels.

We pre-process each image in the datasets as follows. Fol-
lowing BACON [14], we resize each image into 512×512
pixels by first center-cropping the image to a square with
sidelengths equal to the shorter sidelength of the original
image, and then resizing with the Lanczos algorithm. Next,
we convert the image to grayscale. Finally, we apply sRGB
to Linear RGB operation, as in Instant-NGP [20].

The resulting images have 512×512 pixels (thus total
218 pixels) with intensities lying in the interval [0, 1].
Models. We use two different neural field architectures.
• SIREN. A classical architecture that uses multi-layered

perceptrons with sinusoidal activation functions [27]. We

configure the model to have three hidden layers with 512
neurons in each layer and output dimension 1. We use the
default frequency scaling hyperparameter ω0 = 30.

• Instant-NGP. A more recently proposed neural field with
multi-resolution hash encodings [20]. We use the default
setup for the image regression, with the maximum hash
table size and 16-bit parameters.

Training. We use full-batch gradient descent, i.e., the batch
size 218. This batch size, in general, minimizes the num-
ber of SGD steps required to fit the target image. We note
that we sample directly from the coordinate grid, instead of
sampling from interpolated coordinates (as in, e.g., [20]).
Hyperparameters. We tune the learning rate using the grid
search. For SIREN, we tune the learning rate in the range
{2−8, . . . , 2−16}. For Instant-NGP, we tune the learning
rate in the range {2−4, . . . , 2−15}.
Data transformations. We consider total seven elementary
data transformations (Fig. 2): Two transformations that only
change the location of the pixels (random pixel permutation,
zigzag permutation), and five transformations that change
the intensity values of each pixels (inversion, standardiza-
tion, linear scaling, centering, and gamma correction).
• Random pixel permutation (RPP). We randomly permute

the location of each pixels. This transformation generally
increases the frequency spectrum of the image.

• Zigzag permutation. We sort all the pixels in the ascend-
ing order of their intensities. Then, we place the sorted
pixels in the zigzag order, starting from the upper left cor-
ner. This produces a low-frequency image.

• Inversion. We invert the intensity of each pixel, i.e., per-
form z 7→ 1− z on each intensity values.

• Standardization. We measure the mean µ and standard
deviation σ for the intensities of all pixels in the image.
Then we standardize the intensities via z 7→ z−µ

σ .
• Linear scaling. We scale the intensities of each pixel by t

without any centering, i.e. z 7→ tz.
• Centering. We center the interval [0, 1] at zero and scale

the intensities by t, i.e., z 7→ t(z − 1/2).
• Gamma correction. We nonlinearly scale the intensity of

each pixels as z 7→ z1/γ . Choosing γ > 1 makes images
brighter, and γ < 1 makes darker.
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(b) RPP
Figure 3. Frequency spectra of original vs. RPP. We compare the
average DCT coefficients of the original and RPP Kodak images.
Upper left region denotes the low-frequency, and the lower right
region denotes the high-frequency.

3.2. Results

We report the average acceleration factors in Tab. 1. From
the table, we make several observations:
• RPP provides a consistent acceleration over the original

image; see Sec. 4 for an in-depth analysis.
• The zigzag permutation works tremendously well on

SIREN—speeding up training by over ×17—but slows
down training Instant-NGP. We hypothesize that this is
due to the axis-aligned inductive bias imposed by the spa-
tial grid encoding; see Sec. 4.3 for more discussion.

• Inversion consistently slows down the training. This fact,
ironically, implies that inversion might have been an ef-
fective accelerator if all “natural images” looked like the
color-inverted images.

• Scaling up the intensities tends to have opposite effects
on different architectures. Scaling up speeds up training
in SIRENs, but slows down in Instant-NGPs.

• Gamma correction slows down the training, regardless of
taking the power of 2 or 1/2. We suspect that this is due to
the precision errors from taking powers. In other words,
excessive scaling operations may not be helpful in accel-
erating the training.

4. A closer look at the random permutation
We now focus on a specific type of data transformation: the
random pixel permutation (RPP). The RPP relocates each
pixel to a new random location, i.e.,

(coordsi, valuesi) 7→ (coordsπ(i), valuesi) (6)

for some random permutation π(·). The marginal distribu-
tions of the input coordinates or the output values remain
the same. As we have seen in Tab. 1, the RPP transforma-
tion accelerates the fitting of the corresponding neural field,
which is very unexpected and difficult to explain.
Why is this strange? From the perspective of the spectral
bias, the RPP operation should have slowed down the train-
ing speed, instead of accelerating it. As demonstrated by
Rahaman et al. [22], typical neural networks first rapidly fit
the low-frequency components of the target signal, and fit

0 200 400 600 800 1000 1200 1400 1600
Step

0

10

20

30

40

50

PS
NR

Original
RPP

Figure 4. PSNR curves for a single Kodak image. The original
image (orange) excels during the early stage of training but the
RPP image quickly reaches PSNR 50 in the middle of the training.

Target PSNR
Ratio

30dB 50dB
Original 105.8 1371.4 0.08
Random pixel perm. 851.8 1100.5 0.79

Table 2. The number of steps to reach PSNR 30dB and 50dB.
We measure the average steps to reach moderate and high PSNR
levels over Kodak images, and report the average ratio.

the high-frequency components much later. The RPP trans-
formation, in this sense, should have been detrimental to
the training. In fact, RPP images tend to have more higher-
frequency components than the original images. In Fig. 3,
we provide the average discrete cosine transform (DCT) co-
efficients of the original and RPP images; for visualization,
we raise the coefficients to the power of 0.03, similar to
[35]. We observe that the original image is more biased to-
ward low-frequency than RPP. However, we also observe
that RPP images fit faster than the original images.

In the remainder of this section, we identify three dif-
ferent aspects that the training dynamics of RPP images are
critically different from that of original images. These as-
pects, when put together, support our “blessings of no pat-
tern” hypothesis (⋆) that RPP accelerates training by re-
moving easy-to-fit patterns that can be harmful to reaching
a high level of fidelity. In particular, we show that
• RPP is slow to reach moderate PSNR levels, but is fast to

reach high PSNR (Sec. 4.1).
• there is a linear path that connects the moderate-to-high

PSNR points in the RPP loss landscape (Sec. 4.2).
• model trained on RPP images tends to have less structured

error, while vanilla training leads to error patterns that
reflect the underlying encoding schemes (Sec. 4.3).

4.1. The PSNR curve: Slower to approximate well,
but faster to approximate “very well”

First, we observe that RPP images tend to achieve moderate
PSNRs (e.g., 30dB) much later than the original images, but
they quickly reach high PSNRs (e.g., 50dB) afterwards.

In Fig. 4, we provide an example plot of fitting a SIREN
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on a natural image from the Kodak dataset. From the figure,
we can immediately make the following observations:
• RPPs are slow starters. The training PSNR of the original

image quickly arrives at ∼ 30dB the early stage of train-
ing, even before taking 300 SGD iterations. On the other
hand, the PSNR of the RPP image remains very small,
under 15 dB at the similar number of steps.

• Explosive surge in later stage. After staying at a low
PSNR level (under 20 dB) for a while, the PSNR of
RPP images bursts explosively. The PSNR jumps from
∼ 15dB to 50dB in less than 100 SGD steps. On the other
hand, the PSNR curve of the original image oscillates
wildly at 30–35dB level for a long time, and gradually
reaches the 50dB at around 1600 steps.
These observations are consistent over the choice of the

target image; we provide a comprehensive collection of fig-
ures in the supplementary materials.

For a more quantitative comparison, we compare the av-
erage number of SGD steps to arrive the PSNR of 30dB and
50dB for the original and RPP images (Tab. 2). Again, we
use the images from the Kodak dataset and fit with SIRENs.

We observe that, for original images, the number of steps
to reach 30dB is around 100 steps, while the number of
SGD steps to reach the 50dB is over 1300 steps. That is,
it takes almost 13× more steps to reach the high PSNR than
for moderate PSNRs. On the other hand, for RPP images,
it takes over 800 steps to reach the moderate PSNR level,
while it takes only 300 more steps to reach the high PSNR.

4.2. Linear paths in the loss landscape: RPP images
find a “linear expressway”

From the previous observation, it seems likely that, for RPP
images, there may exist an expressway in the neural field
parameter space that connects the moderate-PSNR parame-
ter with the high-PSNR parameter; on this expressway, the
SGD may not encounter too many hills to circumvent, and
may mostly follow a smooth linear path.

To validate this intuition, we visualize the loss landscape
of the SIREN trained on Kodak images. In particular, we
capture two different phases of training.
1. Early phase. We plot the linear path from the initializa-

tion to 30dB point, i.e., the parameter that first achieves
PSNR 30dB during the training (Fig. 5)

2. Late phase. We plot the linear path from the 30dB point
to the PSNR 50dB point (Fig. 6).

To generate such visualization, we project the parameter
space into a two-dimensional space, as in [13]. Unlike [13],
we fix one axis to a directional vector between two param-
eter points that we want to capture (e.g., 30dB point and
50dB point); the other axis has been decided randomly.2

During the early phase (Fig. 5), we observe that the loss
landscape of RPP is quite hostile; unlike in original images,

2A similar method has been considered by Goodfellow et al. [7].

(a) Elevated view; original (b) Elevated view; RPP

(c) Side view; original (d) Side view; RPP

Figure 5. SIREN loss landscape: from initial point to 30dB
point. For original and RPP versions of a Kodak image, we plot
the loss landscape between the initial point and the parameter that
achieves PSNR 30. For RPP, the minima is much narrower and
lacks a clear pathway toward it, unlike in the original image.

(a) Original (b) RPP

Figure 6. SIREN loss landscape: from 30dB point to 50dB
point. For original and RPP versions of a Kodak image, we plot
the loss landscape between the parameters that first achieve PSNR
30 (■) and PSNR 50 (⋆), respectively. The loss barriers between
two minima are dramatically different; 15.3dB for the original im-
age, and 28.3dB for the RPP (averaged over all Kodak images).

the minima that 30dB point belongs to is quite narrow and
there is no clear pathway toward the 30dB point.

During the late phase (Fig. 6), for the RPP image, once
the parameter arrives at the minima, there exists a linear
path that connects the 30dB point to the 50dB point. If we
measure the loss barrier, i.e. the maximum loss on the linear
path between 30dB and 50dB points, it is as low as 28.3dB
for the RPP versions of Kodak images. For original images,
the loss barrier is quite high (15.3dB).

4.3. Patterns in the error: The errors are less struc-
tured in RPP images

Another interesting property of RPP is that the errors that
the neural field makes are more evenly distributed among
the pixels, lacking a clearly distinguishable pattern. It turns
out that the whiteness of the RPP error can help generat-
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(a) Original

(b) RPP
Figure 7. Example reconstructions at a target PSNR value of 30 (SIREN). Random pixel permutation enables the network to prioritize
the restoration of high-frequency, fine details, whereas the original representation tends to steer the network toward restoring low-frequency
components initially. While this behavior may pose challenges during the early stages of training, it ultimately facilitates achieving visually
more plausible reconstructions much earlier than the original representation.

Target PSNR
20 30 40 50

Original 10.51e-04 23.68e-06 19.46e-08 5.90e-10
Random pixel perm. 5.68e-04 5.89e-06 7.59e-08 5.81e-10
Average ratio 2.03× 5.20× 5.80× 1.55×

Table 3. Loss variance over pixels. We measure the average pixel
loss variance in the SIREN trained on Kodak dataset, measured at
various levels of PSNR. The “average ratio” denotes the mean of
Var(original)/Var(RPP). RPP has a lower loss variance at all PSNRs.

ing more visually sharp and satisfactory images than neural
fields trained on original images.

In Tab. 3, we measure the pixel loss variance in both orig-
inal and RPP images trained to various target PSNR levels.
From the table, we observe that the loss variance is up to
5.80× larger in the neural fields trained on the original im-
ages than on RPP images. This implies that, for original im-
ages, some pixels in the original image are fit much faster
than other pixels. Putting that differently, the neural field
trained on the unpermuted images tends to prioritize learn-
ing a specific type of patterns first, while the neural field
trained on RPP images does less so.

Exactly what pattern is RPP avoiding to fit? In Figs. 7
and 8, we compare the images generated by the neu-
ral fields trained on original and RPP images on SIREN
and Instant-NGP, respectively. In Fig. 7, we observe that
SIRENs trained on original images have thicker wavy pat-
terns, which is likely to be a consequence of the sinusoidal
encoding structure of SIREN. The models trained on RPP

images, on the other hand, have much sharper texture with
fine-grained noise. A similar phenomenon is observed in

the case of Instant-NGP (Fig. 8). Here, we observe that the
models trained on original images attain axis-aligned arti-
facts; black (or white) horizontal (or vertical) blocks appear
in the rendered images. On the other hand, the error is much
less structured in models trained on RPP images.

5. Related work

Optimization bias of neural networks. It has been well
known, both theoretically and empirically, that SGD-based
optimization algorithms are biased toward learning “sim-
pler solutions,” for various notions of simplicity. A promi-
nent example is the spectral bias, a tendency to prioritize
learning lower-frequency components of the target function
[3, 22]. Other types of biases have also been studied in the
literature: SGD tends to prefer learning smaller-norm solu-
tions [9, 21] and low-rank solutions [32, 34]. These works
mostly focus on explaining how such simplicity biases are
advantageous in learning a solution that can generalize well
(see, e.g., [23]). Our work, in contrast, describes how such
bias can be disadvantageous in terms of the training speed,
instead of the generalization performance.
Random labels and memorization. The question of how
neural nets behave when trained on random labels has been
actively studied since its connection to the generalization
capability of deep learning has been established [38]. Arpit
et al. [2] finds that neural networks tend to learn simple pat-
terns first and then memorize the unexplainable samples—
such as random label and data—in the later phase. A more
recent study argues that training on randomly labeled data
can actually be advantageous [17]; pre-training on random
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(a) Ground Truth

(b) Original

(c) RPP
Figure 8. Example reconstructions at a target PSNR value of
20 (Instant-NGP). Similarly to the SIREN case, we observe that
Instant-NGPs trained on the RPP images have much less visually
distinguishable artifacts. The models trained on original images
tend to have axis-aligned blocks of error, which is likely to have
originated from the spatial grid encoding of the model.

data helps fitting the training data, when eventually fine-
tuning on the dataset with correct labels. Different from
these works, our work discovers how random label can be
beneficial in the neural field context, without any consider-
ation on further fine-tuning.

Faster training of neural fields. Other than the works de-
scribed in the introduction, there have been many other at-
tempts to accelerate the neural field training by designing
better encoding schemes. Positional encodings [5, 19, 27,
29] and spatial grids [6, 16, 18, 20] are the most popular op-
tions, and some works also use tree-like structures [28, 36].
Our work is complementary to this line of works, and ar-
gues that transforming the data in the original data space can
provide auxiliary training speed boosts. We also note that
a concurrent work also aims to boost the training speed by

modifying the given data [15]. In particular, [15] finds that
separating the visual signals into many sub-segments can
facilitate the convergence of SIRENs and proposes a meta-
learning algorithm to speed up training. Our work considers
a more general class of data transformations, and focus on
understanding how transformations accelerate training.

6. Conclusion

Learning neural fields poses a unique challenge, as the
primary objective is to overfit to the given data—an aim
contrary to the typical goals in other problem domains
where learning attempts to achieve regularization to pre-
vent overfitting. In our study of this distinctive problem,
we discovered that certain data transformations can expe-
dite the network’s acquisition of fine details more rapidly
than when learning from the original images. Specifically,
we demonstrated that random pixel permutations, which
explicitly make learning low-frequency details more chal-
lenging, guide the network away from fixating on low-
frequency components. This resulted in significantly en-
hanced PSNR within a given computational budget and, fur-
thermore, yielded visually more plausible reconstructions
at the same PSNR level. Our insights are substantiated by
thorough empirical evaluations.
Limitation & future direction. A notable limitation of our
approach is that its direct applicability may be constrained
when learning neural networks for other problem domains
such as classification and regression, where regularization
is crucial. As a future work, we aim to conduct more com-
prehensive studies to understand how data transformations
affect both trainability and generalization of neural fields
(and other neural networks). Such exploration may offer
new insights on how to modify the given workload to jointly
optimize the training cost and the model performance.

Another, more narrowly scoped future direction will be
to gain a more concrete, theoretical understanding on the ef-
fect of random pixel permutations on the training dynamics
of neural fields. Although our empirical analyses provide
some insights into how RPP can help accelerate the training,
we are yet to fully understand why fitting the easy patterns
slows down the later phase of training. Deeper understand-
ings on this matter may lead to impactful lessons applicable
to any deep learning domain that involves long training.
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