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Abstract

Online continual learning suffers from an underfitted so-
lution due to insufficient training for prompt model update
(e.g., single-epoch training). To address the challenge, we
propose an efficient online continual learning method us-
ing the neural collapse phenomenon. In particular, we in-
duce neural collapse to form a simplex equiangular tight
frame (ETF) structure in the representation space so that
the continuously learned model with a single epoch can bet-
ter fit to the streamed data by proposing preparatory data
training and residual correction in the representation space.
With an extensive set of empirical validations using CIFAR-
10/100, TinylmageNet, ImageNet-200, and ImageNet-1K,
we show that our proposed method outperforms state-of-
the-art methods by a noticeable margin in various online
continual learning scenarios such as disjoint and Gaus-
sian scheduled continuous (i.e., boundary-free) data se-
tups. Code is available at https://github.com/
yonseivnl/earl.

1. Introduction

A growing interest in continuous learning (CL) involves
training the model using continuous data streams. Mostly,
CL research has focused on the offline scenario that assumes
the model can be trained in multiple epochs for the current
task [8, 42, 54]. However, substantial storage and compu-
tational complexity are required to store all data to train a
model for multiple epochs. Recently, there has been signif-
icant interest in online CL as a more realistic set-up with a
lower computational overhead of allowing a single train-
ing pass through the data stream [1, 7, 27]. Learning a
model in streamed data by a single training pass is chal-
lenging, since the temporal distribution at each intermediate
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time point is likely imbalanced, even if the overall distribu-
tion of a dataset is balanced. Imbalanced data distributions
would cause several problems, such as bias towards the ma-
jor classes [24, 61] and the hindrance to generalization [53].

Recently, minority collapse [14], the phenomenon in
which the angles between classifier vectors for minor
classes (i.e., the classes that have a relatively small number
of samples) become narrow, has been proposed as a funda-
mental issue in training with imbalanced data, making the
classification of minor classes considerably more challeng-
ing. In contrast, for balanced data sets, it was proven that
classifier vectors and the last layer activations for all classes
converge into an optimal geometric structure, named the
simplex equiangular tight frame (ETF) structure, where all
pairwise angles between classes are equal and maximally
widened when using cross entropy (CE) [23, 30, 52, 65] or
mean squared error (MSE) [32, 41, 48, 64] loss. This phe-
nomenon is called neural collapse [34].

Although neural collapse naturally occurs only in bal-
anced training, several recent studies attempted to induce
neural collapse in imbalanced training to address the minor-
ity collapse problem using a fixed ETF classifier [55, 62].
When employing a fixed ETF classifier, the output features
are pulled toward the corresponding classifier vector during
training, since the classifier is fixed. More recently, research
has also been extended to induce neural collapse in offline
CL using a fixed ETF classifier [56].

However, unlike offline CL, there are a number of chal-
lenges in inducing neural collapse in online CL, even with a
fixed ETF classifier. The prerequisite for neural collapse is
reaching the ferminal phase of training (TPT) by sufficient
training [34]. In offline CL, the model can reach the TPT
phase for each task by multi-epoch training. In contrast,
a single-pass training constraint often prevents the online
CL from reaching TPT. As shown in Fig. 1, the offline CL
quickly reaches TPT shortly after the arrival of novel task
data, while online CL (vanilla ETF) does not.
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Figure 1. Comparison of training error rates between online CL and offline CL in the CIFAR-10 disjoint setup, where two novel classes are
added every 10k samples. Vanilla ETF refers to a method where both preparatory data training and residual correction are removed from

our proposed EARL.

Recently, the importance of anytime inference in online
CL has been emphasized [6, 17, 27, 36], since a model
should be available for inference not only at the end of a
task, but also at any point during training to be practical for
real-world applications. Hence, not only reaching TPT but
also achieving faster convergence is necessary when using
neural collapse in online CL.

However, we observe that the phenomenon in which the
features of the new class become biased toward the features
of the existing classes [5] hinders fast convergence of the
last-layer features into the ETF structure, which we call
the ‘bias problem.” When features of old and new classes
overlap (i.e., biased) and are trained with the same objec-
tive, well-clustered features of old classes disperse (or per-
turb) [5], leading to destruction of the ETF structure formed
by features of the old classes.

Contributions. To address the bias problem, we train
the model to distinguish out-of-distribution (OOD) samples
from existing classes’ samples. Specifically, we synthesize
preparatory data that play the role of OOD data, by ap-
plying negative data augmentation [25, 47, 50] to samples
from existing classes, refer to Sec. 4.2 for details. Since
samples from new classes are OOD in the perspective of ex-
isting classes, training with preparatory data encourages the
representation of new classes to be distinguished from ex-
isting classes in advance, thereby mitigating the bias prob-
lem. This promotes fast and stable convergence into the
ETF structure.

Despite these efforts, however, the continuous stream of
new samples cause ongoing data distribution shifts, which
prevent the model from reaching the TPT and fully con-
verging to the ETF structure. To address this, we propose to
store the residuals between the target ETF classifier and the
features during training. During inference, we correct the
inference output using the stored residual to compensate for
insufficient convergence in the training.

By accelerating convergence by preparatory data train-
ing and additional correction using residual, we noticeably

improve anytime inference performance than state of the
arts. We name our method Equi-Angular Representation
Learning (EARL). We empirically demonstrate the effec-
tiveness of our framework on CIFAR-10, CIFAR-100, Tiny-
ImageNet, Imagenet-200, and ImageNet-1K. In particular,
our framework outperforms various CL methods by a sig-
nificant margin (+4.0% gain of A,,. in ImageNet-1K).
We summarize our contributions as follows:

* Proposing to induce neural collapse for online CL.

* Proposing ‘preparatory data training’ to address the
‘bias problem’ that the new classes are biased toward
the existing classes, promoting faster induction of neu-
ral collapse.

» Proposing ‘residual correction’ scheme to compensate
for not fully reaching neural collapse at inference to fur-
ther improve anytime inference accuracy.

2. Related work

Continual learning methods. Various continual learn-
ing methods are being researched to prevent forgetting
past tasks, broadly categorized into replay, parameter isola-
tion, and regularization. Replay methods involve storing a
small portion of data from previous tasks in episodic mem-
ory [1, 2, 20, 27, 60] or storing a generative model trained
on data from previous tasks [39, 46]. By replaying the
samples stored in episodic memory or generated from the
stored generative model, the model prevents forgetting past
tasks during subsequent learning of novel tasks. Further-
more, Boschini et al. [3], Buzzega et al. [4], Li and Hoiem
[29], Wu et al. [54] used replay samples to distill informa-
tion about past tasks.

Regularization methods [26, 28] apply a penalty to the
change of important model parameters during the process
of learning new tasks, allowing the model to retain infor-
mation about previous tasks. Parameter isolation meth-
ods [10, 44, 63] expand the network by allocating specific
layers for each task. This enables the network to store in-
formation about individual tasks and preserves their knowl-
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edge without forgetting.

Neural collapse. Neural collapse is a phenomenon in
which the activations of the last layer and the classifier vec-
tors form a simplex equiangular tight frame (ETF) struc-
ture at the terminal phase of training (TPT) in a balanced
dataset. [34]. Neural collapse has been demonstrated as the
global optimum of balanced training using cross entropy
(CE) loss [23, 30, 52, 65] and MSE [32, 41, 48, 64] loss
functions, within a simplified model focused solely on last-
layer optimization. Inducing neural collapse in imbalanced
datasets poses challenges due to minority collapse [14]
where minor classes are not well distinguished.

However, using a fixed ETF classifier, it is empirically
and theoretically shown that neural collapse is induced even
in imbalanced datasets [55]. Continual learning also needs
to address imbalanced data since there is an imbalance in
the data between novel classes and existing classes. There-
fore, in offline CL, NC-FSCIL [38, 56] used a fixed ETF
classifier to induce neural collapse. Meanwhile, online CL
often fails to induce neural collapse compared to offline
CL, e.g., FSCIL, since it lacks sufficient training in multiple
epochs, causing failure to reach TPT.

Please refer to the supplementary material for more com-
prehensive literature reviews including topics related to
anytime inference.

3. Preliminaries

We here describe the problem statement for the online con-
tinual learning (Sec. 3.1), neural collapse (Sec. 3.2), and the
equiangular tight frame classifier (Sec. 3.3).

3.1. Problem Statement of Online CL

Continual learning (CL) aims to learn from a stream of data,
rather than a fixed dataset as in standard learning. Formally,
given a sequence of tasks 7 = (T3, T3, . . .) where each task
T; is a training dataset D; = {(x(li), ygi)), (xg’), yéi)), S
an offline CL algorithm Acp updates the model parameter
0 based on the current task Dy, i.e., 0 = Acp(0x—1, Di),
starting from the initial parameter 6.

To avoid the forgetting issue in CL, many CL setups al-
low the use of episodic memory M}, which is a limited-size
subset of training data from previous tasks, i.e., (0, My) =
AcL(0k—-1, My_1, D). The objective is to minimize the er-
ror of 6, in all observed tasks {T}}F_,.

Unlike offline CL where all training samples in D, are
given as input, in online CL, the input is provided as a
stream of samples (917(116)7 ygk))7 (xék), ygk))7 -+ . Therefore,
an online CL algorithm Agcy is defined as:

(Or,ts M) = AocL (9k,t71,Mk,t71» (xl(gk)7y§k))) , (D

with the same objective of minimizing the error of 6, ; on
{T;}*_,. Since the algorithm does not have access to pre-

vious samples {(mgk),ygk)), s < t} at time ¢, multi-epoch

training with Dy, is unavailable in online CL.
3.2. Neural Collapse

Neural collapse [34] is a phenomenon of the penultimate
features after the convergence of training on a balanced
dataset. When neural collapse (NC) occurs, the collection
of K classifier vectors Wgrp = [w1, Wa, ..., x| € RI*E
forms a simplex equiangular tight frame (ETF), which sat-
isfies:

1 i=j
T 9
Wiwj:{ 1 . .
—®1 FJ

where K — 1 < d, and the penultimate feature of a training
sample collapses into an ETF vector w;.

3.3. Equiangular Tight Frame (ETF) Classifier

Inspired by neural collapse as described in Sec. 3.2, a fixed
ETF classifier has been utilized for inducing neural collapse
in imbalanced datasets [55, 56, 65]. Here, the classifier is
initialized by the ETF structure Wgrp at the beginning of
training and fixed during training to induce the penultimate
feature f(x) to converge to the ideal balanced scenario. For
training f(x), it is only required to attract f(x) to the corre-
sponding classifier vector for convergence, since the classi-
fier is fixed during training. Therefore, following Yang et al.
[55], we use the dot regression (DR) loss as a training objec-
tive, as it shows to outperform cross entropy (CE) loss when
using a fixed ETF classifier in imbalanced datasets [55]."
The DR loss can be written as follows:

, Vi,jel,...,K], 2)

o 1 o 2
Lor(F(). v Werr) = 5 (wif@) - 1) @)

where f(z) = f(x)/||f(x)|2 is the Ly normalized feature
of the model f, y is the label of the input =, and w, is a
classifier vector in Wgrp for the label y.

4. Approach

Despite the success of the fixed ETF classifier in both im-
balanced training [55, 62] and offline CL [56], the ETF clas-
sifier has not yet been explored for online CL due to the
necessity of sufficient training for neural collapse. To be
specific, streamed data are trained only once in online CL,
which makes it harder to induce neural collapse than in of-
fline CL which supports multi-epoch training.

To learn a better converged model without multi-epoch
training for online CL, we propose two novel methods, each
for the training phase and the inference phase, respectively.
In the training phase, we accelerate convergence by propos-
ing preparatory data training (Sec. 4.2). In the inference

UIf the training objective includes a contrastive term between different
classes like cross entropy, it could cause incorrect gradients [55].
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Figure 2. Overview of EARL. w; denotes the ETF classifier vector for class i. h, denotes the output of the model. The colors of the data
denote the class to which the data belong. The arrow r; denotes the residual between the last layer activation h; and the classifier vector
w; for class ¢. During training, both memory and preparatory data are used for replaying, and the residuals between h; and w; are stored
in feature-residual memory. During inference, using the similarity between f(Zeva) and h; in feature-residual memory, reva is obtained by
a weighted sum of r;’s. Finally, by adding reva, f(Zeval) is corrected. The purple arrow indicates ‘residual correction’ (Sec. 4.3).
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Figure 3. Illustrative effects for each component of EARL. (a) In
online CL, features of novel classes are biased towards the fea-
tures of the previous class. (b) By training with preparatory data
(w/ Prep. Data, Sec. 4.2), we address the bias problem. (c) In in-
ference, for features that do not fully converge to an ETF classifier,
we add residuals (w/ Res. Corr., Sec. 4.3) to features that have not
yet reached the corresponding classifier vectors, making features
aligned with them. Purple arrow: the ‘residual correction’, Colors:
classes.

phase, we propose to correct the remaining discrepancy be-
tween the classifiers and the features using residual correc-
tion (Sec. 4.3). We illustrate an overview of EARL in Fig. 2
and the effect of EARL in Fig. 3.

4.1. Inducing Neural Collapse for Online CL

For online CL, we first try to induce neural collapse with
a fixed ETF classifier: Wgmr € R4*X where d is the di-
mension of the embedding space and K is the number of
ETF vectors. While prior works [55, 56] use prior knowl-
edge of the total number of classes that will be encountered
for setting K, it is unrealistic to know the knowledge (i.e.,
the exact number of classes) as it evolves continuously over
time under realistic CL scenarios.

To address the challenge, we propose using the maxi-
mum possible number of classifier vectors for K. Based

on the simplex ETF property that the maximum number of
ETF vectors is d + 1 [16, 55], we define our ETF classifier
Werr € R+ by Jetting K = d + 1.

4.2. Preparatory data at training

Since novel classes continuously arrive in CL, both the data
from previous tasks (z1q) and the current task (2yew) coex-
ist. While f (zoq) are placed closer to their corresponding
ETF classifier vectors wypey by training, f (Znew) are biased
toward the cluster of f (zoa), as we can see in Fig. 4-(a),
where f (Znew) and f (zo1a) are the outputs of the model for
inputs xpey and gy, respectively. We call this ‘bias prob-
lem.” When f(acnew) and f (2o1q) overlap due to bias and
are optimized with the same objective function, training on
the new class interferes with the representations of the old
classes, dispersing the well-clustered f (zoia) [5]- It destroys
the ETF structure formed by f(zeq), which hinders con-
vergence towards neural collapse. Although the bias prob-
lem exists even without a fixed ETF classifier [5, 12, 54],
it poses a greater problem when using a fixed ETF clas-
sifier, since the dispersed feature of old classes has to be
restored to the corresponding fixed classifier vector. In con-
trast, when using a learnable classifier, the dispersed rep-
resentation of the old classes does not have to be restored
to the original position, since the learnable classifier vector
will be re-optimized from the dispersed feature. However,
the angles between the classifier vector may become nar-
row, i.e., minority collapse occurs.

To accelerate convergence in the ETF structure, we pro-
pose to prevent novel classes from being biased towards ex-
isting classes when introduced, mitigating the bias problem.
Specifically, we train the model to avoid making predictions
in favor of the existing classes for images that do not be-
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Figure 4. t-SNE visualization of ’bias-problem’ in data distribu-
tions (class O to 3). (a) Only after 100 iterations of training af-
ter task 1 appears, learning is likely insufficient, and we can see
that the features of new classes (class 2, 3) are biased towards the
feature cluster of the existing class (i.e., class 1). (b) With more
training iterations (10,000 iter), the features are well clustered by
class.

long to them. To this end, we propose to use preparatory
data z,, that is different from existing classes, obtained by
transforming the samples in the episodic memory. By train-
ing with the preparatory data so that their representations
differ from existing classes, we prevent biased predictions
towards existing classes when a new class arrives.

For preparatory data to have a different representation
from existing classes when trained, their image semantics
should be distinguishable from existing classes, provided
that they contain enough semantic information to be con-
sidered as an image (i.e., not noise). There are various
approaches to synthesize images with modified semantics,
such as using generative models [11, 19, 58] or negative
transformations [47, 50]. We use negative transformations,
as generative models are expensive in computation and stor-
age [13], which is undesirable for CL scenarios with lim-
ited memory and computations. On the contrary, negative
transformations are relatively efficient in computation and
storage [33] and is reported to create images with seman-
tics different from the original image [50]. We empirically
observed that data generated through negative transforma-
tions have a distinct semantic class from the original class
while preserving its semantic information as an image (i.e.,
not as random noise), and we summarize the results in the
supplementary material.

Formally, for a set of existing classes Y and the set of
possible transformations GG, we randomly select y € Y and
g € G, and randomly retrieve a sample of class y from
memory and apply the transformation g to obtain prepara-
tory data x,. We assign labels of the unseen classes to the
preparatory data by a mapping functionm : ¥ x G — Y’
where Y denotes a set of unseen classes, i.e., Y’ = {yly ¢
Y, 1 <y < K} and K is the total number of classifier
vectors in Werg € R¥X | Thus, preparatory data x,, from
class y and transformation g is pulled towards the classi-
fier vector w,,, where p = m(y, g). When a new class ypew

is added to Y, we update m by randomly assigning a new
mapping m(Ynew; g) fOr Ynew and g € G.

We compose the transformation set G as a negative
transformation that can modify semantic information (i.e.,
change the label), used in the self-supervised literature [15,
18] and out-of-distribution (OOD) detection [25, 47, 50].
Specifically, we use rotation by 90, 180, and 270 degrees
[15, 18] as our negative transformation. Since the vertical
information of the image is more important than the hor-
izontal information [22, 49], e.g., images of a car facing
left or right are common, but a car flipped upside down
is very rare compared to a car standing right, rotation by
a large angle causes loss of semantic information of im-
ages [50]. Thus, we can use rotated data as semantically
different images from images of existing classes, i.e., suit-
able for preparatory data. A more detailed analysis of vari-
ous negative transformations is provided in the Supple.

We jointly train the model using real data (i.e., sam-
ples of existing classes) and preparatory data. Formally, we
write the objective for the model parameter 6 as:

arg;niﬂ |:E(z,y)~M£DR (fe(il?% Y; WETF) 4

FAE(2 )~ M g~ LDR (fe (g(x")) ,m(y, g9); WETpﬂ ,

where M denotes episodic memory, (z,y) and (2/,y") de-
note the samples in M, G denotes the set of possible trans-
formations, g denotes a transformation in GG, m denotes the
mapping function, and X is a hyperparameter for balancing
real data and preparatory data.

4.3. Residual correction at inference

Despite preparatory data training that accelerates conver-
gence towards ETF, in online CL, new samples in a data
stream hinder models from reaching the Terminal Phase
of Training (TPT) and fully converging to the ETF during
single-epoch training. When the output of the model f(z)
does not fully converge to the ETF classifier, the model
would not perform well at all times, leading to poor any-
time inference accuracy (Aauc)-

To address this issue, we want to correct the residual be-
tween f(z) and the corresponding classifier vector w,, dur-
ing inference, where y is label of input z.

However, the discrepancy between the prediction on test
data z.y, and the ground-truth ETF classifier vector is not
available in the inference phase. In a similar situation,
ResMem [57] stores the residual obtained from training data
and uses them during inference, but they assume two-stage
learning algorithms, i.e., standard training and inference
rather than incremental learning and anytime inference.

Inspired by ResMem [57], which uses residuals from the
training in the inference stage, we propose to use the resid-
ual obtained from the training process to compensate for the
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CIFAR-10

CIFAR-100

Disjoint Gaussian-Scheduled Disjoint Gaussian-Scheduled

Method Aavc T Ajast T Aavc T Ajast T Aauc T Alast T Anuc T Alast T

EWC (Kirkpatrick eral., 2017)  75.2540.78  60.80£2.20 59.62+0.31 64.24+£1.97 52.08+0.83 41.554+0.85 38.22+0.50 42.524+0.58
ER (Rolnick et al., 2019) 75.94+£0.86 63.56+1.32 60.13+0.56 64.81£2.70 52.95+1.25 42.82£0.05 41.12+0.56 42.74+1.09
ER-MIR (Aljundi er al., 2019)  75.894+1.02  61.93+£0.93  60.39+0.48 61.64+£3.86 52.93+1.44 42474+0.13 41.19£0.63 42.93+1.18
REMIND (Hayes er al., 2020)  69.55+£0.91 53.34£1.01 58.01+0.72 59.27£1.86 40.87+0.76 36.17£1.83 23.40+£2.25 28.78%1.71
DER++ (Buzzega eral., 2020)  74.784+0.72  59.20+£0.95 59.444+0.28 66.11£1.80 38.16+1.57 38.554+2.11 29.38+2.58 38.20+3.13
SCR (Mai et al., 2021) 75.61£0.93 56.52+0.52 60.62+0.43 58.41+£2.39 41.844+0.74 36.00£0.83 31.33+0.41 32.11£0.39
ODDL (Ye e al., 2022) 75.03£1.00 61.61£3.55 65.464+0.46 66.19£2.08 40.26+0.50 41.88+£4.52 38.82+0.49 41.35+1.08
MEMO (Zhou et al., 2023) 73.21£0.49 62474338 59.26+£0.90 62.01£1.17 40.60+1.11 39.87+0.46 23.41+£1.63 32.74+2.11
X-DER (Boschini eral.,2023)  77.594+0.62  65.40£4.79 58.28%+1.17 59.76+4.28 52.80+1.61 43.73+0.86 41.94£0.57 46.00+1.04
EARL (Ours) 78.31£0.72 65.71+£2.26 69.52+0.19 70.41+£1.97 57.12+1.22 44.40£0.68 47.89+0.61 46.09+0.26

TinyImageNet ImageNet-200
Disjoint Gaussian-Scheduled Disjoint Gaussian-Scheduled

Method Aauc T Ajast T Aauc T Ajast T Anuc T Alast T Anuc T Alast T

EWC (Kirkpatrick eral, 2017)  37.9540.93  27.50+£0.80 25.29+0.81 26.06+£0.52 41.84+0.64 31.57+0.80 30.71+£0.27 33.33+0.98
ER (Rolnick e7 al., 2019) 37.43£1.05 27.47+0.63 26.37+0.89 25.79+0.44 41.51+0.76 30.87£0.72 32.39+0.36 33.09+£0.37
ER-MIR (Aljundi e al., 2019)  37.814+1.06  26.72+£0.86 26.22+0.69 25.11£1.04 38.284+0.38 33.124+0.73 32.17+0.44 33.854+0.93
REMIND (Hayes er al., 2020)  28.37£0.13  27.68+0.45 10.19£0.60 14.90+£1.49 39.254+0.93 31.98+£0.84 30.23+0.62 33.98+0.09
DER++ (Buzzega eral., 2020)  39.38+£0.60 29.36+£0.81 27.23£1.94 31.53+0.80 43.504+0.31 34.56+0.50 35.224+0.26 38.38+0.97
SCR (Mai et al., 2021) 34.65+1.08 22.18+0.32 25.86+0.94 22.54+0.59 41.90+0.40 28.92+£0.40 33.24+0.32 30.98+0.28
MEMO (Zhou et al., 2023) 27.36£0.61 27.57+0.52 10.824+1.23 18.03£1.36 41.55+0.23 34.19£1.47 32.54+0.39 36.11£1.06
X-DER (Boschini eral.,2023)  35.1542.12  26.67+£0.52 29.71+0.86 28.10£0.50 43.41+0.47 34.14+0.98 36.31+0.17 38.61+0.55
EARL (Ours) 41.77+1.26  29.65+£0.20 35.08+0.70 32.49+1.21 44.88+0.29 34.79+0.55 39.14+0.47 38.83+0.35

Table 1. Comparison of online CL methods on Disjoint and Gaussian Scheduled Setup for CIFAR-10, CIFAR-100, TinyImageNet and

ImageNet-200.

remaining discrepancy between the classifiers and the fea-
tures at inference.

To select which of the stored residuals to use during
inference, we not only store the residual, but also f(z)
to choose the stored residual closest to f(Zingr). There-
fore, we retain ‘feature-residual’ pairs in a ‘feature-residual
memory’” M = {(h;,r;)}N,, where h; = f(z;), r; =
wy, — f(x;), where N is the size of feature-residual mem-
ory, and w,, is the classifier vector for class y;.

During inference, we select the k£ nearest neighbor s,
i€, {hn, hn,s... hn,} from {h;}Y |, since using only
the nearest residual for correction may lead to incorrect in-
ference predictions if a wrong residual is selected from a
different class. Finally, following ResMem [57], we calcu-
late the residual correction term rey, by a weighted average
of the corresponding residuals {r,,,rn,,...,Iy,}, with
weights {s1, s2,..., sk} that are inversely proportional to
the distance from f (Zeval), as:

k h ~
—(f(zeva)—hi) /T
Yo = ) $ili, 81 = ke ; )
= S e Flaa)—h)/r
where 7 is a temperature hyperparameter. We add the

residual-correcting term rey, to the model output f (Zeval)

to obtain the corrected output f (Zeval )corrected 8S:

f(xeval)correcled = f(xeval) + Teyal- (6)
5. Experiments
5.1. Experimental setup
We perform experiments on four datasets: CIFAR-10,

CIFAR-100, TinyImageNet, ImageNet-200, and ImageNet-
1K. For all datasets, our experiments are conducted on both
a disjoint setup [35] and a Gaussian scheduled setup [45,
51]. We report the average and standard deviation results in
three different seeds, except ImageNet-1k due to computa-
tional resource constraints [2, 27].

To evaluate anytime inference performance, we use the
area under the curve accuracy(Agyy.) [6, 27], which mea-
sures the area under the accuracy curve. We also use last
accuracy(A;qs;) which measures accuracy at the end of
training. For detailed information about the experimental
setup, refer to the Supplementary.

Baselines. We compare EARL with various CL methods
in different categories: regularization (EWC [26]), network
expansion (MEMO [63]), replay (ER [43], ER-MIR [1],
REMIND [20] , SCR [31], ODDL [3]), and distillation
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ImageNet-1K

Method Disjoint Gaussian-Scheduled

Apuc T Aiase T Aave T Alast T

EWC (Kirkpatrick et al., 2017) 30.17 18.78 17.09 20.15
ER (Rolnick ez al., 2019) 30.18 18.96 17.17 18.39

ER-MIR (Aljundi er al., 2019) 31.68 19.87 19.37 16.30
REMIND (Hayes et al., 2020) 32.47 24.59 17.42 19.79
DER++ (Buzzega et al., 2020) 31.08 18.98 23.73 23.14
SCR (Mai er al., 2021) 26.72 13.60 19.82 15.84
MEMO (Zhou et al., 2023) 30.45 19.08 14.06 20.12
X-DER (Boschini er al., 2023) 31.67 18.18 25.18 12.51
EARL (Ours) 34.33 23.19 30.53 29.48

Table 2. Comparison of online CL methods on Disjoint and Gaus-
sian Scheduled Setup for ImageNet-1K.

(DER++ [4], X-DER [3]). For more details on the imple-
mentation of these methods and a comparison with NC-
FSCIL [56], which attempts to induce neural collapse in the
context of few-shot class incremental learning, please refer
to the supplementary material.

Implementation details. We use three components to ar-
chitect our model: a backbone network g(-), a projection
MLP p(-), and a fixed ETF classifier Wgrg (i.e., our model
f can be defined as f(z) = p o g(x)). For the projec-
tion layer, we attach an MLP projection layer pg, to the
output of the backbone network gy, where 04 and 0, de-
note the parameters of the backbone network and the pro-
jection layer, respectively (i.e., the model f can be defined
as f(z) = pog(x)), following [9, 37, 56]. For all methods,
we use ResNet-18 [21] as the backbone network.
Following [27, 59], we employ memory-only training,
where a random batch is selected from memory at each iter-
ation. Furthermore, for episodic memory sampling, EARL
uses the Greedy Balanced Sampling strategy [40]. We
describe the details about hyperparameters and the pseu-
docode of EARL in Supplementary for the sake of space.

5.2. Results

We first compare the accuracy of online continual learn-
ing methods, including EARL, and summarize the results
in Table 1. As shown in the table, EARL outperforms
other baselines on all benchmarks, both in disjoint and
Gaussian-scheduled setups, except A in ImageNet-1K
disjoint setup. In particular, high Aayc suggests that EARL
outperforms other methods for all the time that the data
stream is provided to the model, which implies that it can
be used for inference at anytime.

Furthermore, EARL, SCR, ER, MIR, DER, and ODDL
do not use task boundary information during training, i.e.,
task-free, in contrast to EWC, X-DER, MEMO, and RE-
MIND which use task-boundary information, i.e., task-
aware. Nevertheless, EARL outperforms these methods
even in the disjoint setup where utilizing task boundary in-
formation is advantageous due to abrupt distribution shifts

at the task boundaries, except MEMO in ImageNet-1K dis-
joint. Since MEMO not only uses the task boundary in-
formation but also expands the network per task, this extra
advantage of using a larger model is emphasized in large-
scale datasets such as ImageNet which require a large learn-
ing capacity of the model. Please refer to the supplementary
material for details of the computational budget comparison
among the baseline methods.

Memory budget. We consider not only the size of
episodic memory, but also the size of the model, logits, and
other components, following MEMO [63]. In the case of
the memory budget for CIFAR-10 and the architecture of
ResNet-18 (size of 42.6MB), EARL incurs an additional
memory cost of 0.2MB to store feature-residual pairs. EWC
requires an additional cost of 85.2MB due to the need to
store Fisher Information per parameter and the previous
model. MEMO, which expands the network per task, incurs
an additional cost of 32MB per task. DER also requires an
additional cost of 0.1MB to store logits during distillation.

5.3. Ablation study

We conduct an ablation study on the two components of
EARL, preparatory data training and residual correction,
and summarize the results in Table 3. Although both com-
ponents contribute to performance improvement, prepara-
tory data training shows a larger gain in performance. Train-
ing with preparatory data improves the baseline by 2.7% ~
3.3% in Agye and 2.1% ~ 4.4% in A;qs:. When combined
with residual correction, we observe further gains across all
metrics in both disjoint and Gaussian-scheduled setups.

cosine similarity

i _— ‘vanila E+F

i i —— vanila ETF + Preparatory Data
0075 0k 20k 30k
# of entered samples

Figure 5. Average similarity between features of the most recently
added class’s samples and the closest classifier vectors of the old
classes (CIFAR-10, Gaussian Scheduled). Baseline is a vanilla
ETF model trained only using episodic memory.

For further analysis, Fig. 6 visualizes the cosine similar-
ity between the output features of 50 randomly selected test
set samples of novel class ‘4’ and the classifier vectors w;.
In baseline (a), the features of the class 4 are strongly bi-
ased towards the classifier vectors of the old classes (i.e.,
wWq, W1, Wg, W3), rather than the correct classifier, wy4. (c)
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CIFAR-10 CIFAR-100
METHOD Disjoint Gaussian-Scheduled Disjoint Gaussian-Scheduled
Anuc T Apast T Aauc T Apst T Anuc T Apse T Anuc T Apst T
EARL (Ours)  78.61+0.72 66.01+2.26 69.62+0.19 70.91+1.97 57.42+1.24 44.60+0.65 48.19+0.61 46.10+£0.26
(-)RC 77.78+0.52 65.524+1.63 68.37£0.10 70.17£1.08 56.284+1.40 44.294+1.04 47.05£0.71 46.07+£0.52
(-)RC & PDT 74.77£0.77 61.104£3.12 65.60+0.25 67.39+£0.78 52.91£1.05 41.084+0.60 44.34+0.55 44.45+0.48

Table 3. Ablation Study. RC and PDT refer to preparatory data training (Sec. 4.2) and the residual correction (Sec. 4.3), respectively.
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(d) baseline + PDT + RC

Figure 6. Cosine similarity between features f () for class 4 and the ETF classifier vectors w; at the 50" iteration after the introduction
of class 4 in the Gaussian Scheduled CIFAR-10 setup. As we can see in the cyan highlighted box, EARL promotes the convergence of

f(z) for class 4 toward the ground truth classifier vector wy.

When residual correction is used, some samples show high
similarity with w4 compared to the baseline.

However, since incorrect residuals can be added due to
the bias problem, more samples have high similarity with
wo than the baseline (i.e., wrong residuals are added). (b)
When using preparatory data training, the bias toward wy
and w; classes significantly decreases compared to the
baseline. Fig. 5 also shows the effect of preparatory data,
which reduces the similarity between the novel class fea-
tures and existing classes. (d) Using both residual correc-
tion and preparatory data training shows a remarkable align-
ment with the ground truth classifier w4. A more detailed
analysis of the ablation results is provided in the Supple.

6. Conclusion

To better learn online data in a continuous data stream with-
out multiple epoch training, we propose to induce neural
collapse, which aligns last layer activations to the corre-
sponding classifier vectors in the representation space. Un-
like in offline CL, it is challenging to induce neural collapse
in online CL due to insufficient training epochs and contin-
uously streamed new data. We first observe that the bias
of the new class towards existing classes slows the conver-
gence of features toward neural collapse.

To mitigate the bias, we propose synthesizing prepara-
tory data for unseen classes by transforming the samples

of existing classes. Using the preparatory data for train-
ing, we accelerate neural collapse in an online CL scenario.
Additionally, we propose residual correction to resolve the
remaining discrepancy toward neural collapse at inference,
which arises due to the continuous stream of new data. In
our empirical evaluations, the proposed methods outper-
form state-of-the-art online CL methods in various datasets
and setups, especially with high performance on anytime
inference.

Limitations and Future Work. Since our work uses ETF
structure, it has an inherent limitation that the number of
possible classifier vectors in the ETF classifier is limited by
the dimension of the embedding space. Considering life-
long learning, where the number of new classes goes to in-
finity, it is interesting to explore the idea of dynamically
expanding the ETF structure so that the model can continu-
ally learn the ever-increasing number of concepts in the real
world.
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