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Abstract

We propose a novel contrastive learning framework to ef-

fectively address the challenges of data heterogeneity in fed-

erated learning. We first analyze the inconsistency of gradi-

ent updates across clients during local training and estab-

lish its dependence on the distribution of feature representa-

tions, leading to the derivation of the supervised contrastive

learning (SCL) objective to mitigate local deviations. In

addition, we show that a naı̈ve integration of SCL into fed-

erated learning incurs representation collapse, resulting in

slow convergence and limited performance gains. To ad-

dress this issue, we introduce a relaxed contrastive learn-

ing loss that imposes a divergence penalty on excessively

similar sample pairs within each class. This strategy pre-

vents collapsed representations and enhances feature trans-

ferability, facilitating collaborative training and leading to

significant performance improvements. Our framework out-

performs all existing federated learning approaches by sig-

nificant margins on the standard benchmarks, as demon-

strated by extensive experimental results. The source code

is available at our project page
1
.

1. Introduction
Federated learning (FL) trains a shared model through the
collaboration of distributed clients while safeguarding the
privacy of local data by restricting their sharing and trans-
fer. The primary challenge in this learning framework arises
from the data heterogeneity across clients and the class im-
balance in local data. These problems eventually lead to se-
vere misalignments of the local optima of the client models,
hindering the search for better global optima of the aggre-
gated model and slowing down convergence.

To tackle these challenges, most existing approaches fo-
cus on minimizing the discrepancy between the global and
local models by incorporating regularization techniques on
either model parameters [1, 2, 12, 21, 44] or feature rep-
resentations [15, 18, 19, 23, 40]. However, aligning the

*indicates equal contribution.
1https://github.com/skynbe/FedRCL

(a) Tiny-ImageNet (b) CIFAR-100

Figure 1. Performance curves of our framework, dubbed as Fe-
dRCL, in comparison to other baselines on the Tiny-ImageNet and
CIFAR-100 with non-i.i.d. setting (↵ = 0.1). FedSCL incorpo-
rates the supervised contrastive learning objective into FedAvg,
but it suffers from slow convergence and restrains performance
enhancement. Our framework significantly improves both conver-
gence speed and accuracy.

local models with the global model entails a trade-off as
the global model is not necessarily optimal. Recently, there
have been several attempts to analyze the inconsistent lo-
cal training in a principled way [33, 42]. For example,
Zhang et al. [42] investigate the label distribution skew-
ness from a statistical perspective, and introduce a deviation
bound for analyzing the inconsistency of gradient updates in
local training.

We reformulate the deviation bound proposed in [42] and
establish its dependence on the distribution of feature repre-
sentations. Subsequently, we derive that incorporating the
supervised contrastive learning (SCL) objective enhances
this bound, resulting in consistent local updates across het-
erogeneous clients. In other words, we show that employing
SCL improves the convergence of federated learning by al-
leviating the variations of local models.

Although SCL is helpful for the optimization in feder-
ated learning, the empirical results show that a naı̈ve inte-
gration of SCL suffers from slow convergence and limited
performance gains as illustrated in Figure 1. Due to the
limited and imbalanced training data in a local client, the
intra-class attraction force in SCL hampers feature diver-
sity and consequently weakens the transferability of neural

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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networks to diverse tasks. Considering the consolidation
principle of federated learning through the aggregation of
heterogeneous local models, the lack of transferability im-
pedes the collaborative training process.

To tackle this issue and enhance the transferability of
models, we present a novel contrastive learning strategy for
federated learning. Our approach imposes the penalty on
the sample pairs within the same class that may exhibit ex-
cessively high similarity otherwise. Such a simple adaptive
repulsion strategy effectively prevents the intra- and inter-
class collapse of representations, enhancing the transfer-
ability across heterogeneous clients and leading to the dis-
covery of better global optima. Furthermore, we expand the
proposed approach to cover all intermediate levels of rep-
resentations, promoting consistent local updates even fur-
ther. The proposed approach demonstrates remarkable per-
formance improvements in all datasets and settings consis-
tently, surpassing existing baselines by significant margins.
We present the effectiveness and robustness of the proposed
method by thorough empirical analysis. Our main contribu-
tions are summarized as follows.
• By reformulating the deviation bound of local gradi-

ent update, we theoretically analyze that supervised
contrastive learning mitigates inconsistent local updates
across heterogeneous clients.

• We discover the feature collapse phenomenon caused by
the standard SCL in federated learning, resulting in slow
convergence and limited performance improvement.

• We propose a relaxed supervised contrastive loss, which
adaptively imposes the divergence penalty on pairs of ex-
amples in the same class and prevents their representa-
tions from being learned to be indistinguishable.

• We demonstrate that our approach significantly outper-
forms existing federated learning algorithms on the stan-
dard benchmarks under various settings.

The rest of the paper is organized as follows. We review
the prior works in Section 2 and discuss the preliminaries
in Section 3. Section 4 presents the proposed approach in
the context of federated learning and Section 5 validates its
effectiveness empirically. Finally, we conclude our paper in
Section 6.

2. Related Works
This section first overviews the existing FL algorithms, and
discusses how contrastive learning has been explored in the
context of FL.

2.1. Federated learning
McMahan et al. [22] propose a pioneer FL framework, Fe-
dAvg, which aggregates model updates from distributed
clients to improve a global model without requiring the ex-

change of local data. However, it suffers from slow con-
vergence and poor performance due to the heterogeneous
nature of client data in practical scenarios [45]. To address
the issue of heterogeneity in FL, numerous approaches have
been proposed in two distinct directions, local training and
global aggregation.

The major approaches in local training are imposing
regularization constraints on model parameters or feature
representations. Specifically, they incorporate proximal
terms [21], introduce control variates [12, 20], or leverage
primal-dual analysis [1, 44] to regularize model parameters,
while adopting knowledge distillation [15, 18, 40], metric
learning [19, 23, 46], logit calibration [42], feature decorre-
lation [33], or data augmentation [37, 41] for effective rep-
resentation learning. Our framework also belongs to rep-
resentation learning, where it particularly focuses on gradi-
ent deviations in local training and transferability of trained
models across heterogeneous local clients.

Besides the local training methods, server-side optimiza-
tion techniques have been explored to expedite convergence
using momentum [9, 14, 27] or decrease the communica-
tion cost by quantization [6, 24, 28, 35]. These server-side
works are orthogonal to our client-side approach and are
easily combined with the proposed algorithm.

2.2. Contrastive learning in FL
Recent works have explored the integration of contrastive
learning techniques [3, 7, 25] into federated learning to pre-
vent local client drift and assist local training. FedEMA [46]
adopts self-supervised contrastive learning to deal with un-
labeled data collected from edge devices. MOON [19] in-
troduces a model-contrastive loss, which aims to align the
current local model with the global model, while pushing
the current model away from the local model of the previ-
ous round. FedProc [23] employs a contrastive loss to align
local features with the global prototypes to reduce the rep-
resentation gap, where the global class prototypes are dis-
tributed from the server. FedBR [5] conducts contrastive
learning to align local and global feature spaces using lo-
cal data and globally shared proxy data to reduce bias in
local training. In contrast to prior approaches, our frame-
work does not require additional communication overhead
for contrastive learning and does not rely on global models
or prototypes to mitigate the deviations in local training.

3. Preliminaries
Before discussing the proposed approach, we briefly de-
scribe the main idea and formulation of federated learning
and supervised contrastive learning.

3.1. Problem setup
Suppose that there are N clients, {C1, ..., CN} = C. Each
client Ci has a dataset Di, which comprises a set of pairs
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of an example and its class label. The goal of federated
learning is to optimize a global model parametrized by
✓ = [�; ], corresponding to a feature extractor, �, and
a classifier,  , that minimizes the average losses over all
clients as

argmin
✓

1

N

NX

i=1

Li(✓), (1)

where Li(✓) = E(x,y)⇠Di
[`(x, y; ✓)] is the empirical loss in

Ci, given by the expected loss over all samples in Di. Note
that data distributions in individual clients may be hetero-
geneous, and privacy concerns strictly prohibit transfering
training data across clients. We employ FedAvg [22] as a
baseline algorithm. In the t

th communication round, a cen-
tral server sends a global model ✓t�1 to the active client set
Ct ✓ C. Each client Ci 2 Ct initializes its parameter ✓t

i,0

to ✓t�1, and performs K iterations for optimization using
its local data. The server collects the resulting local models
✓
t

i,K
and computes the global model ✓t for the next round

of training by simply averaging the local model parameters.
This training process is repeated until the global model ✓t
converges.

3.2. Supervised contrastive learning
Supervised contrastive learning (SCL) [13] is a variant of
self-supervised contrastive learning [3, 25], where, given
the i

th example and its ground-truth label denoted by
(xi, yi), the supervised contrastive loss LSCL is defined as

LSCL(xi, yi) = �
X

j 6=i,
yj=yi

log
exp (h�(xi),�(xj)i/⌧)P

k 6=i

exp (h�(xi),�(xk)i/⌧)
, (2)

where �(·) denotes the feature representation of an input
example, h·, ·i indicates the cosine similarity function, and
⌧ is a temperature. To boost its effectiveness, hard exam-
ple mining is usually adopted to construct both positive and
negative pairs. Eq. (2) is also expressed as follows:

LSCL(xi, yi) =
X

yj=yi,j 6=i

n
� (h�(xi),�(xj)i/⌧)

+ log
⇣X

k 6=i

exp (h�(xi),�(xk)i/⌧)
⌘o

.

(3)

This loss function encourages feature representations from
the same class to be similar while pushing features from
different classes apart.

4. Relaxed Supervised Contrastive Learning
This section begins by analyzing the local deviations in fed-
erated learning with heterogeneous clients, and presents that

supervised contrastive learning (SCL) mitigates the devia-
tions (Section 4.1). Then, we identify the challenges in em-
ploying SCL in the FL context (Section 4.2) and discuss our
solution to address the challenges (Section 4.3 and 4.4).

4.1. Benefit of SCL for local training

One of the main challenges in federated learning is inconsis-
tent local updates caused by the heterogeneity of local client
data. Zhang et al. [42] present that existing FL methods
based on softmax cross-entropy result in biased local mod-
els, and introduce a deviation bound to measure the devia-
tion of the gradient update during the local training. To ana-
lyze this further, we revisit the deviation bound and formu-
late a sample-wise deviation bound considering all classes,
which is formally defined below.

Definition 1 (Sample-wise deviation bound) Let x 2 Or

denote a training example with ground-truth class label r.

The sample-wise deviation bound is defined as

D(x) =

⇣
1� P

(r)
r

⌘
�r|Or|Sr(x)

P
j 6=r

P
(j)
r �j |Oj |Sj(x)

, (4)

where P
(y)
z = 1

|Oy|

P
i2Oy

pz(xi) means the average pre-

diction score for class z, estimated with the examples that

belong to class y, �y = 1
|Oy|

P
i2Oy

k�(xi)k2 is the aver-

age feature norm of the examples in class y, and Sy(x) =
1

|Oy|

P
i2Oy

h�(x),�(xi)i denotes the average feature sim-

ilarity with respect to an example x.

Proposition 1 If D(x) ⌧ 1, the local updates of the pa-

rameters in classification layer, {� y}y2Y , are prone to

deviate from the desirable direction, i.e., � r�(x) < 0 and

� j�(x) > 0 for x 2 Or and 8j 6= r.

The proof of Proposition 1 is provided in Section A of the
supplementary document. Eq. (4) indicates that the devia-
tion bound of an example depends on the distribution of fea-
ture representations with respect to the example, Sr(x) and
Sj(x). This proposition means that lower values of D(x)
incur inconsistent local training.

Proposition 1 states that it is possible to prevent the lo-
cal gradient deviation of each example by increasing D(x).
If 1

|Y|�1

P
j 6=r

Sj(x) � Sr(x)  0, then the lower bound

of D(x) in (4) becomes (1�P
(r)
r )�r|Or|

|Y|�1 min
j 6=r

n
1

P
(j)
r �j |Oj |

o
.

Thus, we formulate the surrogate objective to minimize
max

⇣
0, 1

|Y|�1

P
j 6=r

Sj(x) � Sr(x)
⌘

, which is highly corre-

lated to the increase of the lower bound. By using a smooth
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(a) Accuracy (b) Within-class variance (c) Between-class variance

(d) Effective rank (e) Effective rank (centralized setting) (f) Variability collapse index

Figure 2. Effects of employing supervised contrastive loss on the CIFAR-100 under non-i.i.d. settings. Black and blue lines denote models
trained with LCE and LCE + LSCL, respectively. Dotted and solid lines indicate different data heterogeneity with Dirichlet parameters
↵ 2 {0.05, 0.3}.

approximation to the maximum function with the LogSum-

Exp operator, we derive its upper bound as follows

max
⇣
0,
X

j 6=r

Sj(x)

|Y|� 1
� Sr(x)

⌘

 log
⇣
exp(0) + exp

⇣X

j 6=r

Sj(x)

|Y|� 1
� Sr(x)

⌘⌘

 �
1

|Or|� 1

X

xi2Or\x

log

 
exp(h�(x),�(xi)i)P

xk 6=x exp(h�(x),�(xk)i)

!
.

Please refer to Section B for further details. This derivation
demonstrates how the optimization of LSCL contributes to
mitigating local gradient deviations.

4.2. Representation collapse in FL with SCL
Based on our analysis in Section 4.1, we empirically val-
idate the effectiveness of SCL in federated learning un-
der data heterogeneity with Dirichlet parameters ↵ 2

{0.05, 0.3} in Figure 2a. We train the ResNet-18 model
using the loss function L = LCE +LSCL at each local client
on the CIFAR-100 dataset, using 5% participation rate out
of 100 distributed clients, where LCE represents the cross-
entropy loss. As depicted in the figure, while SCL eventu-
ally achieves improved performance by reducing local de-
viations over the baseline methods, it is accompanied by a
noticeable lag in the convergence speed during at early stage

of training. We conjecture that, due to limited and skewed
local training data, SCL leads to excessively compact rep-
resentations of the examples in the same classes, hinder-
ing effective knowledge transfer across clients in federated
learning.

To delve into these phenomena, we first compute the
within-class and between-class covariance matrices of the
feature embeddings provided by a local model, denoted by
⌃W and ⌃B , respectively. Figure 2b and 2c plot the trace
of the two matrices. SCL effectively reduces the within-
class variance compared to the baseline model only with
the cross-entropy loss, due to the attraction term between
samples from the same class. However, it is noteworthy
that SCL also yields a lower between-class variance than
the baseline, especially at the early stages of training, de-
spite the repulsion term between the examples in different
classes. Since the attraction and repulsion forces interact in
contrastive learning, the excessive representation similarity
between positive pairs weakens the repulsion force between
negative pairs. In other words, the collapse of intra-class
representations negatively affects the separation between
inter-class examples, leading to an overall reduction in the
diversity of feature representations. To evaluate this feature
collapse quantitatively, we observe the effective rank [30]
of the covariance matrix of all feature embeddings given by
a local model, which estimates the actual dimensionality of
the learned feature manifold of training data. Formally, the
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(a) Between-class variance (b) Effective rank (c) Variability collapse index (d) Accuracy

Figure 3. Results of our relaxed contrastive learning (RCL) approach on the CIFAR-100 dataset under a non-i.i.d. setting (↵ = 0.05). RCL
outperform SCL in all metrics.

effective rank is defined as follows:

Definition 2 (Effective rank) Consider a matrix A 2

Rm⇥n
with its singular values {�1, ...,�Q}, where Q =

min(m,n), and let pk = �k/
P

Q

i=1 |�i|. Then, the effec-

tive rank of matrix A is defined as exp(H(p1, ..., pQ)) =

exp(�
P

Q

k=1 pk log pk), where H(·) is the Shannon entropy.

Figure 2d illustrates the impact of SCL on the effective
rank in the CIFAR-100 test set. It supports that SCL di-
minishes the effective rank when compared to the baseline
methods, particularly during the early stage of training, and
leads to overall representation collapses. Interestingly, SCL
does not exhibit dimensional collapse in the centralized set-
ting2 as in Figure 2e, which implies that limited and skewed
local training data incurs the problem in SCL.

These collapsed representations exacerbate the transfer-
ability of neural networks across heterogeneous tasks and
clients. Previous studies [4, 32, 38] have emphasized the
close relationship between feature diversity and transfer-
ability, highlighting that representation collapses of trained
models hamper maintaining crucial information beneficial
for knowledge transfer to downstream tasks. To quantita-
tively analyze this, we employ the variability collapse in-
dex [38], VCI = 1 �

Tr[⌃†
T⌃B ]

rank(⌃B) , where ⌃T and ⌃B denote
the total covariance and between-class covariance matrices
for a given feature matrix. It provides a robust measure-
ment of transferability in terms of optimal linear probing
loss, where lower values denote better transferability. As
observed in Figure 2f, SCL yields higher VCI values at the
early stage, indicating low transferability even in compari-
son to the baselines. Given that federated learning can be
regarded as a continual fine-tuning process across heteroge-
neous local tasks, the lack of transferability impedes collab-
orative training, resulting in slow convergence and limited
performance gain. We will discuss strategies for addressing
these challenges in the following subsection.

2We trained a ResNet-18 model with a single client using the whole
CIFAR-100 training set.

Algorithm 1 FedRCL

1: Input: initial model ✓0, # of communication rounds T ,
# of local iterations K, # of layers L

2: for each round t = 1, . . . , T do
3: Sample a subset of clients Ct ✓ C

4: Server sends ✓t�1 to all active clients Ci 2 Ct

5: for each Ci 2 Ct, in parallel do
6: ✓

t

i,0  ✓
t�1

7: for k = 1, . . . ,K do
8: for each (x, y) in a batch do
9: LRCL  

1
L

P
L

l=1 LRCL(x, y;�l)
10: L(✓t

i,k�1) LCE + LRCL

11: ✓
t

i,k
 ✓

t

i,k�1 � ⌘rL(✓
t

i,k�1)
12: end for
13: end for
14: Client sends ✓t

i,K
back to the server

15: end for
16: In server:

✓
t = 1

|Ct|

P
Ci2Ct

✓
t

i,K

17: end for

4.3. Relaxed contrastive loss for FL
To address the representation collapse issue identified in
Section 4.2, we propose a novel federated learning ap-
proach with an advanced contrastive learning strategy, re-
ferred to as Federated Relaxed Contrastive Learning (Fe-
dRCL). The proposed algorithm adopts the relaxed con-
trastive loss LRCL, imposing the feature divergence on intra-
class samples as

LRCL(xi, yi;�) =
X

j 6=i,
yj=yi

n
� log

exp (h�(xi),�(xj)i/⌧)P
k 6=i

exp (h�(xi),�(xk)i/⌧)

+ � · {xj2P(xi)} log
�
exp (h�(xi),�(xj)i/⌧)

�o
(5)

where P(x) = {x0
|yx0 = yx, h�(x0),�(x)i > �} repre-

sents a set of intra-class samples more similar to the an-
chor x than the threshold � and � is a hyperparameter for
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Table 1. Results from 5% participation rate over 100 distributed clients on the CIFAR-10, CIFAR-100, and Tiny-ImageNet for the different
levels of Dirichlet parameter (↵). Accuracies at the target round are based on the exponential moving average results with parameter 0.9.

Dataset Method ↵ = 0.05 ↵ = 0.1 ↵ = 0.3 ↵ = 0.6 i.i.d.

500R 1000R 500R 1000R 500R 1000R 500R 1000R 500R 1000R

CIFAR-10

FedAvg [22] 51.47 63.42 58.80 70.82 75.63 83.18 80.93 85.52 84.67 88.19
FedAvg + FitNet [29] 51.34 63.25 58.67 71.09 74.87 83.03 79.14 84.84 84.20 87.67
FedProx [21] 48.61 59.58 56.22 68.87 70.30 80.46 76.06 83.48 84.14 87.66
MOON [19] 49.68 61.73 69.16 77.12 83.32 86.30 84.95 87.99 88.24 89.66
FedMLB [15] 32.81 49.16 52.01 72.31 74.98 84.08 77.84 85.96 86.84 89.93
FedLC [42] 54.30 65.62 62.39 72.52 78.37 84.79 81.17 86.02 84.57 88.41
FedNTD [18] 52.33 63.36 62.23 73.54 76.05 83.78 81.20 86.46 85.98 89.44
FedProc [23] 25.61 47.77 33.28 62.56 63.03 80.93 69.41 84.57 78.30 87.66
FedDecorr [33] 53.04 66.62 63.74 75.35 76.62 83.40 81.39 85.28 85.41 88.16
FedRCL (ours) 64.44 76.74 74.82 82.72 84.01 88.44 86.00 89.45 89.70 91.90

CIFAR-100

FedAvg [22] 31.20 39.86 36.65 43.04 41.70 47.47 43.23 49.29 43.52 48.12
FedAvg + FitNet [29] 31.09 38.35 36.48 43.25 42.96 48.59 44.20 49.82 44.61 49.33
FedProx [21] 30.27 39.44 35.78 43.11 42.24 48.19 43.21 48.48 45.20 49.37
MOON [19] 34.28 40.64 42.91 50.31 53.15 58.37 55.76 61.42 58.50 64.73
FedMLB [15] 30.89 43.89 38.64 48.94 47.39 54.58 49.36 56.70 50.12 56.40
FedLC [42] 34.24 40.84 39.80 44.40 42.74 47.23 44.24 48.89 44.06 47.63
FedNTD [18] 33.10 41.75 35.84 42.86 43.22 49.29 44.26 50.32 44.93 50.15
FedProc [23] 18.41 38.56 25.19 43.73 32.66 49.68 36.09 49.89 40.76 52.94
FedDecorr [33] 33.31 41.73 38.88 43.89 43.52 49.17 44.01 49.08 45.46 49.30
FedRCL (ours) 43.71 54.63 49.82 58.23 57.89 63.46 58.71 64.06 60.25 64.81

Tiny-ImageNet

FedAvg [22] 22.49 25.90 26.62 29.71 31.80 33.58 33.91 35.01 35.62 37.02
FedAvg + FitNet [29] 22.82 26.95 27.37 30.51 32.96 33.95 33.46 34.70 35.79 37.31
FedProx [21] 22.91 27.02 27.31 30.93 32.35 34.34 34.33 35.53 35.94 36.11
MOON [19] 23.30 26.34 30.31 32.03 36.97 39.32 38.98 42.07 41.88 45.62
FedMLB [15] 19.31 26.88 29.31 34.41 37.20 40.16 39.34 42.15 40.69 42.98
FedLC [42] 26.30 28.28 30.63 32.25 35.03 35.95 35.38 36.48 36.57 37.75
FedNTD [18] 22.83 28.96 28.86 33.74 33.91 37.33 36.47 39.43 37.77 40.85
FedProc [23] 10.74 22.74 14.02 27.43 16.62 32.43 19.64 32.60 21.59 35.43
FedDecorr [33] 22.55 26.18 28.15 30.74 33.40 34.86 33.31 34.90 35.02 35.82
FedRCL (ours) 27.21 34.60 34.30 39.36 40.25 44.95 43.20 46.70 45.01 47.25

the divergence term. The second term of Eq. (5) serves
to prevent within-class representation collapses, which also
promotes the separation of the examples between different
classes. This ultimately enhances overall feature diversity
and transferability, which is crucial in the context of feder-
ated learning with non-i.i.d. settings. As illustrated in Fig-
ure 3, FedRCL facilitates inter-class separation, mitigates
dimensional collapse, and improves the transferability of
trained models, resulting in early convergence and signif-
icant performance improvement.

4.4. Multi-level contrastive training

Existing contrastive learning approaches [3, 13, 25] concen-
trate on aligning the feature representations of the last layer,
resulting in predominant model updates in deeper layers
while having limited influence on lower-layer parameters.
To mitigate this issue, we expand the proposed contrastive
learning approach to encompass feature representations in
earlier layers. Let �l(x) denotes the l

th level feature repre-
sentation of sample x. Then, we construct LRCL by aggre-

gating 1
L

P
L

l=1 LRCL(x, y;�l), where L is the number of
layers. The comprehensive algorithm of our framework is
presented in Algorithm 1.

4.5. Discussion

FedRCL has something common with existing methods in-
corporating contrastive loss for local updates, but it has
clear differences and advantages over them. While most
existing works [5, 19, 23] employ contrastive learning to
regulate local training towards the global model for con-
sistent local updates, this constraint often leads to subop-
timal solutions as the global model is not fully optimized.
Our approach is free from this issue, because FedRCL mit-
igates local deviations by itself so it does not align with the
global model explicitly. Some algorithms require proxies
for contrastive learning such as global prototypes [23] or
globally shared data [5], which rely on extra communica-
tion overhead and full client participation. Note that trans-
ferring such prototypes or data is vulnerable and incurs pri-
vacy concerns. In contrast, FedRCL does not involve any
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Table 2. Results from 2% participation rate over 100 and 500 clients on three benchmarks. The Dirichlet parameter is commonly set to 0.3.

CIFAR-10 CIFAR-100 Tiny-ImageNet
100 clients 500 clients 100 clients 500 clients 100 clients 500 clients

Method 500R 1000R 500R 1000R 500R 1000R 500R 1000R 500R 1000R 500R 1000R

FedAvg [22] 65.92 78.13 59.88 72.12 38.19 44.62 29.01 37.86 28.63 34.62 21.00 27.37
FedAvg + FitNet [29] 66.88 79.22 57.29 70.94 36.89 46.69 28.52 36.41 27.80 34.88 20.17 27.10
FedProx [21] 65.78 75.82 60.23 72.78 36.69 45.16 28.44 35.45 27.45 32.91 22.34 29.04
MOON [19] 71.52 75.42 69.15 78.06 39.91 46.51 33.51 42.41 27.26 32.25 26.69 31.81
FedMLB [15] 65.85 79.45 58.68 71.38 40.90 53.34 32.03 42.61 31.17 38.09 28.39 33.67
FedLC [42] 72.90 80.90 60.16 71.39 39.70 42.10 29.58 36.78 30.94 35.59 22.14 26.83
FedNTD [18] 69.11 80.43 60.65 73.20 38.13 48.03 28.95 36.31 28.39 36.41 24.67 32.16
FedProc [23] 49.71 73.54 50.91 70.10 24.20 44.52 23.74 36.90 12.69 28.84 15.00 23.74
FedDecorr [33] 71.29 78.99 60.01 72.38 39.42 48.45 30.56 38.20 27.93 33.51 24.34 30.28
FedRCL (ours) 75.94 84.67 72.93 81.71 50.83 59.07 37.23 46.98 32.09 40.87 30.44 36.44

additional overhead and consistently demonstrates strong
performance improvement even with an extremely low par-
ticipation rate.

5. Experiment
5.1. Experimental setup
Datasets and baselines We employ three standard bench-
marks for experiments: CIFAR-10, CIFAR-100 [16], and
Tiny-ImageNet [17], covering various levels of data hetero-
geneity and participation rates. We generate i.i.d. datasets
by randomly assigning training examples to each client
without replacement. For non-i.i.d. cases, we simulate data
heterogeneity by sampling label ratios from a Dirichlet dis-
tribution with a symmetric parameter ↵ 2 {0.05, 0.1, 0.3,
0.6} following [9]. The participation ratio is 5% out of 100
distributed clients unless stated otherwise. Following exist-
ing literature, each client holds an equal number of exam-
ples. For evaluation, we use the complete test set for each
dataset and measure the accuracy achieved at the 500th and
1,000th rounds. We compare our method, dubbed as Fe-
dRCL, with several state-of-the-art federated learning tech-
niques, which include FedAvg [22], FedAvg + FitNet [29],
FedProx [21], MOON [19], FedMLB [15], FedLC [42],
FedNTD [18], FedProc [23], and FedDecorr [33].

Implementation details We adopt a ResNet-18 as the
backbone network, where we replace the batch normaliza-
tion with the group normalization [36] as suggested in [8].
We trained the model from scratch, using the SGD opti-
mizer with a learning rate of 0.1, an exponential decay pa-
rameter of 0.998, a weight decay of 0.001, and no mo-
mentum, following prior works [1, 15, 39]. The number
of local training epochs is set to 5 and the batch size is
adjusted to ensure a total of 10 local iterations at each lo-
cal epoch throughout all experiments. We apply contrastive
learning to conv1, conv2 x, conv3 x, conv4 x, and conv5 x
layers. Other hyperparameter settings are as follows for all
experiments unless specified otherwise: � = 0.7, � = 1,

Table 3. Ablative results of contrastive training in the non-i.i.d.

settings on the CIFAR-100 dataset.

↵ = 0.05 ↵ = 0.1 ↵ = 0.3
500R 1000R 500R 1000R 500R 1000R

Baseline 31.20 39.86 36.65 43.04 41.70 47.47
FedSCL 21.22 42.93 30.93 48.09 41.54 51.70
FedCL 35.29 41.45 40.39 45.91 45.99 50.16
FedRCL (ours) 43.71 54.63 49.82 58.23 57.89 63.46

and ⌧ = 0.05. We used the PyTorch framework [26] for
implementation and executed on NVIDIA A5000 GPUs.
Please refer to the supplementary document for further de-
tails about our implementation.

5.2. Results
We compare the proposed method, FedRCL, with numerous
client-side federated learning baselines [15, 18, 19, 21–23,
29, 33, 42] on the CIFAR and Tiny-ImageNet datasets. Ta-
ble 1 demonstrates that our framework outperforms all other
existing algorithms by large margins on all datasets and ex-
periment settings. Among the baselines, MOON presents
meaningful performance improvement, but its gains are
marginal under severe data heterogeneity, e.g., ↵ = 0.05.
FedLC employs adaptive label margin to mitigate local de-
viations, but its impact on performance is limited. Fed-
Decorr exhibits minor improvement but degraded perfor-
mance in some settings. This implies that the blind miti-
gation of dimensional collapse is not necessarily helpful for
FL. Compared to other works, our algorithm achieves sig-
nificant performance improvements in all datasets, regard-
less of the level of data heterogeneity.

5.3. Analysis
Low participation rate and large-scale clients We val-
idate our framework in more challenging scenarios with
lower client participation rates and a larger number of dis-
tributed clients. Table 2 presents the robust performance
improvement of FedRCL on three benchmarks, where a par-
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Table 4. Ablative results of multi-level contrastive training in var-
ious non-i.i.d. settings on the CIFAR-100 dataset.

↵ = 0.05 ↵ = 0.1 ↵ = 0.3 ↵ = 0.6

Baseline 39.86 43.04 47.47 49.29
Last-layer only 46.36 52.94 57.09 58.20
Multi-layers (ours) 54.63 58.23 63.46 64.06

ticipation rate is 0.02 and the number of clients is set to one
of {100, 500}. All methods suffer from performance degra-
dation, compared with the results in Table 1, due to the re-
duced client data, increased data disparity, and lower partic-
ipation rate. Particularly, FedProc experiences a significant
performance drop, because it relies on the global class pro-
totypes aggregated from participating clients at each round,
which may not be accurate in extremely low participation
settings. MOON exhibits performance degradation com-
pared to FedAvg in some challenging configurations, partly
because it utilizes outdated previous local models due to
the sparse participation of local clients. Despite these chal-
lenges, FedRCL consistently demonstrates promising per-
formance on all the tested datasets.

Contrastive learning strategies Table 3 compares the
effectiveness of various contrastive learning strategies, all
employing multi-level contrastive training for fair compar-
isons. FedSCL is an ablative model of our framework,
which incorporates a naı̈ve supervised contrastive loss into
the FedAvg baseline. While FedSCL improves upon the
baseline in general, its gains are moderate and even nega-
tive in the early stage of training. In contrast, our full frame-
work consistently enhances performance throughout the en-
tire learning process, as also observed in Figure 1. We also
employ another variant, denoted as FedCL, which adopts a
self-supervised contrastive loss [25], but its benefits are not
salient. This is partly because the objective in [25] does not
directly align with the reduction of local deviations.

Multi-level contrastive learning Table 4 presents the ab-
lative results of FedRCL on CIFAR-100, where the pro-
posed contrastive learning is applied only to the last-layer
feature outputs. The results show that FedRCL benefits
from the contrastive learning on intermediate representa-
tions.

Sensitivity of the divergence penalty We study the im-
pact of � in Eq. (5) on the performance of FedRCL under
a non-i.i.d. setting with ↵ = 0.1. Figure 4 illustrates that a
large � leads to early convergence and the improvements are
consistent over a wide range of �, although its excessively
high values marginally degrades the final performances.

Combination with server-side optimization methods
Our approach is orthogonal to server-side algorithms, which

Figure 4. Ablative results by varying the weight of the divergence
penalty (�), which exhibit stability across its wide range.

Table 5. Integration of FedRCL into various server-side federated
learning approaches under a non-i.i.d. setting (↵ = 0.3).

Method CIFAR-10 CIFAR-100 Tiny-ImageNet

FedAvgM [10] 85.48 53.29 38.51
FedAvgM + FedRCL 88.51 64.61 47.23
FedADAM [27] 81.82 52.81 39.74
FedADAM + FedRCL 85.69 57.84 41.57
FedACG [14] 89.10 62.51 46.31
FedACG + FedRCL 89.67 66.38 47.97

allows seamless combinations of FedRCL and the server-
side techniques such as FedAvgM [9], FedADAM [27], and
FedACG [14]. Table 5 presents the consistent and promis-
ing performance gains by the combinations,

6. Conclusion

We presented a novel federated learning approach to ad-
dress the challenges of data heterogeneity effectively. We
initiated our investigation by analyzing gradient deviations
at each local model and showed that the SCL objective mit-
igates the local deviations, but it entails representation col-
lapses and limited transferability. To tackle this issue, we
proposed a federated relaxed contrastive learning frame-
work that successfully prevents representation collapses,
which is further enhanced by encompassing all levels of
intermediate feature representations. We demonstrated the
superiority and robustness of our framework through exten-
sive experiments and analyses.
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