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Abstract

Diagnosis in histopathology requires a global whole slide
images (WSIs) analysis, requiring pathologists to compound
evidence from different WSI patches. The gigapixel scale of
WSIs poses a challenge for histopathology multi-modal mod-
els. Training multi-model models for histopathology requires
instruction tuning datasets, which currently contain informa-
tion for individual image patches, without a spatial ground-
ing of the concepts within each patch and without a wider
view of the WSI. To bridge this gap, we introduce QUILT-
INSTRUCT, a large-scale dataset of 107,131 histopathology-
specific instruction question/answer pairs, grounded within
diagnostically relevant image patches that make up the
WSI. Our dataset is collected by leveraging educational
histopathology videos from YouTube, which provides spa-
tial localization of narrations by automatically extracting
the narrators’ cursor positions. QUILT-INSTRUCT supports
contextual reasoning by extracting diagnosis and support-
ing facts from the entire WSI. Using QUILT-INSTRUCT, we
train QUILT-LLAVA, which can reason beyond the given
single image patch, enabling diagnostic reasoning across
patches. To evaluate QUILT-LLAVA, we propose a compre-
hensive evaluation dataset created from 985 images and
1283 human-generated question-answers. We also thor-
oughly evaluate QUILT-LLAVA using public histopathology
datasets, where QUILT-LLAVA significantly outperforms
SOTA by over 10% on relative GPT-4 score and 4% and 9%
on open and closed set VOA'.

1. Introduction

In histopathology, analyzing giga-pixel-level whole slide
images (WSIs) requires a nuanced understanding beyond
examining isolated patches taken within the WSI. Patholo-
gists typically analyze these WSIs holistically, compounding
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User: Can you provide a concise description of the histopathology image
shown?

Quilt-LLaVA: Upon examination of the histopathology image, it is evident

? that there is a significant presence of lymphocytes. These cells are densely
packed and exhibit a high degree of pleomorphism, indicating a possible
pathological condition. The lymphocytes are irregular in shape and size,
with some displaying enlarged nuclei and prominent nucleoli. In addition to
the lymphocytes, there is also a noticeable presence of eosinophils. These
cells are characterized by their bright pink cytoplasm and bilobed nuclei.
The eosinophils are scattered throughout the tissue, suggesting an ongoing
immune response. The overall cellular architecture appears disrupted, with
the normal tissue architecture replaced by a dense infiltrate of
lymphocytes and eosinophils. This could be indicative of an inflammatory
or immune-mediated process. Further diagnostic tests may be required to
confirm the exact nature of this pathological condition.

\
& User: Given the presence of a mixture of lymphocytes and eosinophils, !
what can be deduced from this single image regarding a possible diagnosis?

_Quilt-LLaVA: The presence of a mixture of lymphocytes and eosinophils in
this patch suggests an inflammatory response. This could be seen in a
variety of conditions, including infections, autoimmune diseases, and
certain types of skin lesions. However, without additional context, it's
challenging to make a definitive diagnosis based solely on this feature. It's
important to note that the presence of these cells alone does not
necessarily indicate a malignant condition. In fact, these cells can be seen
in a variety of benign conditions as well. Therefore, a comprehensive
evaluation of the whole slide image, including the overall architecture of
the lesion, the presence of a junctional and dermal component, and the
absence of atypia or mitotic activity, would be necessary to make a more
accurate diagnosis.
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Figure 1. QUILT-LLAVA is capable of describing the prominent
medical regions within a histopathology patch. Additionally, it can
be utilized to reason towards a diagnosis based on the current ob-
servations. Note: The image includes eosinophils and lymphocytes,
and is sampled from a WSI showing rare benign dermatitis.
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evidence from various regions to form a diagnosis. While
navigating the WSI regions, pathologists engage in a critical
reasoning process over a multi-turn conversation, determin-
ing what morphological concepts within the regions confirm
or rule out specific diagnoses, making the process dynamic
and context-sensitive. For example, in liver tissue WSI, iso-
lated steatosis (fat accumulation) might not be indicative of
significant pathology, but if accompanied by ballooning of
hepatocytes and lobular inflammation, it strongly suggests
non-alcoholic steatohepatitis, a more serious condition that
could lead to cirrhosis or liver cancer [5]. This approach
involves understanding the diagnostic relevance of histolog-
ical visual features, spatial relationships, and aggregating
insights across the WSI [1]. Although current histopathology
multi-modal models can analyze isolated image patches ef-
fectively, they often lack the capability to reason beyond that
patch to determine next steps, thereby limiting their utility.

Meanwhile in natural images, the success of the Large
Language and Vision Assistant (LLaVA) [14] demonstrates
the possibility of multi-modal models as chat partners.
LLaVA is trained by extracting instruction-tuning data with
Large Language Models (LLMs), such as GPT-4 [19]. More-
over, photos usually include multiple objects which can
be referred to using bounding boxes, which can be used
to create spatially grounded instruction-tuning data [14].
Recently, multi-modal models have also begun employing
video content, allowing for more complex reasoning be-
yond single images [13]. However, this progress has not
translated to histopathology yet, where existing multi-modal
models often rely on PubMed articles for image-caption
pairs [14, 18]. These articles lack two critical elements: 1)
visually grounded captions necessary for effective visual
grounding of histopathology concepts, and 2) the broader
contextual information from the WSI, essential for reasoning
beyond single image patches, limiting their effectiveness in
detailed histopathological analysis.

To fill this void, we present QUILT-INSTRUCT, an
instruction-tuning dataset of 107,131 histopathology-
specific question/answer pairs. Similar to QUILT [9], QUILT-
INSTRUCT capitalizes on educational histopathology videos
from YouTube, featuring pathologists narrating their ex-
amination of WSIs. 1) To alleviate the limited spatial
awareness, we extract narrators’ mouse cursors from videos,
grounding histopathology concepts within each patch using
spatio-temporal clustering. 2) To enable reasoning, we pro-
pose novel instruction-tuning QA prompting techniques for
histopathology: Complex reasoning, and iterative abductive
reasoning, which incorporates the global WSI diagnosis and
its supporting facts with image captions to ground factual
information, preventing hallucinations (see Fig. 18).

Using QUILT-INSTRUCT, we train QUILT-LLAVA, a
multi-modal model for histopathology, with its capabilities
illustrated in Fig 1. QUILT-LLAVA undergoes a two-stage

training process (see Fig 3). First, it is aligned with the
histopathology domain using 723K image-text pairs from
QUILT [9], and then it is further instruction-tuned with
QUILT-INSTRUCT. QUILT-LLAVA analyzes given images in
detail, spatially localizes medical concepts, and reasons be-
yond the given image patch by guiding users on what further
evidence is needed to validate or rule out certain diagnoses,
and can even be used as an educational tool that, instead
of directly revealing a diagnosis, subtly hints at it, aiding
pathology students in their training (Appendix Section 2.1.)

Finally, educational videos are valuable for their inter-
activity, as narrators often engage viewers by asking and
answering questions throughout their presentations. Lever-
aging this, we propose QUILT-VQA, an organic evaluation
dataset extracted from naturally occurring questions and an-
swers from QUILT videos with the help of GPT-4 and manual
verification, to evaluate QUILT-LLAVA’s reasoning capabili-
ties. We evaluate QUILT-LLAVA on QUILT-VQA and two
public histology VQA test sets on both open and closed ques-
tions. Using red circle O122] marking the area of interest in
the image, we can prompt QUILT-LLAVA to focus on spe-
cific regions of the image patch. We outperform the SOTA
by 4% and 9% on open and closed set VQA tasks. To further
evaluate the reasoning capabilities of QUILT-LLAVA, we uti-
lize GPT-4 to score the model’s generated response against
two other SOTA multi-modal models: LLAVA [16] and
LLAVA-MED [14]. QUILT-LLAVA outperforms LLAVA
and LLAVA-MED by over 16% and 7%, respectively, and
upon increasing the size of instruction-tuning data and only
pre-training for three epochs, we achieve even better results
of 10.8% over LLAVA-MED.

2. Related work

We built our work from the expanding body of literature in
visual instruction-tuning and video-based dataset generation,
with a specific focus on their application in the areas of
medical image analysis and histopathology.

Visual instruction-tuning in natural images. Thanks to
the open-source availability of LLMs [3, 11, 23, 24], studies
in the general vision-language domain have advanced the
training of multi-modal models by harnessing implicit vi-
sual understanding through generating an instruction-tuning
dataset from image captions. Prior work [4, 17, 32] demon-
strated significant capabilities, with LLaVA-1.5 matching
GPT-4’s performance in certain multi-modal tasks [16].
Visual instruction-tuning in medical images. Visual Med-
Alpaca [6] created 54K question-answer pairs for instruction-
tuning using GPT-3.5. PMC-VQA [31] curated a larger
multiple choice answer based dataset from general medical
domains using PubMed, yet its coverage of histopathology is
limited. For instance, LLaVA-Med [14] employs image cap-
tions from PubMed articles and, in cases of brief captions,
supplements them with sentences from the article, which
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may not directly pertain to the referenced figure. Within
LLaVA-Med, a subset of 17k images relates to histology,
yielding 49K question-answer pairs. Furthermore, these
works rely on isolated image-caption pairs for constructing
instruction-tuning datasets, which limits GPT-4’s capacity
to reason beyond its context or, if attempted, raises its likeli-
hood of hallucination.

Video-based image-text datasets. Multiple works have at-
tempted to curate datasets from videos in the natural domain
[13, 25-28]. MIMIC-IT [13] uses video data to create vari-
ous prompts, including some reasoning-based ones, to cre-
ate instruction-tuning datasets. Video Localized Narratives
[25] involve annotators verbally describing an image while
concurrently moving their mouse cursor over the regions
they refer to, yielding dense visual groundings. Acquiring
a dataset in the same way is expensive in histopathology.
PathNarratives [29] employed eight pathologists to manu-
ally annotate spatially grounded pathology data; however,
it is not available for open access. More recently, QUILT
[9] was proposed, which curates large-scale data from ed-
ucational histopathology content from YouTube to create
image-caption pairs, however, it lacks spatially grounded
captions. We expand upon QUILT’s video content to gener-
ate grounded histopathology data. To the best of our knowl-
edge, our work is the first to use videos for creating spatially
grounded instruction-tuning datasets in the medical domain.

3. Curating QUILT-INSTRUCT

To construct a comprehensive histopathology instruction-
tuning dataset with visual groundings in WSIs, we harness
the rich narrative content of educational YouTube videos.

3.1. Data preparation

We make the key observation that, in educational videos, nar-
rators often pause while exploring large-scale WSIs before
indicating salient areas with their cursor [10, 12, 20, 25]. Our
process uses three steps to convert unstructured videos into
usable visually-grounded instruction data: First, we localize
narrators’ cursors in videos. Then, we perform spatio-
temporal clustering of cursor location to visually ground
histopathology concepts within images. These two steps are
illustrated in Fig. 2. Finally, using the extracted grounded
captions, we use an LLM to generate our instruction-
tuning dataset - QUILT-INSTRUCT. This process involves
prompting techniques, from independent prompts generating
diverse Q/A pairs for each image patch to reasoning-based
prompts combining information across patches in WSIs, cre-
ating Q/A pairs that reason towards diagnoses.

Data source. We construct QUILT-INSTRUCT from 4149
educational YouTube videos totaling over 1,000 hours of con-
tent. These videos are part of a recent histopathology dataset,
QUILT [9]. The videos feature a narrative style, where

pathologists articulate histopathological concepts while in-
teracting with WSIs. QUILT provides rich image-text data
but does not offer spatial annotations to connect text de-
scriptions with specific regions in the images—a key aspect
often absent in most medical datasets. Fortunately, narrators’
mouse cursors highlight morphological features, offering vi-
sual grounding to bridge this gap. We next detail the process
of extracting these cursors from raw video footage.

Localizing Cursors. Extracting the cursor location from
histopathology images poses a significant challenge due to
the homogeneity in color and texture, alongside the presence
of other dynamic elements in videos, such as minor pixel
variations and variations in the narrators’ cursor movement
speed and style. Despite these obstacles, we have made a
critical observation: Narrators typically pause their explo-
ration of a WSI before gesturing with their cursor, guiding
the audience’s attention. Therefore, if the background is
stable for several consecutive frames, it is highly likely that
the narrator may be using their cursor to mark medically
relevant regions. Leveraging this observation, we employ a
relatively straightforward method to detect mouse cursors.
First, we isolate segments in each video where the back-
ground is mostly static, termed stable chunks shown in the
leftmost section of Fig. 2. To detect the stable chunks, we
utilize a simple algorithm (Algorithm 1 in the Appendix)
that detects stable chunks of frames by employing a frame-
differencing approach to detect chunks with minimal back-
ground movement. Our algorithm computes the absolute
difference between consecutive frames and then applies a
Gaussian filter for adaptive thresholding to pinpoint frames
with minor changes. Given the typically uniform coloration
of histopathology backgrounds due to histopathology stain-
ing, simple pixel-wise difference yields a high rate of false
positives, namely, chunks that had a change occur in them
are identified as stable. To alleviate this, we incorporate
a perceptual metric, Structural Similarity Index Measure
(SSIM). By evaluating SSIM on randomly sampled patches,
we further verify whether a change has occurred between
two frames. For each stable chunk where the background
remains consistent, we calculate a median frame in the pixel
domain to represent the background. This median frame
is then subtracted from the frames within the stable chunk,
and a thresholding is applied to mitigate noise or other ar-
tifacts, effectively isolating the cursor as illustrated in the
middle section of Fig. 2. Subsequently, we capture the cursor
by identifying the coordinates of the maximum pixel value.
However, this approach assumes the absence of other slight
movements with respect to pixel changes, which is not al-
ways the case, as there may be movements like the narrator’s
facial expressions within the scene. We address this by ap-
plying a face detection model [21] to mask such distractions,
ensuring our analysis concentrates solely on cursor move-
ment. This algorithm offers a surprisingly generalizable way
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Figure 2. To create QUILT-INSTRUCT, we first identify stable chunks within the video. For each chunk, we compute a median frame in the
pixel domain and subtract it from every frame within the chunk. We then apply a threshold to reduce noise and take the maximum value to
capture the mouse cursor points. These cursor points are then clustered to localize medical content in image captions. Please note that color

encodes time in the "Trace Clustering and Mapping" part of the figure.

to collect cursor traces from any educational videos with
similar narrative styling at a meager computational cost.

After pinpointing these candidate stable chunks, we re-
tain those with a minimum duration of three seconds. Sub-
sequently, we utilize a histology classifier as described in
[9] to eliminate non-histological segments using each stable
chunk’s background frame. This methodology generates
132K image-caption pairs, represented as (I}’7 c}?>, where 17
is the median frame of the j*" stable chunk within the v*"
video, and ¢7 is the corresponding caption for I}, which is
obtained by converting the narrator’s speech to text similar
to the strategy outlined in [9]. Each pair spans an average
of 24 seconds, corresponding to 55 words in the caption.
From these 132K image caption pairs, 44,163 exhibits ac-
tive cursor movement where we preserved cursor position
as (x4, y}), where 2 € [0, W] and y € [0, H], with W and
H representing the image width and height, respectively, ¢
spans from 0 up to the total duration of the ;%" stable chunk.
Next, we demonstrate our approach for clustering extracted
mouse cursors, which serves to visually ground our captions.

Spatio-temporal clustering of the mouse cursor. Next
we proceed to cluster the tracer points (:ci, yg) for each
stable chunk to spatially ground narrators’ words. For
spatio-temporal clustering, we transformed our inputs into
(%, %, t,wt), where t is time and w’, denotes the cumulative
word count at each cursor position, to encode the pace of
speech better, and we have normalized the inputs to ensure
each input is scaled within the standardized range of O to
1. Given this input format, to achieve a balance between
spatial and temporal aspects — specifically, to determine
the relative importance of spatial proximity and temporal
proximity in cluster formation — we apply an exponential
decay to the spatial coordinates, e~ where ) is set at 0.05,
ensuring that points closer in time are preferentially clustered

together. The algorithm dynamically selects the number of
clusters based on the number of words in ¢j. To refine the
process of mapping words to clusters, we first determine the
temporal center of each cluster. This is achieved by calculat-
ing the mean timestamp of the tracer points within a cluster,
which gives us a ’temporal midpoint.” Subsequently, we
assign words to clusters based on their temporal proximity to
these midpoints, ensuring that each word matches the cluster
whose average time is closest to the word’s occurrence time.
Finally, the resulting clusters are represented by bounding
boxes, denoted in the format [x1, y1, x2, y2], where each
coordinate is a floating-point number normalized between
0 and 1. These coordinates specify the boxes’ top-left (x1,
y1) and bottom-right (x2, y2) corners. A sample is shown in
Fig. 2. Next, we show how we used our grounded captions
to generate our instruction-tuning data QUILT-INSTRUCT.

3.2. Generating QUILT-INSTRUCT

We generate two sets of question-answer types. First, we
employ Conversations and Detailed Descriptions prompts,
akin to those in [17], that take as input single patch-level
grounded-text to generate Q/A pairs constrained by the in-
dependent input sample; hence we call these prompts — In-
dependent prompts. Secondly, we leverage the contextual
continuity inherent in our dataset — that is, for a video review-
ing a single WSI, we leverage the sequential unraveling of
concepts/clues toward a final diagnosis, by introducing novel
Reasoning-based Prompts which receive as input patch-level
grounded-text and global WSI-level information. These en-
able an LLM (GPT-4) to extend its reasoning beyond its
immediatecontext while still being anchored by the factual
insights derived from the entire video, reducing its halluci-
native behavior.
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3.2.1 Independent Prompts

Following the approach of [17], we generate Q/A pairs from
each image caption cY, creating an array of questions that
aim to explain the context presented in the image. However,
these prompts are designed to elicit answers based solely
on the information within the caption and do not attempt to
extrapolate beyond it.

Conversation. The objective of the Conversation prompt is
to construct a dialogue between an Al assistant and an indi-
vidual inquiring about a histopathology image. We generate
a diverse set of Q/A pairs based on the image caption c?,
which includes bounding boxes of medical concepts. The as-
sistant, equipped with descriptions and bounding box coordi-
nates, responds as if directly observing the image, discussing
elements like cell types, activities, and relative positions of
medical concepts within the image. The dialogue includes
around 3-4 Q/A pairs, maintaining a conversational tone
while focusing on the visual content of the images.
Detailed Descriptions. Similar to [17], we instruct GPT-
4 to use ¢ to generate a detailed description for a given
image. Subsequently, questions are randomly selected from
a pre-compiled list given in the Appendix Fig.19.

3.2.2 Reasoning-based Prompts

Most image-caption pairs used to create instruction-tuning
datasets in other works, such as PubMed or COCO [15], ex-
hibit contextual isolation, meaning < I;,c; >and < I;,¢c; >
where i # j do not share context with each other. Conse-
quently, Q/A pairs generated by GPT-4 will be constrained
to the context of a single image. Given the gigapixel na-
ture of histopathology images, deriving a comprehensive
diagnosis based on a single image patch is often inadequate.
The model should ideally reason beyond the given image,
guiding the human user on subsequent steps or areas to scruti-
nize. This may be attempted using GPT-4’s inherent medical
knowledge. However, coaxing GPT-4 to extrapolate beyond
a single caption without an interconnected context could lead
to hallucinations, compromising data quality.

In contrast, our approach capitalizes on video-extracted
image-caption pairs derived from a single patient’s WSI. To
that end, we manually reviewed the entire video content of
QUILT identifying 2066 videos that feature only a single
WSI for our reasoning-based prompts. By utilizing the entire
text from these single whole-slide videos, we initially used
GPT-4 (see Fig. 10 in Appendix) to infer the final diagnosis
d; and the supporting facts f7. Utilizing f and dj enables
us to craft reasoning-based prompts that implicitly direct
GPT-4 towards abductive reasoning. This approach fosters
extrapolations more anchored in context, reducing hallucina-
tion tendency. We developed two prompt types, Complex
Medical Reasoning and Iterative Abductive Reasoning,
for reasoning-based instruction-tuning dataset generation.

Complex Medical Reasoning. Given a caption c;, along
with a diagnosis d and contributory facts f, we prompt
GPT-4 in a diagnostic reasoning task designed to extrapo-
late beyond the immediate context of ¢j. More broadly, we
instruct GPT-4 to utilize its inherent medical knowledge to
interpret the contents of a single image caption ¢}, while
subconsciously incorporating the diagnosis and supporting
facts extracted from the entire video. If the observations
from ¢j suffice for making a diagnosis based on GPT-4’s
general medical knowledge, it proceeds to provide a diagno-
sis along with the facts leading up to it. If not, it extrapolates
using [ to suggest what to look for in the WSI to vali-
date or rule out certain diagnoses. We term this approach
"Subconscious Knowledge Injection," as it allows GPT-4 to
leverage its medical knowledge while being subtly guided by
the provided d} and f7, effectively constraining its context
and ensuring focused reasoning and fewer hallucinations.

Iterative Abductive Reasoning: We simulate a conversa-
tion between two GPT-4 agents, mimicking a scenario where
a professional pathologist uses our model to ask longer med-
ically intricate questions about an image. This contrasts with
the shorter questions typically found in other prompts that we
use. The first agent, termed Human-GPT, is provided with an
image patch caption ¢} and is tasked with abductively reason-
ing about the possible diagnoses and the facts used to arrive
at these conclusions. This is presented in the format: User:
[{Abduction: xxx}, { Facts Used: xxx}]. The second agent,
referred to as the Al Assistant GPT, is privy to the diagnosis
dj and facts f7, simulating someone who has viewed the
WSI of this particular patient. The Al Assistant evaluates
the accuracy of the abduction derived by Human-GPT and
provides comments or hints at potentially overlooked details
using its inherent medical knowledge while utilizing d¥ and
fj” . This is communicated in the format: GPT: [{ Comments:
xxx}, {Hint: xxx}]. If Human-GPT has exhausted all in-
formation from c}’ and a diagnosis cannot be made, the Al
Assistant suggests exploring other patches for additional evi-
dence, such as "Consider looking for evidence of X in other
patches to validate your diagnosis.". Furthermore, leveraging
Iterative Abductive Reasoning-based instruction-tuning data,
QUILT-LLAVA can serve as an educational tool, aiding hu-
man users in brainstorming by providing hints about the next
steps, without fully revealing the answer. (See Fig. 16 in
Appendix). The conversation between the Al Assistant and
Human-GPT proceeds with an upper limit of iterations, ran-
domly selected between two to four interchanges per agent,
where after each exchange, the start of a new exchange in-
corporates the post-exchange history, allowing GPT to retain
the memory of past conversations. The dialogue may termi-
nate before reaching this limit if Human-GPT arrives at a
conclusive diagnosis, or if the Al Assistant determines that
Human-GPT has fully exhausted all relevant information
from ¢, and then guides it on what to do next using f7.
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Dataset Statistics. We extracted 162,566 image-caption
pairs from QUILT. To refine this data, we filtered out cap-
tions with fewer than 20 words and those with more than 150
words. This process resulted in a dataset of 114,343 pairs,
with an average caption length of 55 words. From this, we
created QUILT-INSTRUCT, comprising 107,131 question/an-
swer pairs where, on average, we have questions with 16.5
words and answers with 101 words. For reasoning-based
prompts, we manually reviewed 4,149 videos and selected
2,066 that focused on a single WSI from a single patient.

4. Training QUILT-LLAVA & evaluating with
QUuUILT-VQA

In this section, we detail using QUILT-INSTRUCT to train
QUILT-LLAVA. Next, we curate QUILT-VQA indepen-
dently of QUILT-INSTRUCT, to evaluate QUILT-LLAVA.
Finally, we generate an Instruction Following Test Set from
QUILT-VQA to assess QUILT-LLAVA’s ability to follow
instructions.

4.1. Training QUILT-LLAVA

We embrace the LLAVA autoregressive model architecture
for its simple yet efficient design. Additionally, our selection
of the LLAVA architecture aimed to ensure consistency in
evaluation against our baselines LLAVA [17] and LLaVA-
MED [14], both of which utilize a curriculum-learning strat-
egy [14] on instruction tuning sets. Overall, LLAVA inte-
grates a vision module, an LLM, and an MLP connector,
allowing the LLM to process visual information. Initially,
the MLP —serving as a projector— is trained until it con-
verges. During this stage, both LLM and the vision module
kept frozen. Subsequently, both the MLP and the LLM are
fine-tuned with instruction-following data to align the model
with human pathologists. Our overall architecture is shown
in Fig. 3. LLAVA typically uses a pre-trained CLIP image
encoder; for our domain, we use the pre-trained CLIP model
trained using public histopathology datasets such as QUILT-
NET [9] and PLIP [8]. We also run ablations with various
image encoders, training strategies, and visual prompts.
Histopathology domain alignment. First, we align our vi-
sion and language models within the histopathology domain.
To that end, we extract 723K image-text pairs from QUILT
and convert the captions into the Q/A format. To do that, we
randomly select an instruction (Question) and prepend it to
the caption (Answer) to create Q/A pairs. The instructions,
drawn from a predefined list (See Appendix Fig. 18), are
designed to variably describe the visual information present
in the images. At this stage, we freeze vision and language
models and only train the MLP layer, which is tasked to
project the embeddings from the image encoder to enable
the language model predict the images’ caption given the
question. This stage aligns the histology image embeddings
to their corresponding text embeddings.

Histopathology instruction-tuning. Finally, we fine-tune
our model with QUILT-INSTRUCT. At this stage, we keep
the visual encoder weights frozen and continue to train the
MLP layer and the language module.

4.2. Evaluation Data Generation: QUILT-VQA

In the field of histopathology, researchers rely on evaluation
datasets like PathVQA [7] and PMC-VQA [31] to assess the
performance of their models. However, these datasets exhibit
notable shortcomings, including significant repetitiveness
due to paraphrasing the same question. Even worse, often-
times, there are contradictory answers to the same question
(See Appendix Section 3.4). In contrast, educational video
content provides a valuable resource: the interactive element
introduced by narrators who often pose questions during
their presentations and subsequently provide the answers
themselves. For instance, a narrator says "Do you know what
kind of organ we’re dealing with?" and then proceeds to
elaborate by "Yes, this is a colon.". This Q/A format within
the videos offers a rich organic Q/A dataset to be extracted
and repurposed for evaluation.

To harness this potential, we map the "?"'s in the video’s
transcript to our stable chunks. If a "?" appears within a 45-
second time frame of a stable chunk, we expand the stable
chunk’s caption to encompass the complete sentence that
includes the question mark. This method ensures that the
questions are related to the visual content displayed. Fol-
lowing the data pre-processing and the strategic mapping of
question marks, we prompt GPT-4 to extract the question
and answer pairs directly given in a text. We input GPT-4 the
stable chunk’s text, as well as any sentences from the text
that end in a question mark, indicating a posed question. Fig.
11 in the Appendix demonstrates our GPT-4 prompt to gen-
erate QUILT-VQA. After the initial extraction by GPT-4, we
perform a manual verification, ensuring that each question-
answer pair in our dataset is not only medically relevant but
also correctly corresponds to the content provided in the
stable chunk’s text. See table 7 in the Appendix for statistics
of QUILT-VQA. Additionally, we categorize questions into
two groups: Image-dependent (1055 Q/A pairs), referencing
the narrator’s specific image, and general-knowledge (228
Q/A pairs), rooted in broader medical understanding. This
division lets us craft evaluation sets that comprehensively
test the model’s image analysis and medical knowledge.

4.3. Evaluation data generation: Instruction Follow-
ing Test Set

In addition to QUILT-VQA, which is focused on assessing
QUILT-LLAVA’s medical knowledge, we also aimed to eval-
uate the model’s capability in following instructions during
multi-modal conversations. To that end, we constructed a
set of 326 questions, including 256 conversational and 70
detailed description questions, all derived from image-text
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Figure 3. QUILT-LLAVA was initialized with the general-domain LLaVA and trained for two stages: Histopathology Domain Alignment on
QUILT and instruction-tuning on QUILT-INSTRUCT. We evaluated QUILT-LLAVA on visual conversation and question answering tasks.

pairs extracted from unseen videos within QUILT-VQA. To
generate this evaluation set, we followed the same Conversa-
tion and Detailed Description based prompts that we used
when generating QUILT-INSTRUCT.

5. Experiments

This section covers the performance of QUILT-LLAVA
against existing SOTA multi-modal models on histopathol-
ogy VQA benchmarks using a variety of metrics. First, using
GPT-4 we conducted an alignment of output generations with
the ground truth answer. Second, we run open and closed
set VQA tasks. Finally, we ablate with visual promptings as
well as different trained models.

Oracle (GPT-4) Alignment Evaluation. To assess the ef-
fectiveness of QUILT-LLAVA in multi-modal conversations,
using the Instruction Following test-set (see section 4.3),
we leverage the GPT-4 (language-only model) to evaluate
the helpfulness, relevance, accuracy, and level of details
of the responses from the two assistants (candidate model
and GPT-4), and give an overall score on a scale of 1 to 10
of the answers generated from the two assistants, where a
higher score indicates better overall performance, while also
providing comprehensive explanation of its evaluation, for
us to better understand the models. We then compute the
relative score using GPT-4 reference score for normalization
[14, 17], as seen in Table 1a across 14 sub-pathologies and 2
QA types. See Fig. 12 in the Appendix for the exact prompt
used. All QUILT-LLAVA models outperform baselines, with
QUILT-LLAVA trained on single epoch stage-1 and a bal-
anced subset of 40K instruction-tuning pairs for stage-2
fine-tuning outperforming LLAVA and LLAVA-MED by
over 16% and 7% respectively, and upon increasing the size
of instruction-tuning data and pre-training for three epochs
we achieve even better results of 10.8% over LLAVA-MED.
Visual Question Answering. We evaluated QUILT-LLAVA
on three histopathology VQA datasets, the details of which
are provided in Table 7 in the Appendix. These datasets
feature a mix of open-ended and close-ended Q/A pairs. For
closed-set questions, accuracy is used as the metric to deter-
mine the proportion of correct answers given by the model.

In contrast, for open-set questions, we focus on recall to
assess how frequently the model’s responses include ground-
truth tokens [14]. We compare all versions of QUILT-LLAVA
against the medical domain LLAVA-MED, and general do-
main LLAVA in Table 1b. All variants of QUILT-LLAVA
outperform LLAVA. We see the difference in text encoder
initialization from Vicuna [3] in the first set of experiments
paired with pre-trained open-sourced QUILTNET models do-
ing better on open-set questions with an average of 4% over
SOTA and the text encoder initialization from LLAVA doing
better on closed-set questions with an average of 9% over
SOTA. Performance of QUILT-LLAVA on closed-set ques-
tions showcases our model’s instruction following capac-
ity (in both binary yes/no and true multi-choice {A/B/C/D}
QA unlike LLAVA-MED which underperforms on the lat-
ter due to lack of following such multi-choice instructions),
whilst outperforming both baselines on PathVQA and QUILT-
VQA, albeit performance is limited on PMC-VQA-Subset,
we believe it stems from the PMC-VQA'’s issues as discussed
in Section 3.4 of the Appendix. QUILT-LLAVA outperforms
both baselines on Open-set evaluation on PathVQA and
QUILT-VQA, with significant margins. We also run abla-
tions with multiple image encoders and training durations
in Stages 1 and 2 summarized in Table 2a and qualitative
examples in Tables 3-6 in the Appendix.

VQA with Visual Prompting. We adopt the visual prompt-
ing methodology from [22] for evaluating our model. This
involves utilizing the subset of QUILT-VQA with bound-
ing boxes to create ellipses that encapsulate the concepts
highlighted by these boxes (See Appendix Fig. 17). Our
QUILT-LLAVA surpasses the two baselines in both open and
closed-set visually prompted VQA, achieving over 4% in
open-set and 10% in closed-set accuracy. We attribute this
enhanced performance to our grounded instruction-tuning
dataset, underscoring QUILT-LLAVA'’s capability to reason
within a region of interest, a critical aspect in histopathology.

Instruction-tuning Ablation Studies. To study the impact
of QUILT-INSTRUCT on performance, we train several mod-
els: I —Only balanced independent prompts data 3.2.1 model,
R — Only balanced reasoning prompts data 3.2.2, and IR —
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Question Types
Conv  Desc |Bone Breast Cyto Derm

Sub-Domains Overall
Endo Gastro Bone Geni Gyne H&N Neuro Pulm Renal Soft

(Question Count) (256)  (70) 25 (23 (23) @2 @3 (@23 (@3 22) 29 (22) (24 (25 (23) (25| (320)
LLAVA [16] 61.4 36.5 545 62.0 492 48.0 60.1 495 625 622 619 497 59.7 448 539 62.7| 557
LLaVA-MED [14] 70.1 46.9 62.1 693 541 640 61.0 607 712 68.1 703 669 660 589 627 734| 648

QUILT-LLAVA @ 40K | 76.3 58.7 834 733 692 66.7
QUILT-LLAVA @ 107K | 78.4 66.0 825 844 750 79.0

717 672 845 8l.1 784 632 689 552 635 87.7| 723
762 728 753 821 79.1 69.1 68.7 581 678 89.0| 75.6

(a) Performance comparison of multi-modal chat instruction-following abilities, measured by the relative score via language GPT-4 evaluation. Our best
model QUILT-LLAVA with ViT-B-32 Vision Encoder [9], 7B Language Model (trained for Stagel: 3 epochs, Stage2:1 epoch) outperforms the baselines.

QUILT-LLAVA Model Variants PathVQA | PMC-VQA-Subset | QUILT-VQA QuILT-VQA O Average
Instruct Stage 1 Stage 2 | Open Closed Closed Open Closed | Open (w/o @ w/) Closed (w/o @ w/) | Open Closed
QUILTNET ViT-B-32 Vision Encoder [9], 7B Language Model
107K 1 0 1434 5378 27.05 47.69 56.56 49.62 @54.13 55.56 #58.33 | 41.45 50.26
107K 1 1 1424 5842 19.63 59.82  64.43 58.81061.08 68.52070.37 | 48.49 56.27
107K 1 3 12.79  56.30 17.21 57.62  63.55 56.21 @ 58.32 65.74 @ 69.44 | 46.24  54.45
107K 3 1 1530  54.93 16.01 60.97  60.64 59.24 @ 64.06 56.48 ®59.26 | 49.89  49.46
LLAVA [16] checkpoint, 7B Language Model
107K 1 0 11.65 54.03 3391 55.80 58.02 54.77 @ 59.56 51.85060.19 | 4545 51.60
107K 1 1 15.06 58.68 28.56 5539 68.81 54.24 @ 59.83 71.30 @75.00 | 46.13  60.47
Baselines
LLaVA-Med [14] 7B 0 0 11.97 56.15 1.34 5481 61.22 52.58 @ 53.97 69.44 @ 64.81 | 43.33  50.59
LLaVA [16] 7B 0 0 11.65 54.02 3391 5581 57.73 54.74 @ 59.96 51.85060.19 | 45.54 51.54

(b) Results with varying training epochs at different stages and models

alongside baselines. 107K indicates the size of instruct data used in Stage-2.

QUILT-LLAVA Instruction Data PathVQA | PMC-VQA-Subset | QUILT-VQA QuILT-VQA O
Conv Detail Complex Abductive | Open Closed ‘ Closed Open Closed ‘ Open (w/o @ w/) Closed (w/o @ w/)
10k 10k 0 0 12.56  50.99 12.04 5752 64.14 55.81 @ 55.29 68.52 @ 59.26
0 0 10k 10k 17.53  44.50 30.46 73.95  39.65 74.37 @ 69.64 39.81 @41.67
5k 5k 5k 5k 14.04 57.12 22.13 61.75 65.60 60.15 @ 62.04 59.82 @ 67.59
10k 10k 10k 10k 14.10 57.33 22.17 6142  65.60 59.67 @ 58.50 66.67 @ 67.59

(c) Instruction-tuning Ablation: finetuning QUILT-LLAVA on the instruction-tuning data subsets with varying number of samples in each Q/A type.

Table 1. Quantitative results on histopathology VQA datasets. For open-set questions, we report recall for our free-form text generation
method in column Open. For closed-set questions, we report the accuracy in column Closed. Red indicates the best-performing model.

balanced on all prompt types. We find that I model performs
better on closed-set questions, whereas R model outperforms
on open-set questions. We argue this is due to the contextual
distribution of the questions and answers. I lends itself well
to closed-set questions directly asking option-constrained
questions and R lends itself well to open-set questions be-
cause these questions often require reasoning about the di-
agnosis. IR improves performance on closed-set questions;
however, we see a drop in open-set VQA performance.

6. Conclusion and Limitations

Limitations. Our data, derived from raw video footage, in-
herently contains noise. This can manifest in many ways:
clusters may occasionally be generated incorrectly, or er-
roneous mouse cursor detection. Additionally, despite our
efforts to keep its context limited, GPT-4 still hallucinates,
leading to instances where QUILT-LLAVA also hallucinates.
Also, despite being explicitly instructed not to, GPT-4 at

times reads from the caption rather than extracting informa-
tion from the image. We discuss the limitations of QUILT-
LLAVA and QUILT-INSTRUCT in Section 2 of the Appendix.
Conclusion. We presented: 1) QUILT-INSTRUCT, in which
we automatically extracted human narrators’ mouse move-
ments to spatially ground our concepts and leverage WSI
to introduce novel reasoning-based prompts. 2) Utiliz-
ing QUILT-INSTRUCT, we trained QUILT-LLAVA, a multi-
modal model that outperforms existing baselines in both
open-ended and close-ended histopathology question an-
swering. 3) To further test QUILT-LLAVA’s reasoning ca-
pabilities, we curated an evaluation dataset, QUILT-VQA,
comprised of human-generated question-answer pairs from
pedagogical videos. In the future, we plan to collaborate with
pathologists to appraise our model and we aim to broaden
our focus from histopathology to the wider medical field.
Acknowledgements. We thank Microsoft for OpenAl cred-
its, Department of Defense W81 XWH-20-1-0798, and Na-
tional Cancer Institute UO1 CA231782, and RO1 CA200690.
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