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Figure 1. CodedEvent Tracking. Left: example recovered trajectory using designed optics for an event camera. Right: top row, optimal
phase mask design and PSFs for a CMOS sensor, bottom row, our optimal phase mask design and PSFs for an event sensor.

Abstract

Point-spread-function (PSF) engineering is a well-

established computational imaging technique that uses

phase masks and other optical elements to embed extra in-

formation (e.g., depth) into the images captured by con-

ventional CMOS image sensors. To date, however, PSF-

engineering has not been applied to neuromorphic event

cameras; a powerful new image sensing technology that re-

sponds to changes in the log-intensity of light.

This paper establishes theoretical limits (Cramér Rao

bounds) on 3D point localization and tracking with PSF-

engineered event cameras. Using these bounds, we first

demonstrate that existing Fisher phase masks are already

near-optimal for localizing static flashing point sources

(e.g., blinking fluorescent molecules). We then demonstrate

that existing designs are sub-optimal for tracking moving

point sources and proceed to use our theory to design opti-

mal phase masks and binary amplitude masks for this task.

To overcome the non-convexity of the design problem, we

leverage novel implicit neural representation based param-

eterizations of the phase and amplitude masks. We demon-

strate the efficacy of our designs through extensive simula-

tions. We also validate our method with a simple prototype.

1. Introduction
Single-molecule localization microscopy (SMLM) is a vital
tool for resolving nano-scale structures with applications in
analysis of protein clusters [39], cell dynamics [62], and
electromagnetic effects [30]. Traditional SMLM experi-
ments are limited by the slow capturing process of frame-
based CMOS sensors, preventing use in capturing high-
speed, dynamic interactions. Recently, [9] showed event
cameras are key to enabling high-speed 2D SMLM.

In contrast to traditional CMOS cameras, event cameras
are an emerging class of bio-inspired neuromorphic sensors
that operate with a high temporal resolution on the order
of µs. These sensors are comprised of an asynchronous
pixel array, where each pixel records an event when the
log intensity change exceeds a set threshold. In addition
to having kilohertz time resolution, these sensors are low-
power, resistant to constant background noise, and can op-
erate over a high dynamic range [14]. Already, these sen-
sors have proven useful in a range of applications includ-
ing object tracking [4, 60], gesture recognition [3, 32], and
robotics [24, 48].

Just as PSF-engineering allows one to extract additional
information using conventional CMOS sensors [52], we be-
lieve that event-camera-specific PSF engineering will be the
key to enabling high-speed 3D SMLM with event cameras.
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Unfortunately, existing PSF design theory is not equipped
for the event space. In this work, we bridge this gap by de-
veloping Cramér Rao Bounds on 3D position estimation for
event camera measurements. Leveraging these bounds, we
subsequently develop a novel implicit neural representation
for optical elements to design components with improved
3D particle localization capabilities.

Specifically, our principal contributions are as follows:
• We derive the Fisher Information and Cramér Rao

Bounds for event camera measurements parameterized by
3D spatial positions.

• We develop novel implicit neural representations for
learning both amplitude and phase masks.

• We identify new phase and amplitude designs for opti-
mally encoding 3D information with event cameras.

• We demonstrate in simulation that our designs outperform
existing methods at 3D particle tracking.

2. Related Work
2.1. Coded Optics
Specialized lenses have been shown to encode additional
depth information in CMOS image frames. A ‘coded aper-
ture’ can produce depth-dependent blurs that enable one
to extract depth by looking at the per-pixel defocus pat-
tern [33]. Future works extend the ‘depth from defocus’
idea by leveraging information theory to design an opti-
mal lens [27, 52]. More recently, researchers have proposed
optimizing optical parameters in conjunction with a neural
network reconstruction algorithm in an ‘end-to-end’ fash-
ion. This joint-optimization problem is difficult to optimize
due to local minima. Many works have discussed mask pa-
rameterizations to stabilize optimization: Zernike basis [10,
64] and rotationally symmetric [25]. However, direct pixel-
wise methods should be preferred due to their expressive-
ness [36]. Dynamic pixel-wise masks have been proposed
as a training stabilization mechanism [50]. Specialized op-
tics have been explored for other applications such as super
resolution [55], high-dynamic-range imaging [40], hyper-
spectral sensing [34], and privacy-preservation [22]. To our
knowledge, PSF engineering specifically for event-based
sensors has been relatively unexplored.

2.2. Microscopy Tracking
Originally, single-particle localization was limited to 2D di-
mensions, where only the x, y coordinates of an emitter are
recovered [57]. Similar to works on depth from defocus,
the depth of an emitter can be recovered from 2D measure-
ments by considering a microscope’s PSF. A standard mi-
croscope typically has a PSF resembling the circular Airy
pattern; however, because it spreads out quickly its depth
resolving range is limited. A few engineered PSFs—such
as the double-helix PSF [46]—have since been proposed

to improve the imaging range. In particular, Shechtman et

al. finds the optimally informative PSF (dubbed the Fisher
PSF) for a CMOS sensor to localize the 3D position of a sin-
gle emitter [52]. A few other techniques for resolving the
3D location of particles have been proposed such as light-
field-microscopy [37] and lensless imaging [35].

Unfortunately, these techniques are limited by the sub-
kilohertz readout of conventional CMOS sensors. This hin-
ders their use in imaging fast, dynamic processes such as
blood flow [8] and voltage signals [1]. A few ultrafast imag-
ing methods have also been proposed [15, 38, 63, 65] but
require high-power illumination which can be phototoxic
to certain organic samples. Recently, event cameras have
been proposed as an alternative to CMOS sensors for 2D
SMLM [9]. Another work proposes extending light-field-
microscopy to event cameras to resolve 3D position but re-
quires complex optical setups and sacrifices spatial resolu-
tion [20]. By designing optics to encode depth information
into event streams, we can enable high-speed 3D SMLM.

2.3. Depth Estimation
Extracting 2D information from images tends to be a signif-
icantly easier task than extracting depth, hence, monocular
depth estimation is often the bottleneck in 3D tracking per-
formance. Structured light projectors [16] or time-of-flight
sensors [13] use active illumination to extract depth infor-
mation. Given these methods’ reliance on an internal light
source, performance can degrade in adverse lighting con-
ditions. If we allow multiple views, stereo [21] or struc-
ture from motion [61] can triangulate 3D position. These
methods are sensitive to occlusion and texture-less scenes
and require multiple calibrated cameras. Many neural net-
work approaches with all-in-focus CMOS images as input
have been proposed [47, 59, 67, 68]. Recently, event-based
depth estimation has made significant progress with neural
networks [26, 42, 44, 53, 72]. Spiking neural networks have
been proposed for spiking cameras, which similar to event
cameras, offer asynchronous readout of pixels [69].

3. Theory
3.1. Event Camera Simulation
Let (x(t), y(t), z(t)) be the location of a point light source
at time t. We focus on tracking points around some focal
plane z, with z(t) = z + �z(t) and z � |z(t)|. In this
context, a pin-hole camera would capture,

It(u, v) = �

✓
u� f

x(t)

z +�z(t)
, v � f

y(t)

z +�z(t)

◆
(1)

⇡ �

✓
u� f

z
x(t), v � f

z
y(t)

◆
(2)

where � is the Dirac Delta function. Because f and z are
constant, we will consider x(t) and y(t) pre-scaled for no-
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tation sake. In practice, a camera captures a blurry image
depending on the point-spread-function (PSF) it induces. A
PSF h can be modeled with Fourier optics theory as a func-
tion of 3D-position x, y, z, amplitude modulation A caused
by blocking light, and phase modulation �

M caused by
phase mask height variation [18].

h =
��F

⇥
A exp

�
i�

DF (x, y, z) + i�
M
�⇤��2 (3)

where �DF (x, y, z) is the defocus aberration due to the dis-
tance from the camera. Then, a point light source at location
(x(t), y(t), z(t)) captured by a regular camera is

I
b
t (u, v) = [hz(t) ⇤ It](u, v) (4)

= h(x(t), y(t); z(t)). (5)

Note that because this PSF depends on depth, it can be
used to encode depth information into I

b. Event cam-
eras trigger events with respect to the log of photocurrent
L = log(Ib) [14] where a pixel’s photocurrent is linearly
related to the wave intensity at that pixel. Specifically, an
event is triggered when the absolute difference between the
current intensity at t + ⌧ and the reference intensity from
t, �L(u, v) = Lt+⌧ (u, v) � Lt(u, v), is greater than some
threshold T .

Ot(u, v) =

8
><

>:

+1 �L(u, v) > T

�1 �L(u, v) < �T

none otherwise
(6)

In isolation, each event contains little information; however,
a sequence of events can be highly informative [2, 31, 54].
Notably the inceptive event time-surfaces representation
suggests the trailing events that occur after the first event
correspond to the log-intensity change [6]. Therefore, by
binning events over time, one can approximately recover
the change in log intensity �L. Visuallly, we show the ac-
cumulated event frame approaches �L as the number of
intermediate frames accumulated increases in Figure 2. We
prove this approximation is at most off by 1 for an idealized
event camera in Section S4 of the supplement. Therefore,
our event measurement (6) can be simplified as,

Ot = log
�
I
b
t

�
� log

�
I
b
t�⌧

�
. (7)

3.2. Information
In the field of statistical information theory, the Fisher Infor-
mation (FI) reports the amount of information gained about
the parameters of a distribution, given a measurement. As
such, we can use FI to express the effectiveness of PSFs at
encoding depth information. The multi-parameter FI is rep-
resented as an N ⇥N matrix where the i, j entry is defined

as the variance of the score:

I(✓)i,j = E
✓

@

@✓i
log f(X; ✓)

◆✓
@

@✓j
log f(X; ✓)

◆
| ✓

�

(8)

where ✓ is the set of parameters, ✓i is the ith parameter, and
f(X; ✓) is a probability density function for the distribution
observation X is drawn from.

For traditional CMOS sensors, FI has been used to com-
pare coded apertures and phase masks for a wide range of
tasks such as depth estimation [45], hyper-spectral imag-
ing [5], and detecting linear structures [17]. Those works
have shown that the intrinsic photon shot noise in I

b can
be modeled as a Poisson random variable with mean � =
h(x, y, z). We derive the FI matrix for an event sensor.
Flashing light. As a warm-up, consider the SMLM tech-
nique for event cameras presented in [9], which assumes a
blinking labeling model similar to STORM (stochastic opti-
cal reconstruction microscopy) [49], PALM (photoactivated
localization microscopy) [7] and DNA-PAINT (DNA point
accumulation for imaging in nano-scale topography) [51].
With this idealized model of an event camera, log Ibt�⌧ = 0,
so (7) reduces to

Ot = log Ibt . (9)

By applying e
x to the measurement, we can indirectly mea-

sure I
b
t . Moreover, by applying standard results for FI of a

Poisson distribution [28, 58], we can write the FI matrix for
an event camera capturing a blinking particle as:

I(✓)i,j =
NX

n

1

h(n) + �

✓
@h(n)

@✓i

◆✓
@hz(n)

@✓j

◆
(10)

where N is the number of pixels, h(n) is the PSF inten-
sity at pixel n, � is background noise, and ✓ = {x, y, z}
corresponds to the 3D location of a point source. Notice
that this is the same result as in [45], suggesting that — in
the context of blinking particles — the Fisher mask found
in [52] for a traditional CMOS camera is also optimal for an
event-based sensor.
Generalization. We now derive the positional information
content for any event measurement. Rewriting (7) with log-
arithmic rules, we obtain,

Ot = log
I
b
t

Ibt�⌧

. (11)

The inner expression is drawn from the ratio of Poisson ran-
dom variables with means �t and �t�⌧ . This can be approx-
imated as a single Normal distribution [19]:

I
b
t

Ibt�⌧

⇠ N
✓

�t

�t�⌧
,

�t

�2
t�⌧

+
�
2
t

�3
t�⌧

◆
. (12)
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Figure 2. Binning events approximates the log difference as the number of accumulated frames increases. Consider a point source
moving from the blue location to the red location at depth plane 1µm over a fixed time interval in the first image. The second image
illustrates the direct access to the difference in (7), while the subsequent images demonstrate the effect of accumulating N event frames
across the time interval. Observe how large N nearly recovers �L, demonstrating the validity of the approximation.

Similar to the flashing light example, we can exponentiate
the measurement to recover this ratio. Using the symbolic
mathematics solver SymPy [41], we evaluate the expec-
tation in (10) with ✓ = {xt, yt, zt, xt�⌧ , yt�⌧ , zt�⌧} and
f(X; ✓) as the PDF of the normal distribution, yielding

I(✓) =
NX

n

DTD
2 (µ+ ⌫)2

�

2

6666664

a a a b b b

a a a b b b

a a a b b b

b b b c c c

b b b c c c

b b b c c c

3

7777775
(13)

where

µ = �t�⌧ = h(xt�⌧ , yt�⌧ , zt�⌧ ) + � (14)
⌫ = �t = h(xt, yt, zt) + � (15)

µi =
@

@✓i
µ (16)

⌫i =
@

@✓i
⌫ (17)

D =
⇥
µx/µ µy/µ µz/µ ⌫x/⌫ ⌫y/⌫ ⌫z/⌫

⇤
(18)

a = 2µ2
⌫ + 4µ2 + 2µ⌫2 + 12µ⌫ + 9⌫2 (19)

b = �
�
2µ2

⌫ + 2µ2 + 2µ⌫2 + 7µ⌫ + 6⌫2
�

(20)

c = 2µ2
⌫ + µ

2 + 2µ⌫2 + 4µ⌫ + 4⌫2 (21)

4. Method
4.1. Objective Function
Similar to existing work on 3D tracking for CMOS sen-
sors, we can leverage the FI matrix to optimize optical pa-
rameters that efficiently encode depth information [52, 64].
Specifically, we compute the Cramér Rao Bound (CRB),
which provides a fundamental bound on how accurately pa-
rameters can be estimated given a measurement. If T (X)
is the unbiased estimator for parameters ✓, then the CRB is

CRBi ⌘
⇥
I(✓)�1

⇤
i
 cov✓ (T (X))i . (22)

Then, the objective function we wish to minimize is

LCRB =
X

z2Z

X

i2✓

q
[I(✓)�1]i,i (23)

where Z is a set of depth planes.

4.2. Optical Parameter Representation

PSF manipulation is typically achieved through designed
optical elements such as phase and amplitude masks. In
general, phase masks are preferred over binary amplitude
masks for their photon efficiency and continuous parametric
representation, allowing for optimization via standard gra-
dient descent methods. Inspired by [12], we demonstrate
that implicit neural representations can model phase masks
in such a way that results in more stable optimization and
better-optimized mask designs. We use an architecture sim-
ilar to the sinusoidal representation network (SIREN) pre-
sented in [56] to predict the phase delay caused by the mask
at each location (u, v). Input data in R2 is processed by
a four-layer multi-layer perceptron (MLP) with hidden fea-
ture size 128, and sin activation. We refer to this method as
Neural Phase Mask (NPM).

Phase masks offer many degrees of freedom and excel-
lent light throughput, but can be relatively expensive to
manufacture and are only effective for some frequencies.
Meanwhile binary amplitude masks are cheap to manufac-
ture (such as with consumer-grade 3D printers) and can
operate across all frequencies (including x-ray), but offer
fewer degrees of freedom.

Historically, methods for designing optimal binary aper-
tures have been fundamentally limited due to the lack of op-
timization techniques for discrete binary parameters. As a
result, prior works [33, 70, 71] walk over a restricted search
space, leaving ample room for improvement. To solve this
issue, we propose a novel implicit neural representation for
binary amplitude masks. We use an MLP to predict the per-
cent of photons blocked at each mask location (u, v). The
input in R2 is processed by a four-layer MLP with hidden
feature size 128 and SoftPlus [43] activation. The output to
the network is passed through a sigmoid. We refer to this
method as Neural Amplitude Mask (NAM).

5. Experimental Details
PSFs are simulated for a microscope imaging system with
NA= 1.4, index of refraction n = 1.518, wavelength
� = 550nm, magnification M = 111.11, 4f lens focal
length f = 150mm, pixel pitch of 49.58µm, and resolution
of 256⇥ 256. Each phase and amplitude mask is optimized
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(a) Optical component optimization.

(b) Coded event 3D tracking

Figure 3. System overview. (a) An MLP produces a phase or amplitude mask based on a grid of x, y coordinates. The weights are updated
through back-propagation of the CRB computed with Brownian Motion. (b) In simulation, coded events are generated by first rendering
high-frame-rate coded CMOS frames and converting them to event frames. These measurements are passed to a 3D-tracking algorithm.

using LCRB for 10,000 epochs. Because particle motion in-
fluences FI, we leverage Monte Carlo sampling while train-
ing to maximize information content for all motion direc-
tions. For each epoch, we compute the total CRB for 3
random orthogonal motions across 11 depth planes. We
use the Adam [29] optimizer with parameters �1 = 0.99,
�2 = 0.999, and a learning rate of 10�3. Training and test-
ing were conducted on NVIDIA RTX A5000 GPUs.

To validate our design’s ability to track point sources, we
train a Convolutional Neural Network (CNN) to map binned
event frames to 3D locations. Events are accumulated over
16 refresh cycles to produce an accumulated event frame.
These 256⇥ 256 single-channel images are processed by a
CNN with 5 convolutional blocks and a linear output head.
Each block is followed by batch normalization, ELU ac-
tivation [11], and max pooling. The output is a normal-
ized length 3 vector representing the position of the particle
at a given time step. The CNN is trained on 3 Brownian
motion trajectories. Each trajectory is sampled at 16,000
time steps. A ‘coded’ CMOS video frame is simulated
by blurring a 300nm emitter with the optical component’s
PSF for the location and adding Gaussian noise (to simu-
late other noise sources such as thermal). Next, we gener-
ate a ‘coded-event-stream’ from the high-speed video using
standard event camera simulator methods by tracking the
per-pixel reference signal [23]. Finally, we bin every 16
frames to produce a 1000-frame ‘coded-event-video’. The
particle location at the end of the 16-frame bin is consid-
ered the ground truth position. We supplement this train-

Figure 4. Visualization of non-event camera-specific optical
components. Each component is placed in the same plane as a
150mm focal length lens.

ing with 2000 random starting positions and corresponding
motion vectors. Each motion is scaled to have magnitude
drawn from N (100nm, 20nm). For each position-motion
pair, we generate a 16 frame ‘coded’ CMOS video to ac-
cumulate into a ‘coded-event-frame’. The CNN is trained
for 100 epochs with the Adam optimizer. We also manu-
facture a lab prototype to the demonstrate practical benefits
of coded apertures for event cameras (see Section S1 in the
supplementary materials for details).

6. Results

Because designed optics for event cameras is an emerging
field, we compare our optimized phase and amplitude mask
designs to components designed for traditional CMOS sen-
sors: open aperture/Fresnel lens, Fisher phase mask [52]
and Levin et al.’s amplitude mask [33] (Figure 4).
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Component CRB (nm) #
Open Aperture 80.8

Amplitude Levin et al. 263.3
NAM (Ours) 50.5

Phase Fisher 36.3
NPM (Ours) 33.1

Table 1. Average CRB for each optical component across a 3µm
depth range for all 6 position parameters. Phase masks outperform
amplitude masks due to higher light efficiency, and our neural-
designed phase mask is best.

Figure 5. 3D localization CRB with respect to depth. First
row: particle’s x, y, z position at time t � ⌧ . Second row: par-
ticle’s x, y, z position at time t. Observe the bound increases as
the source drifts from the focal plane.

6.1. Cramér Rao Bound

We simulate Brownian motion by sampling 1000 unit direc-
tion vectors and independently scaling them by a magnitude
drawn from N (100nm, 20nm). The speed is relative to the
event camera refresh rate, with a 1000 accumulated-event-
frame per second system, this motion simulates a range of
biological processes such as molecular diffusion [66]. We
then evaluate the average CRB over the 1000 motions at 30
depth planes spaced evenly on a 3µm range around the focal
plane. For all 6 position parameters, we plot the CRB trend
with respect to depth (Figure 5). Observe that each opti-
cal system performs worse as a point source moves away
from the focal plane as the defocus change decreases. Al-
though an open-aperture lens is slightly better around the
focal plane, its bound increases at a higher rate than the
other designs. We also report the average CRB over all pa-
rameters and depth slices to demonstrate our neural-based
phase mask is best overall (Table 1).

RMSE (nm) # L1 (nm) #
Component 3D z

Open Aperture 617 936

Amplitude Levin et al. 764 1036
NAM (Ours) 66.0 49.2

Phase Fisher 52.6 44.2
NPM (Ours) 51.2 39.2

Table 2. Tracking accuracy comparison. We present quantitative
results on 3D trajectory recovery for known optical designs. Our
event CRB loss function found the best-performing design. Al-
though only slightly improved in overall 3D tracking, our design
noticeably improves depth recovery.

Figure 6. Recovered 3D position over Brownian motion se-
quence with coded event frames. Left: phase mask meth-
ods, right: amplitude mask methods. Observe trajectories recon-
structed from phase mask-coded events more closely align with
ground-truth positions. Units in microns.

6.2. 3D Tracking

We validate our theoretical results in simulation by track-
ing a 3D moving emitter across a 8µm ⇥ 8µm ⇥ 4µm vol-
ume. After training a CNN to decode 3D position from
coded event frames, we evaluate our network tracking per-
formance on 5 sequences of Brownian motion, each con-
sisting of 1000 binned frames. Table 2 shows our event
camera-specific optical designs minimize 3D tracking error
more than conventional designs. Additionally, our method
is substantially better at depth plane recovery. Qualitative
results in Figure 6 demonstrate that 3D positions recovered
using our designs more tightly fit ground-truth trajectories.

7. Ablation Studies
7.1. Optical Representations

Additionally, we compare 3D tracking results using two
different amplitude mask representations: pixel-wise and
neural amplitude mask (Figure 7) and three different phase
mask representations: pixel-wise, Zernike basis, and neural
phase mask (Figure 8). As shown in Table 3, our implicit
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Figure 7. Designed amplitude masks and corresponding PSFs.
Top: pixel-wise representation. Bottom: implicit neural represen-
tation.

Figure 8. Designed phase masks and corresponding PSFs. Top:
pixel-wise representation. Middle: first 55 Zernike coefficients
representation. Bottom: implicit neural representation.

Representation CRB (nm) #

Amplitude Pixel-Wise 65.5
NAM 50.5

Phase
Pixel-Wise 34.2

Zernike 34.8
NPM 33.1

Table 3. Average CRB of different optimized representations
across a 3µm depth range. Notice the neural representations out-
perform their pixel-wise counterparts.

neural representation-based methods achieve a lower aver-
age error bound than alternative representations, despite be-
ing two times smaller than pixel-wise representations with
respect to the number of parameters. As expected, phase
mask results generally outperform the amplitude mask re-
sults (Figure 9). However, our novel neural binary aperture
makes optimizing amplitude masks more tractable. We ob-
serve that pixel-wise representations not only yield difficult-
to-manufacture apertures but also suboptimal performance.
In terms of 3D tracking, the implicit neural representations
produce a smaller error on average (Table 4) and more ac-
curately match sampled 3D trajectories (Figure 10).

Figure 9. Effect of optical parameterization on 3D localization
CRB. First row: particle’s x, y, z position at time t � ⌧ . Second
row: particle’s x, y, z position at time t. Our implicit neural rep-
resentations are particularly advantageous for amplitude masks.

RMSE (nm) # L1 (nm) #
Component 3D z

Amplitude Pixel-Wise 120 103
NAM 66.0 49.2

Phase Pixel-Wise 56.5 45.9
Zernike 51.3 50.2

Our NPM 51.2 39.2

Table 4. Effect of optimized mask parameterization on track-
ing accuracy. Average distance between ground-truth Brown-
ian motion and the recovered 3D position is minimized with our
neural-based designs.

Figure 10. Effect of optical representation on 3D trajectory re-
covery. Left: phase mask methods, right: amplitude mask meth-
ods. Observe that neural representations produce tighter recon-
structions. Units in microns.

7.2. Tracking Limits
In this section, we explore the limits of 3D tracking with
variable external factors. For each experiment, we compute
the average CRB over 30 depth slices and 6 parameters for 3
orthogonal unit directions (x, y, and z). First, as the number
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Figure 11. Flux effect on CRB. With more available photons, the
signal-to-noise ratio increases, so the 3D information content is
more reliable, and the bound on 3D tracking error decreases.

Figure 12. Speed effect on CRB. Too-slow moving particles trig-
ger fewer events yielding a worse CRB. Similarly, as a particle
moves faster the delay between triggers leads to fewer events.

of available photons increases, the lower bound on 3D posi-
tion estimation monotonically decreases (Figure 11). More
available photons equate to a higher signal-to-noise ratio.
Additionally, this result helps explain why phase masks
outperform amplitude masks. Second, we show extremely
slow-moving particles (less than nanometers per refresh
rate) experience a significantly higher CRB (Figure 12).
Minimal movement indicates smaller intensity changes and
thus an event camera would trigger fewer events. On the
other side, as a particle moves faster, the number of events
will decrease as there is a non-zero delay between when
an event camera can trigger sequential events. Our learned
phase mask is more robust to speed changes than an open
aperture and our learned amplitude mask. Third, when the
percentage of photons due to background noise increases,
the bound on error also increases (Figure 13). We design
our masks with 1% of captured photons attributable to the
background, but the learned designs are more resistant to
degraded conditions than an open aperture.

We also explore the effect of modifying the accumulation
period in Section S2 and how the optimal design changes
with respect to speed in Section S3 of the supplement.

Figure 13. Background photon effect on CRB. As the percentage
of photons hitting the sensor due to background noise increases,
CRB also increases. The impact is minimal in our method.

8. Limitations
While we were successful in designing optics to im-
prove performance on 3D tracking with event cameras, our
method carries some limitations. First, although our binned
event frames can be obtained at kHz refresh rates, they
do not take full advantage of the asynchronous nature of
event cameras. Second, our bounds are for an idealized
event camera model with no read-noise. It would be im-
possible to outperform these bounds, but there might exist
a tighter bound that accounts for these hardware imperfec-
tions. Lastly, we only consider single-emitter images. With
multiple point sources, the resolving accuracy between sin-
gle points may be more limited.

9. Conclusion
This work introduces PSF-engineering to neuromorphic
event-based sensors. We first derive information theoretical
limits on 3D point localization and tracking. We demon-
strate that existing amplitude and phase mask designs are
suboptimal for tracking moving emitters and design new op-
tical elements for this task. Additionally, to overcome the
non-convexity of this optimization problem, we introduce
a novel implicit neural representation for optical compo-
nents. Finally, we validate the effectiveness of our designs
in simulation and compare against state-of-the-art mask de-
signs. Our work unlocks not only highly performant optics
for event cameras but also the ability to design highly ex-
pressive elements for other sensors.
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Andy R. Terrel, Štěpán Roučka, Ashutosh Saboo, Isuru Fer-
nando, Sumith Kulal, Robert Cimrman, and Anthony Sco-
patz. Sympy: symbolic computing in python. PeerJ Com-

puter Science, 3:e103, 2017. 4
[42] Mohammad Mostafavi, Kuk-Jin Yoon, and Jonghyun Choi.

Event-intensity stereo: Estimating depth by the best of both
worlds. In Proceedings of the IEEE/CVF International

Conference on Computer Vision (ICCV), pages 4258–4267,
2021. 2

[43] Vinod Nair and Geoffrey E. Hinton. Rectified linear units im-
prove restricted boltzmann machines. In Proceedings of the

27th International Conference on International Conference

on Machine Learning, page 807–814, Madison, WI, USA,
2010. Omnipress. 4

[44] Yeongwoo Nam, Mohammad Mostafavi, Kuk-Jin Yoon, and
Jonghyun Choi. Stereo depth from events cameras: Con-
centrate and focus on the future. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), pages 6114–6123, 2022. 2
[45] Raimund J Ober, Sripad Ram, and E Sally Ward. Localiza-

tion accuracy in single-molecule microscopy. Biophysical

journal, 86(2):1185–1200, 2004. 3
[46] Sri Rama Prasanna Pavani, Michael A. Thompson, Julie S.

Biteen, Samuel J. Lord, Na Liu, Robert J. Twieg, Rafael Pies-
tun, and W. E. Moerner. Three-dimensional, single-molecule
fluorescence imaging beyond the diffraction limit by using a
double-helix point spread function. Proceedings of the Na-

tional Academy of Sciences, 106(9):2995–2999, 2009. 2
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