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Abstract

Referring Image Segmentation (RIS) aims to segment ob-
jects from an image based on a language description. Recent
advancements have introduced transformer-based methods
that leverage cross-modal dependencies, significantly en-
hancing performance in referring segmentation tasks. These
methods are designed such that each query predicts differ-
ent masks. However, RIS inherently requires a single-mask
prediction, leading to a phenomenon known as Query Col-
lapse, where all queries yield the same mask prediction. This
reduces the generalization capability of the RIS model for
complex or novel scenarios. To address this issue, we pro-
pose a Multi-modal Query Feature Fusion technique, char-
acterized by two innovative designs: (1) Gaussian enhanced
Multi-Modal Fusion, a novel visual grounding mechanism
that enhances overall representation by extracting rich local
visual information and global visual-linguistic relationships,
and (2) A Dynamic Query Module that produces a diverse
set of queries through a scoring network where the network
selectively focuses on queries for objects referred to in the
language description. Moreover, we show that including an
auxiliary loss to increase the distance between mask repre-
sentations of different queries further enhances performance
and mitigates query collapse. Extensive experiments con-
ducted on four benchmark datasets validate the effectiveness
of our framework.

1. Introduction

Referring Image Segmentation (RIS) is a challenging multi-
modal task aimed at segmenting specific objects in an image
based on a textual description. This description often in-
cludes details about the object’s actions, category, color, or
position, as noted by [8, 21]. Compared to traditional se-
mantic and instance segmentation, RIS requires a precise
understanding of object locations and involves a comprehen-
sive modeling of the visual-linguistic relationships within
the global context. Additionally, RIS demands the extrac-

ReLA LQMFormer

Figure 1. [Top] Heatmap visualization of cosine similarity between
different query mask predictions of ReLA and LQMFormer , where
the yellow region indicates a similarity near 1, and the dark blue
region signifies a similarity of 0. [Bottom] Sample query mask
prediction visualizations for ReLA and LQMFormer .

tion of high-quality visual features at a local level. The
potential applications of RIS are extensive, particularly in
language-driven human-computer interaction domains.

Traditional RIS methods have employed linear fusion
approaches and Fully Convolutional Networks (FCNs) for
feature learning in RIS tasks [21, 33]. However, the re-
cent advancement of attention mechanisms has shifted the
focus towards extracting richer visual-language represen-
tation, with recent techniques demonstrating the effective-
ness of Transformers. These models excel at modelling
long-distance dependencies, making them suitable for cross-
modal fusion [45, 55]. Further, Vision Transformer (ViT)
methods such as VLT [13], EFN [16], and LAVT [54], which
are based on [14], have shown significant improvements in
RIS performance. Their ability to capture the nuances of
cross-modal dependencies is crucial, and through a series of
attention mechanisms, these models efficiently process and
integrate both visual and language inputs for precise object
segmentation.

Despite their advantages, transformer-based approaches
exhibit shortcomings in RIS mask prediction, with a notable
problem being query collapse. This phenomenon occurs
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when different queries within the transformer, intended to
identify distinct attributes or portions of objects, converge on
the same mask prediction. This is particularly problematic
in referring image segmentation, which inherently requires
a prediction of a single mask, where all queries are collec-
tively trained to predict the same mask. We experimentally
observed this phenomenon, as illustrated in Fig. 1. Here,
we visualize the heatmap of the cosine similarity between
mask predictions from ReLA [32] and our method. In ReLA,
most mask predictions are almost identical, leading to signif-
icantly overlapping mask predictions, whereas our method
demonstrates a diverse set of query embeddings and mask
predictions. Hence, prior transformer-based methods train
mask predictions for all queries to associate with a single,
specific ground truth mask. This training approach can lead
to query collapse, where the model is not penalized for pro-
ducing the same prediction across different queries, thereby
affecting its capability to identify diverse attributes of the
image. Consequently, this limitation restricts the variety of
mask predictions, diminishing the model’s ability to general-
ize effectively in complex scenarios.

To address these challenges, we propose LQMFormer,
which comprises two key components. Firstly, we introduce
a Gaussian Enhanced Multi-Modal Fusion (GMMF) module,
aimed at enhancing the visual grounding mechanism. This
module is designed to extract fine-grained local visual de-
tails while simultaneously enhancing global visual-language
relationships. The fusion of these modalities allows the
model to construct a more comprehensive understanding of
the scene, both globally and locally, thereby improving vi-
sual grounding. Secondly, in our Dynamic Query Module
(DQM), we generate a diverse set of language-dependent
queries through Language-Query Cross Attention (LQCA)
and employ a scoring network to prioritize queries relevant to
the referring expression. With an improved visual-grounded
representation facilitated by GMMF and selective query en-
hancement via DQM, our model effectively addresses query
collapse. Moreover, by incorporating an auxiliary loss that
increases the representational distance between mask predic-
tions, our method efficiently differentiates between queries,
mitigating the issue of query collapse. Our extensive experi-
ments across multiple benchmark datasets demonstrate the
effectiveness of our framework. Our contributions can be
summarized as follows:

• We introduce Gaussian enhanced Multi-Modal Fusion,
which innovates the integration of local and global cross-
modal information for more accurate visual grounding.

• We develop an effective Dynamic Query Module (DQM)
that not only generates a diverse query set but also employs
a scoring network to selectively focus on queries based on
given language expressions with respect to the decoder’s
references.

• To mitigate query collapse, we propose an auxiliary regu-

larization loss function that increases the representational
distance between queries, significantly improving mask
differentiation and preventing Query Collapse.

• We conduct comprehensive validation of the proposed
framework with extensive testing on four benchmark
datasets, demonstrating improvements in referring image
segmentation performance.

2. Related Works
2.1. Referring Image Segmentation

Early works [29, 31, 45, 57] employed Convolutional Neu-
ral Networks (CNNs) [5, 21, 22, 31] and Recurrent Neural
Networks (RNNs) [6, 31] to extract vision and language
features. These features were then fused via sequential con-
catenation and convolution operations to predict the seg-
mentation mask. In contrast, [58] proposed a two-stage
network that initially uses Mask R-CNN[19] to predict cate-
gorical masks, followed by a selection of the relevant masks
based on language descriptions. However, this approach
exhibits limited capacity to capture the intricate relations be-
tween language and visual content. The advent of the Trans-
former [11, 14, 42, 46] in the vision community has led to
the widespread adoption of Transformer-based architectures
for extracting both visual and textual features [11, 24, 34].
VLT [13] uses cross-attention to produce query vectors from
multi-modal features, which are then used to query images
in the transformer decoder. Similarly, LAVT [54] shows
early cross-modal fusion of features improves alignment.
CRIS [49] adopts Transformer blocks to leverage the pre-
trained CLIP model’s [44] robust image-text alignment capa-
bilities. Additionally, GRES [32] extends cross-attention in
the Transformer decoder to explicitly model visual-language
dependencies. However, these all transformer-based ap-
proaches require matching queries to corresponding mask
instances. In the context of referring expression segmenta-
tion, where typically only a single mask is available, this
can lead to all queries converging to a single mask, a phe-
nomenon known as query collapse. Motivated by this, in
our method, we try to produce a diverse set of query predic-
tion by overall improving visual-grounding and conditioning
with respect to language expression.

2.2. Vision and Language Representation Learning

Vision and Language Representation Learning focuses on un-
derstanding the semantics and alignment between vision and
language for multimodal reasoning tasks [36, 47, 59]. This
field has seen substantial progress in applications like visual
question answering [2], Image captioning [48], Image-text
retrieval [4], zero-shot classification [44], and Image seg-
mentation [23]. Contrastive pre-training strategies [28, 44]
using large-scale datasets effectively project multiple modal-
ities into a single embedding space. In contrast, as discussed,
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other methods [32, 54] create cross-modal interaction layers
to fuse and comprehend multimodal features. The recent
adoption of deep learning techniques in the frequency do-
main [9, 17, 39, 40] has gained attention for their global
interaction capabilities. Specifically, [40] performs spectral-
guided enhancement of the multi-scale vision-language fea-
tures after feature extraction stage for Video Referring Seg-
mentation. Drawing from these advancements, our approach
integrates gaussian guidance within vision-language repre-
sentation learning to facilitate enhanced local and global
multi-modal interactions.

3. Methods
Given an input image I ∈ RH×W×3 and a language ex-
pression L = {wi}Ni=1 with N words, our model predicts a
pixel-wise mask M , which delineating the referred object.

3.1. Overview

An overview diagram of our approach is shown in Figure.
2. First, the language expression is encoded to extract high-
dimensional language features Fl ∈ RNt×C , whereC,Nt in-
dicates the number of channels, and words in the language ex-
pression, respectively. The Gaussian-enhanced Multi-Modal
Fusion (GMMF) module then extracts language-grounded vi-
sual features Fvl. Following [7], our approach incorporates
a multi-scale strategy to exploit higher-resolution feature
maps in the transformer decoder [7, 61]. We input language-
aware queries Q′

b along with multi-scale outputs from the
pixel decoder Fi, where i ∈

{
1
4 ,

1
8 ,

1
16 ,

1
32

}
of the original

image. The Dynamic Query Module processes language fea-
tures Ft to predict language-aware queries Q′

b. The updating
of queries Q′

b sequentially utilizes resolutions 1
8 ,

1
16 , and

1
32 , applying a cycle of masked cross-attention (CA), self-
attention (SA), and feed-forward network (FFN) operations
L times within the decoder. Further, we map the final query
outputs to an ’object’ or ’no-object’ two-dimensional space
to enable ’no-object’ predictions [32]. The final predicted
mask is obtained at full resolution as the original image by
decoding the pixel features F 1

4
with the einsum operation

between Q and F 1
4

, followed by upsampling operation.

3.2. Gaussian-enhanced Multi-Modal Fusion

After extracting language features Fl, we combine them with
visual features using a four-stage hierarchical Swin Trans-
former [34] to obtain joint visual-language embedding. Each
stage comprises Transformer layers (τi), multi-modal feature
fusion modules (GMMF), and residual gating (ψi). At every
stage, as Transformer layers (τi) enhance previous visual
features (Fv), these features (Fv) combine with language
features (Fl) via multi-modal modules (GMMF) to create
multi-modal features (Fvl). Finally, we use gating units (ψvl)
to weight and combine Fvl with Fv, yielding enhanced vi-
sual features with linguistic information. Residual gating

also works well with pre-trained (only vision) transformer
weights and allows simultaneous feature modulation with
language without having to re-train from scratch.

3.2.1 Gaussian Enhanced Multi-Modal Fusion Module
in Visual Backbone

The discrete Fourier transform (DFT) is extensively used to
analyze the frequency representation of images. By trans-
forming the signal into the frequency domain, characterized
by global statistical properties, it plays a crucial role in
various computer vision tasks [26, 51, 56]. Modulating sig-
nals on a point-wise basis in the Fourier domain alters the
representation of inputs in the spatial domain [3, 40]. Fur-
thermore, in the Fourier domain, low-frequency components
usually correspond to the overall semantic content of the
image, consistent with prior research [40, 52, 53, 56]. The
Fourier transform is capable of disentangling global seman-
tic information and structural coherence, with the semantic
content predominantly found in the amplitude component
[18, 27, 60]. These insights can be leveraged to create mod-
ules centered on Fourier-based methods, facilitating efficient
and vital global interactions in multimodal understanding
and improving visual grounding.

To inculcate the above observation, as illustrated in Fig. 3,
following [40], the Gaussian enhanced Multi-Modal Fu-
sion Module (GMMF) is proposed as a key component
in our model. It employs an enhancement block after
cross-attention operations to combine Gaussian-enhanced
vision and language features. Given an input vision feature
Fvi ∈ RN×H×W×Cvi from stage i and a language feature
Fl ∈ RN×T×Cl , for cross-attention block, we first transform
visual and language features into a common dimension Ci

using separate 1× 1 convolution layers. Subsequently, trans-
form vision and language features are passed to an MHCA
(Multi-Head Cross-Attention) module, where language fea-
tures act as queries and vision features as keys and values.
This operation results in the creation of a language-aware
vision-shaped feature F

′

vl. We then transform the visual-
language features using the Gaussian Enhancement Block,
as shown in Fig. 3, formulated as follows:

Fvl = F−1
FFT

(
Conv

(
FR

(
ϕ(F

′

vl, β) ∗ A(F
′

vl)

,P(F
′

vl)
)))

+ F
′

vl

Here, A(F
′

vl) and P(F
′

vl) denote the amplitude and phase
components of F

′

vl’s Fast Fourier Transform(FFT) [15, 43],
FFFT(F

′

vl). The ∗ represents low-pass filtering on A(F
′

vl)

using adaptive Gaussian filters ϕ(F
′

vl, β), matching F
′

vl’s
spatial dimensions and adjusting to input data via bandwidth
β [40]. FR and Conv signify feature reconstruction from
amplitude and phase, and convolution operations, respec-
tively.
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Figure 2. Overview of the LQMFormer model architecture. The model processes an image and a linguistic expression, extracting vision-
language features Fvl through a Gaussian-enhanced Multi-modal Fusion module and language features FL. The multi-scale vision-language
features Fvl are then processed by into a pixel decoder. Concurrently, the Language Query Cross-Attention Module (LQCA) refines the
Language-enhanced Query bank Q′

b with FL. A Scoring Network assesses the relevance of each query in Q′
b by predicting soft-masks (Mb),

which then modulate the queries fed into the transformer decoder. Finally, the model employs a global pooling layer and a Multi-Layer
Perceptron (MLP) to predict the binary segmentation mask and determine the presence or absence of the referred object.

Figure 3. Architecture overview of the Gaussian Enhancement
Module

Once Fvl is obtained, similar to [54], we combine the
output from GMMF, Fvl, with that from the Transformer
layers, Fv. This process employs a gating mechanism, ψvl,
which learns a set of element-wise weight maps from Fvl to
finely tune the scale of each element within Fvl. Subsequent
to this adjustment, a residual combination of Fv and Fvl ·ψvl

is performed. The resultant output is then fed back into the
vision backbone for further computation.

3.3. Dynamic Query Module

The Dynamic Query Module (DQM) takes the language
feature Fl and a Query bank Qb as inputs, the latter con-
taining Nqb learnable queries. Figure 4(b) shows the initial

step, where the attention between the language feature Fl

and the Nqb query embeddings Qb ∈ RNqb×C is computed,
resulting in Nqb attention maps:

Abi = softmax(Qbσ(FlWik)
T ), (1)

where Wik is a C × C matrix of learnable parameters,
and σ denotes the GeLU function [20]. The resulting
Abi ∈ RNqb×L provides each query with a 1 × L atten-
tion map, indicating its important linguistic relation in the
language features. Following this, the language-supported
query bank features are derived using these attention maps:
Q′

b = Abiσ(FlWiv)
T , where Wiv is another C × C matrix

of learnable parameters.
The variability in language expressions used to describe

objects in images requires an approach that can adapt to
different descriptions. This is because standard methods,
like those seen in the initial transformer models (like in
vanilla transformer [14]), struggle to capture the nuances
in descriptions that include color, size, shape, and position.
To address this, a larger set of adaptable queries is required.
These queries are fine-tuned based on the input language,
resulting in a refined set of queries, denoted as Q′

b. Each
query in this refined set is then assessed with a scoring
network, which outputs a soft-mask Mb. This soft-mask
represents the relevance of each query. The final set of
queries,Qfinal, is obtained by combiningMb withQ′

b through
a dot product, as shown in the equation below:

Qfinal =M ′
b ⊙Q′

b (2)
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Figure 4. Architecture overview of the (A.) Dynamic Query Module and (B.) LQCA Block

3.3.1 Scoring Network

The scoring network in LQMFormer takes the Language-
enhanced Query bank Q′

b as input and processes it through
a sequence of linear layers. This network consists of four
linear layers, with Layer Normalization [1] applied before
the first layer. Each subsequent layer, except the last sigmoid,
incorporates GELU [20] activation. The final output is a 1-
dimensional logit Mb ∈ RNqb×1, serving as a soft-mask to
modulate Q′

b.
To train the scoring network for predicting a relevant

soft-mask Mb effectively for the transformer decoder, we
utilize its cross-attention map. This map is essential in iden-
tifying the subset of Queries most relevant to the referring
expression and visual features, as highlighted during train-
ing. We sum up the attention maps from each decoder layer
using Bilinear Interpolation (BI), thereby projecting atten-
tion Aqf ∈ RNqb×HW directed towards these Queries. The
process is mathematically described as follows:

Aqf =

L∑
l=1

3∑
r=1

BI(Al,r, HW ) (3)

Here, Al,r ∈ RNqb×hw represents the attention map from
the lth layer at the rth resolution, with hw being the original
dimension and HW the desired output dimension. After
aligning each attention map to the common resolution HW ,
we then sum across this dimension to generate a likelihood
map LM , as indicated in the subsequent equation:

LM =

HW∑
i=1

Aqf [:, i] (4)

This likelihood map LM ∈ RNqb×1, now captures the
concentrated attention across all Queries, serves as a condi-
tion in refining the predictions of the scoring network. The

scoring network is trained to predict the likelihood of each
Query being included in the top-ρ% of the most referenced
tokens. This process involves binarizing the likelihood map
LM to retain only the top-ρ% Queries, creating a binarized
version LMbin. The training objective is then formulated as
a Binary Cross-Entropy (BCE) loss between the predicted
soft-mask Mb and the binarized likelihood map LMbin. The
BCE loss function is defined as:

BCE Loss = − 1

Nqb

Nqb∑
i=1

[LMbin,i log(Mb,i)

+ (1− LMbin,i) log(1−Mb,i)]

(5)

Here, Nqb represents the number of Queries in Q′
b, and i

indexes each Query. This loss function effectively trains the
scoring network to align its predictions with the most salient
Queries as determined by the decoder’s cross-attention,
thereby refining the model’s accuracy in identifying and
segmenting objects as described by the referring expressions.

3.4. Query-Mask Margin Loss

Query-Mask Margin Loss is designed to maintain a margin
of separability between different query feature representa-
tions, an essential aspect for tasks with variable outputs. The
loss function operates by initially computing pairwise dif-
ferences and distances between mask embeddings within a
batch. This computation yields a tensor of shapeB×N×N ,
where B represents the batch size, and N is the number of
queries. Subsequently, these distances for each embedding
are sorted, with a particular focus on the second smallest
value, which signifies the distance to the nearest neighbor.
The margin loss is defined through the max function, ensur-
ing a minimum distance of 1.0 between embeddings. The
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mathematical formulation of QM-loss is as follows:

QM-loss = max (0, 1.0− dist (Mi,Mj))

Here, dist (Mi,Mj) denotes the calculation of pairwise dis-
tances between the mask embeddings, represented as M .

4. Experiments and Discussion
4.1. Datasets and Implementation Details

Datasets: Our experiments are conducted on four pri-
mary benchmark datasets in Referring Image Segmenta-
tion: RefCOCO [57], RefCOCO+ [57], RefCOCOg [38],
and GRES [32]. These datasets derive their images from
MSCOCO [30]. The dataset details are as follows: Re-
fCOCO (19,994 images, 50,000 objects, 142,209 expres-
sions), RefCOCO+ (19,992 images, 49,856 objects, 141,564
expressions), RefCOCOg (26,711 images, 54,822 objects,
85,474 expressions), and GRES (19,994 images, 60,287 ob-
jects, 278,232 expressions). RefCOCO mainly focuses on
expressions that specify object locations, while RefCOCO+
prioritizes object descriptions. RefCOCOg presents a higher
challenge due to longer and more complex expressions (aver-
aging 8.4 words compared to 3.5 in others). GRES broadens
the scope of RefCOCO by including expressions that re-
fer to multiple objects or no objects, thereby enhancing the
problem’s generalizability. We use both UMD split [41] and
Google split [38] for RefCOCOg dataset.

Evaluation Metrics. For single-target object segmen-
tation, we report our results using two kinds of met-
rics [13, 37, 49, 54]: overall IoU (oIoU) and Precision@X
(P@X). oIoU divides the total intersection pixels by the total
union pixels across all test images. Precision@X calculates
the percentage of testing samples of which the model predic-
tion has an IoU score higher than the threshold value X. To
extend our evaluation to non-target and multi-target object
segmentation, following [32], we include additional metrics:
Sensitivity (N-acc.), Specificity (T-acc.), and Generalized
IoU (gIoU). N-acc. evaluates the model’s performance on
identifying non-target samples, while T-acc. measures the
impact of generalization on non-target samples on the per-
formance of target samples. We opt for gIoU over oIoU due
to the latter’s bias towards larger objects. gIoU computes the
mean IoU per image for all samples. In cases with no-target
samples, IoU values are assigned as 1 for true positives and
0 for false negatives, ensuring an equitable metric for all
object sizes.

Implementation Details. Our model uses Swin
Transformer-B [34] as the visual encoder and BERT [11]
as the language decoder. The transformer layer in Swin-
B is initialized with classification weights pre-trained on
ImageNet22K [10]. We use BERT implementation from
the HuggingFace Transformer library [50]. It comprises 12
layers with a hidden size of 768, initialized using official

pre-trained weights. We use our Transformer decoder pro-
posed in Section 3.1 with L = 3 (i.e., 9 layers total) and 100
queries by default. The AdamW optimizer [35] is employed
for optimization with an initial learning rate of 0.00001. Our
model is trained over 100K iterations with a batch size of 48.
Our image resizing is standardized to 480×480 pixels.

4.2. Comparison with the state of art methods

Referring Image Segmentation Table 1 presents the re-
sults for Referring Image Segmentation, and our proposed
method, LQMFormer , produces competitive performance
against existing state-of-the-art approaches across multiple
standard benchmarks. On the RefCOCO dataset, our pro-
posed method obtains the highest oIoU across all divisions
(val, test A, and test B), surpassing recent leading methods
such as VLT [13] and ReLA [32]. Notably, it shows a sig-
nificant margin in the test B split, indicating enhanced capa-
bility in complex visual contexts. In the RefCOCO+ dataset,
LQMFormer also demonstrates its effectiveness in the test A
set. Specifically, in the test A split with a cIoU of 71.84%. In
the Val and Test B splits, our proposed method achieves com-
petitive performance against ReLA [32] and LAVT [54]. For
the G-Ref dataset, which presents varied and longer referring
expressions, our proposed method achieves the top perfor-
mance in the val(G) split and maintains competitive results in
the other splits. This performance is particularly notable over
LAVT [54] in the val(G) split, highlighting its adaptability to
diverse challenging datasets. While the margin of improve-
ment offered by LQMFormer in classic RIS datasets may
be comparatively smaller than that observed in GRES, the
results signify that Gaussian-enhanced Multi-Modal Fusion
and explicit modeling of Queries from Decoder are beneficial
for the general Referring Image Segmentation setting.
Generalised Referring Image Segmentation In the GRES
dataset, the LQMFormer model demonstrates notable im-
provements in Region Instance Segmentation (RIS), as
shown in Table 2. The model achieves a generalized Intersec-
tion over Union (gIoU) score of 70.94% on the validation set,
surpassing other models such as ReLA, LAVT, and CRIS by
a margin of 7-12%. This performance indicates its effective
segmentation across various object sizes. The object-level
Intersection over Union (oIoU) score of 64.98% further un-
derscores the model’s segmentation capabilities, highlighting
the effectiveness of the Improved Visual Grounding and Dy-
namic Query Selection module. Another important aspect
of LQMFormer is its performance in no-target identification,
with an accuracy score of 67.47%. This score is 11% higher
than that of existing methods, marking significant progress in
accurately identifying no-target samples—a noted challenge
in RIS. The inclusion of the Dynamic Query Module (DQM)
and the Top p% ratio significantly reduces the impact of the
number of queries and mitigates query collapse. As a result,
fewer but more effective queries make it easier to distinguish
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Table 1. Results on classic RES in terms of oIoU. U: UMD split. G: Google split.

Methods
Visual

Encoder
Textual
Encoder

RefCOCO RefCOCO+ G-Ref
val test A test B val test A test B val(U) test(U) val(G)

MCN [37] Darknet53 bi-GRU 62.44 64.20 59.71 50.62 54.99 44.69 49.22 49.40 -
VLT [12] Darknet53 bi-GRU 67.52 70.47 65.24 56.30 60.98 50.08 54.96 57.73 52.02
ReSTR [25] ViT-B Transformer 67.22 69.30 64.45 55.78 60.44 48.27 - - 54.48
CRIS [49] CLIP-R101 CLIP 70.47 73.18 66.10 62.27 68.08 53.68 59.87 60.36 -
LAVT [54] Swin-B BERT 72.73 75.82 68.79 62.14 68.38 55.10 61.24 62.09 60.50
VLT [13] Swin-B BERT 72.96 75.96 69.60 63.53 68.43 56.92 63.49 66.22 62.80
ReLA [32] Swin-B BERT 73.82 76.48 70.18 66.04 71.02 57.65 65.00 65.97 62.70
LQMFormer (ours) Swin-B BERT 74.16 76.82 71.04 65.91 71.84 57.59 64.73 66.04 62.97

Table 2. Comparison on GRES dataset.

Methods
val No-target val

oIoU gIoU N-acc. T-acc.

MattNet [58] 47.51 48.24 41.15 96.13
LTS [24] 52.30 52.70 - -
VLT [12] 52.51 52.00 47.17 95.72
CRIS [49] 55.34 56.27 - -
LAVT [54] 57.64 58.40 49.32 96.18
ReLA [32] 62.42 63.60 56.37 96.32
LQMFormer (ours) 64.98 70.94 67.47 99.12

Table 3. Ablation Study Results

Configuration oIoU gIoU

(a) Analysis on Dynamic Query module

Ours 64.98 70.94
w/o score-based learning 62.75 67.16
w/o scoring module 62.02 65.48
w/o QM-loss 64.19 68.37

(b) Analysis on multi-modal fusion module

Ours 64.98 70.94
w/o modality fusion module and QM-loss 49.68 52.34

Table 4. Ablation study of Query Numbers Nqb in Qb. ‡: without
scoring module. Top p% ratio is 20

Nq oIoU gIoU Pr@0.7 Pr@0.8 Pr@0.9

20 57.22 58.31 69.15 60.26 22.47
50 62.48 64.53 72.02 61.79 31.58
100 64.98 70.94 75.03 65.51 34.05

100‡ 62.02 65.48 73.15 62.87 31.55

between ”target” and ”no-target”. The model’s specificity
(true accuracy) score of 99.12% also reflects its effectiveness
in classifying target samples.

4.3. Ablation Study

In our comprehensive ablation studies, we evaluated the
performance impact of various components of LQMFormer

Table 5. Ablation study of Top p% ratio in Qb.

p% oIoU gIoU N.acc. Pr@0.7 Pr@0.8 Pr@0.9

20 64.98 70.94 67.47 75.03 65.51 34.05
50 63.85 67.76 63.25 74.29 64.42 33.58

100 61.33 63.77 58.92 72.45 61.88 31.21

Table 6. Ablation study of Grounding Module

Fusion oIoU gIoU Pr@0.7 Pr@0.8 Pr@0.9

Baseline 49.68 52.34 55.27 41.38 14.72
Post-CA 60.22 61.89 74.15 64.44 32.67

S-Post-CA [40] 62.13 64.41 73.64 63.35 32.71
VL-Grounding 63.43 68.81 72.95 64.19 33.96

GMMF 64.98 70.94 75.03 65.51 34.05

on the GRES dataset. These studies focused on the Dynamic
Query Module, Query Numbers Nqb in Qb, the Top p%
ratio in Qb, and the Grounding Module. The results helps
understanding key insights into the model’s functioning and
optimization.
Analysis on Dynamic Query Module: Table 3(a) presents
the ablation results for the language query selection module.
The removal of score-based learning significantly impacts
scores as it limits the explicit training of Query scores from
the scoring network. Also, notably, removing the scoring
module and QM-loss leads to a decrease in oIoU score by
2.96% and 0.79%, respectively, highlighting its critical role
in achieving optimal referring segmentation performance.
Query Bank number Nqb in Qb: The ablation on Query
Bank number demonstrated a notable impact on the model’s
performance as shown in Table 4. With an increase in
Nq from 20 to 100, there was a consistent improvement
in both oIoU from 57.22% to 64.98% and gIoU from 58.31%
to 70.94%, as well as in Precision metrics. Particularly,
Nq = 100 yielded the highest scores across all metrics, in-
dicating an optimal balance in query numbers for effective
segmentation. Thus, it optimal to have more number of
queries with Top p% as 20.
Top p% Ratio in Qb: The study on the Top p% ratio re-
vealed that a 20% ratio achieved the best performance in
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Figure 5. Qualitave Comparison of our model with LQMFormer with ReLA [32] on GRES dataset.

terms of oIoU, gIoU, and Precision metrics(Table 5). Higher
ratios, like 50% and 100%, resulted in diminished perfor-
mance as it resulted in more and more query collapse issues
as many queries contribute towards the final mask gener-
ation. This finding indicates that a moderate selection of
top-performing queries is crucial for balancing precision and
recall.
Grounding Module: The ablation study of the Grounding
Module, as shown in Table 3(b) and Table 6, highlights
the effectiveness of Gaussian Enhancement for Referring
Image Segmentation (RIS) tasks. The Gaussian enhanced
Multi-Model Fusion (GMMF) method yields a improvement,
specifically enhancing oIoU by 1.5%, from 63.43% in VL-
Grounding to 64.98% in GMMF. This underlines the superior
performance of Gaussian Filtering in the Fourier Domain
over traditional cross-attention methods. Furthermore, com-
pared to the Post-CA which registers an oIoU of 60.22%,
the GMMF and VL-Grounding methods showcase substan-
tial improvements in multi-modal representation within the
backbone stage, with GMMF outperforming Post-CA by
4.76% and VL-Grounding by 3.21% in oIoU. The compar-
ison with S-Post-CA [40], which aims at enhancing visual
representation post-feature extraction, show the importance
of integrating advanced grounding techniques early in the
model’s architecture for improved RIS performance. Over-
all, our proposed Gaussian enhanced Multi-Model Fusion

(GMMF) improves the visual grounding compared to other
methods, resulting in a improved referring segmentation.

5. Conclusion

In this paper, we address the problem of query collapse
in Referring Image Segmentation by enhancing visual
grounding and generating diverse query sets, and by mod-
eling their relevance based on language expressions. Our
proposed model, LQMFormer , incorporates Gaussian En-
hanced Multi-Modal Fusion to improve visual grounding,
and a Dynamic Query Module that not only generates a
diverse set of queries but also employs a scoring network
to selectively focus on queries based on given language
expressions. Additionally, to mitigate query collapse, we
introduce a novel loss function that enforces a margin of
separation between query feature representations, facilitat-
ing improved representation without the need for additional
supervision. The LQMFormer method notably surpasses
state-of-the-art methods in both referring image segmenta-
tion and generalized referring image segmentation perfor-
mance in most settings. For future work, we aim to extend
the LQMFormer model’s capabilities along with LLM and
focus on effectively bridging LLM to better handle multi-
modal contexts.
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