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Abstract

Multi-task learning for dense prediction has emerged as
a pivotal area in computer vision, enabling simultaneous
processing of diverse yet interrelated pixel-wise prediction
tasks. However, the substantial computational demands of
state-of-the-art (SoTA) models often limit their widespread
deployment. This paper addresses this challenge by intro-
ducing network binarization to compress resource-intensive
multi-task dense predictors. Specifically, our goal is to
significantly accelerate multi-task dense prediction mod-
els via Binary Neural Networks (BNNs) while maintain-
ing and even improving model performance at the same
time. To reach this goal, we propose a Binary Multi-
task Dense Predictor, Bi-MTPD, and several variants of
Bi-MTPD, in which a multi-task dense predictor is con-
structed via specified binarized modules. Our systemati-
cal analysis of this predictor reveals that performance drop
from binarization is primarily caused by severe informa-
tion degradation. To address this issue, we introduce a
deep information bottleneck layer that enforces represen-
tations for downstream tasks satisfying Gaussian distribu-
tion in forward propagation. Moreover, we introduce a
knowledge distillation mechanism to correct the direction
of information flow in backward propagation. Intriguingly,
one variant of Bi-MTPD outperforms full-precision (FP)
multi-task dense prediction SoTAs, ARTC [2] (CNN-based)
and InvPT [50] (ViT-Based). This result indicates that
Bi-MTPD is not merely a naive trade-off between perfor-
mance and efficiency, but is rather a benefit of the redun-
dant information flow thanks to the multi-task architecture.
Code is available at BiMTDP.

1. Introduction

There is a growing trend in the computer vision community
where dense prediction tasks are processed in a multi-task
learning manner, such as semantic segmentation, monocu-
lar depth estimation, and human parsing [28, 46, 47, 49].
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Figure 1. (Left) A conceptual illustration of binary dense predic-
tions in a multi-task manner. In contrast to approaching a series
of relevant tasks individually, the multitask model benefits from
information supplementation among different tasks via cross-talk
structures, but the cumbersome cross-talk modules also add addi-
tional computational burden. (Right) Performance summary on
NYUD-v2. X-axis and Y-axis denote the performance on depth
estimation (lower is better) and segmentation (higher is better), re-
spectively. Size of dots denotes FLOPs. ATRC [2] and InvPT [50]
are previous CNN-based and ViT-based SoTAs, respectively.

Benefited from the information supplementation mecha-
nism via cross-talk structures in the multi-task models, the
overall performance for the series of dense prediction tasks
has been greatly improved [17] (see Fig. 1). However, the
computational demands of State-of-the-Art (SoTA) multi-
task dense prediction models, which process multiple com-
plex pixel-wise tasks concurrently, are substantial. This
high computational requirement limits their application in
resource-constrained environments like autonomous driv-
ing, robotics, and virtual reality. Our goal is to optimize
these heavy SoTA models for edge devices, balancing speed
with performance.

Several strategies for neural network compression have
been explored, including pruning [12], network quantiza-
tion [15, 37, 40] and knowledge distillation [14]. Notably,
network binarization, a form of quantization, minimizes
weights and activations to ±1, enabling the replacement of
computationally intensive inner-product operations in full-
precision networks with more efficient xnor-bitcount opera-
tions in Binary Neural Networks (BNNs) [15]. Binarization
theoretically reduces memory costs by 32× and increases
inference speed by 64×, making BNNs suitable for edge-
device.
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While BNNs have shown impressive results in image
classification, achieving nearly full-precision ResNet-level
accuracy [25], their application has largely been limited to
small-scale models, overlooking other computationally in-
tensive computer vision tasks [15, 23, 25, 32, 39]. Extend-
ing BNNs to larger models should be the next step. How-
ever, this expansion has been hindered by issues such as
overfitting [19, 38, 39] and information degradation [30].
Techniques effective in full-precision models, like label
smoothing [34], dropout [42], and mixup [52] have less
effect on BNNs [18, 38, 39]. Furthermore, SoTA multi-
task dense prediction tasks often require deep and com-
plex models, equipped with multi-modality fusion struc-
tures [2, 47, 50], exacerbating the challenges in implement-
ing binarization effectively.

The primary barrier to applying binarization in multi-
task dense prediction tasks is the significant degradation of
information flow in deep models [15, 30, 32], leading to re-
duced performance. To address this issue, we first propose
a Binary Multitask Dense Predictor (Bi-MTPD) baseline,
where a multi-task dense predictor is formulated via bina-
rized modules. Based on a thorough review of this base-
line, we conclude that the binarization operation destroys
the information flows in multi-task models, and thus repre-
sentations for downstream tasks are not informative com-
pared with their full-precision counterparts. To tackle this
problem, we update Bi-MTPD with additional information
flow calibration mechanisms in two directions. First, we
implement variational information bottleneck enforcing the
embeddings to follow Gaussian distribution with sparsity in
forward propagation, in order to filter out the task-irrelevant
factors. Second, we leverage the existing FP models via
feature-based knowledge distillation to calibrate the gradi-
ent of the binary network in backward pass.

The benefits of Bi-MTPD can be analyzed from two
orthogonal perspectives. On one hand, from the perspec-
tive of network binarization, the accomplishment of bridg-
ing binarization with the multitask dense prediction frame-
work testifies that Bi-MTPD can effectively supplement in-
formation, and consequently improve the performance of
the individual binary models. On the other hand, from the
perspective of multitask dense prediction task, accelerating
those cumbersome models is profitable to design more ef-
fective and efficient cross-talk modules in it, as shown in
Fig. 1. Since existing dense prediction models have severe
limitation in modelling the cross-talk modules due to their
heavy utilization of convolution operation, it is critical for
the multitask dense predictions to learn interactions and in-
ference covering various scopes of the multitask context via
the cross-talk mechanism [2, 28, 47, 49, 50, 53]. Intrigu-
ingly, a variant of Bi-MTPD outperforms SoTA approach
ATRC [2] by 4% over the segmentation task while remain-
ing 43% faster in speed, implying that our proposed method

is not a naive trade-off between performance and efficiency.
By empirically investigating this “free lunch” achievement,
we conclude that the win-win outcome is benefited from our
designed information supplementation mechanism which
strengthens the representation ability of the binary model.

2. Related Work
Multitask Dense Prediction. Multi-Task Learning (MTL)
methods can be generally categorized into two main
paradigms in terms of the way where model learns shared
representations: hard and soft parameter sharing. Hard pa-
rameter sharing characterizes architectures which typically
share the first hidden representations among the tasks while
branching to independent task-specific representations at a
later stage. Most approaches split to task-specific heads at a
single branch point [5, 17, 21, 36]. However, such naive
branching can be sub-optimal, raising interest in mecha-
nisms that allow for finely branched architectures [26, 45].
As a result, in soft parameter sharing, each task is assigned
its own set of parameters and a feature sharing mechanism
realize the cross-talk as demonstrated in Fig 1. The follow-
ing works devise the cross-talk mechanisms focusing on the
locations in the network where information or features are
exchanged or shared between tasks. Apart from the loca-
tions, the feature sharing modules are also widely studied.
For example, feature fusing can be introduced along the en-
tire network depth [9, 28]; PAD-Net [49] uses multi-modal
distillation to enhance task-specific predictions, in which in-
formation flow from each source to target task is regulated
with a sigmoid-activated gate function; and MTI-Net [47]
combines the multi-modal distillation module of PAD-Net
with a multi-scale refinement scheme to facilitate cross-task
talk at multiple scales.

Although increasing the number of cross-talk modules
intuitively benefits the overall performance of the models,
computational cost is often an obstacle. To handle this is-
sue, ATRC [2] introduces NAS [55] to automatically design
an efficient information fusing modules. From the perspec-
tive of the efficient representation cross-talk, our proposed
models with the binarization module can be interpreted as a
new pathway to feature fusing within a notably lower infer-
ence speed level.
Neural Network Binarization. As pioneers, [15] use the
sign function to quantize weights and activations to±1, ini-
tiating the trends of studies of network binarization. To
tackle the vanishing gradient issue induced by the bina-
rization operations, the straight-through estimator (STE) [1]
is introduced for the gradient approximation. Rooted in
this archetype, considerable studies contribute to improving
the performance of BNNs, particularly on ImageNet. For
example, [23] propose Bi-Real introducing double resid-
ual connections with FP downsampling layers to mitigate
the excessive gradient vanishing issue caused by binariza-
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tion, and consequently demonstrate that delicately design-
ing additional connections within BNNs benefits the gra-
dient propagation. [13] design a proxy matrix as a basis
of the latent parameter space to guide the alignment of the
weights with different bits by recovering the smoothness of
BNNs. In summary, a large number of methods have ex-
tended the boundary of the network binarization w.r.t. ac-
curacy over classification (e.g., ReActNet [25] within com-
parable FLOPs of binary ResNet-18 achieves 65.9% Top-1
accuracy on ImageNet, while full-precision version is only
70.5%).

However, most of those works validate their effec-
tiveness over classification with relatively small architec-
tures (mostly ResNet18 and ResNet34). Meanwhile, the
network-based models for dense prediction tasks are big-
ger and deeper than those toy models, as the information
flow in networks is severely degraded. Consequently, di-
rectly implementing existing binarization methods can not
achieve supposed success. To mitigate the degradation, we
propose to binarize those dense prediction models in a mul-
titask way.

3. Multitask Network Binarization

3.1. Binary Neural Network

To begin with, we briefly review the general idea of binary
neural networks (BNNs) in [7, 15]. Here, we only elabo-
rate the speedup mechanism and the degradation of infor-
mation flow of the binarization. We define a full-precision
(FP) neural network with K layers, f(x) = (WK × σ ×
WK−1 · · ·σ ×W1)(x), where x is the input sample and
Wk : Rdk−1 7−→ Rdk(k = 1, ...,K) stands for the weight
matrix connecting the (k − 1)-th and the k-th layer, with
dk−1 and dk representing the sizes of the input and output
of the k-th network layer, respectively. The σ(·) function
performs element-wise activation for the feature maps.

BNNs vary from FP neural networks in terms of the for-
ward operation and the backward gradient approximation.
Specifically, in the forward propagation, the BNN main-
tains FP latent weights WF for gradient updates, and the
k-th weight matrix Wk

F is binarized into ±1, obtaining the
binary weight matrix Wk

B via the binarize function sign(·),
i.e. Wk

B = sign(Wk
F ). Then the intermediate activation

map (full-precision) of the k-th layer is produced by Ak
F =

Wk
BA

k−1
B . The same quantization method is used to bina-

rize the full-precision activation map as Ak
B = sign(Ak

F ),
and the whole forward pass of binarization is performed by
iterating this process for L times, as shown in Fig. 2. For
BNNs, the weights and activations are 1-bit, by which the
network is accelerated 32 times in terms of memory cost.
Importantly, inference of BNN is accelerated 64 times, as
the FP multiplication in FP networks is replaced by Xnor-
Bitcount in BNNs.

1k
FA
− Sign

1-bit
3x3
Conv

Batch
Norm

1k
BA
− k

FA Sign k
BA

Figure 2. A general illustration of the forward propagation of the
k-th layer in the BNN.

In the backward propagation, the main challenge is
that the pervasive sign functions are theoretically non-
differentiable, and thus extremely destroy the information
flow via gradient the propagation. To address this prob-
lem, a large number of researchers [31] widely exploit the
straight-through estimator (STE) [1] to numerically approx-
imate the derivative of the whole BNN, i.e.

Backward:
∂L
∂x

=

{ ∂L
∂sgn(x) |x| ≤ 1

0 |x| > 1.
(1)

It is worth noting that we do not implement the aforemen-
tioned vanilla approximation method in practice, while we
utilize the prevalent Bi-Real [23] and IR-Net [32] to gradu-
ally approximate the sign function, which have been proven
to be better estimation approaches [29, 30].

Even though numerous methods have been proposed to
eliminate the deterioration of the information flow induced
by the binarization, the deterioration is still inevitable due
to the severe accuracy loss of weights, activations and gra-
dients [29, 30]. Consequently, binarization destroys the per-
formance of the complicated computer vision models.

3.2. Multitask Dense Predictor

After deploying binarization techniques in the models for
dense prediction tasks, the performance of the binarized
models is unacceptable, as shown in Fig. 1 and the binary
single result in Table. 3. Since the architectures of those
SoTA dense prediction models are relatively heavier and
deeper (e.g., HRNet-48 or ResNet-101 with a task-specific
head [27]) than the ones for classification (e.g., ResNet-
18 with a fully-connected layer as the classification head).
Moreover, the information passing in the binary models via
back-propagation, especially in deep models, is notoriously
inefficient [23].

Dense prediction tasks can mutually supplement infor-
mation, e.g., surface normals and depth can directly be de-
rived from each other, which can be modeled as the regular-
ization of each other [47]. The relevancy among dense pre-
diction tasks is worth being utilized to improve the overall
performance of models. For example, before the deep learn-
ing era, pioneering work [11] utilizes RGB-D images with
depth information to predict scene semantics to improve the
quality of the prediction. In the deep learning era, recent
attention-based multitask learning methods [2, 47, 49] ex-
plicitly and implicitly distill information from other tasks as
a complementary signal to improve the targeted task perfor-
mance. Briefly, the above-mentioned methods are achieved
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Figure 3. (Left) The illustration of the baseline multitask framework. (Middle) The designed MMD modules for binary representa-
tions. Importantly, the MMD module can pass information among different predictions, acting as a cross-talk mechanism. (Right) As
all fundamental modules in Bi-MTPD baseline are binarized, inferences can be performed by complete Bool operations, which are very
computationally cheap.

by combining an existing backbone network for initial task
predictions with a subsequent decoding process, as shown
in Fig. 3 (Left).

Specifically, the shared features extracted by the back-
bone network are then processed by a set of task-specific
heads, which produce a series of initial predictions for T
tasks, i.e. {Y k

i } (k = 1, · · · , T ) (the backbone and the
task-specific heads are referred as the front-end of the net-
work [47]). Transforming and binarizing Y t

i into the form
of a 1-bit feature map, we obtain a set of corresponding bi-
nary feature maps of the scene, i.e. {F t

B,i} (t = 1, · · · , T )
which are more task-aware than the shared binary features
of the backbone network. The information from these task-
specific feature representations is then fused via a multi-
modal distillation via binarized attention mechanism before
making the final task predictions. As previous work fea-
tured, our method is also task-saleable. Especially, it is pos-
sible that some tasks are only predicted in the front-end of
the network (initial prediction). The initial tasks are also
called auxiliary tasks since they serve as proxies in order
to improve the performance of the final tasks, as shown in
Fig. 3.

Multi-Modal Distillation (MMD) via Binarized Atten-
tion Mechanism. The multi-modal distillation module is
the key in the multi-task dense prediction model. Specif-
ically, we utilize the attention mechanism for guiding the
information passing between the binary feature maps gen-
erated from different modalities for different tasks. Since
the passed information flow is not always helpful, the atten-
tion can act as a gate function to control the flow, in other
words, to make the network automatically learn to focus or
to ignore information from other binary features [47, 49].
Including the binarization operations, we can formalize the
MMD via binarized attention as follows. While passing in-
formation to the k-th task, we first obtain a binarized atten-

tion map Ak
B,i, i.e.,

Ak
B,i ←− bool(Wk

B ⊗ Fk
B,i) (2)

where Wk
B is the parameters of the binarized convolution

layer, Fk
B,i is the binary feature map of the initial prediction,

and⊗ denotes convolution operation. Then the information
is passed with the attention map controlled as follows:

Fo,k
B,i ←− sign

Fk
B,i +

T∑
t=1,t̸=k

Ak
B,i ⊙ (WB,t ⊗ Ft

B,i)


(3)

where ⊙ element-wise multiplication. The general demon-
stration of the distillation process is presented in Fig. 3 Left.
The output binary feature map Fo,k

B,i is then used by the head
for the corresponding t-th task in Fig. 3 Right. By using the
task-specific distillation activations, the network can pre-
serve more information for each task [2, 47, 49], which es-
pecially benefits the BNNs where the deteriorated informa-
tion flow mainly induce the performance drop.

On the other hand, multitask dense prediction models
benefit from the network binarization in terms of perfor-
mance. Although these multitask models have achieved
a promising performance, they are still limited by the na-
ture of convolution-based distillation modules that are heav-
ily used in a multi-scale way, which model critical spatial
and task-related interactions in relatively local perceptive
fields [50]. Theoretically, more distillation modules in dif-
ferent network nodes can contribute to model performance,
yet we cannot unrestrictedly add distillation modules to the
existing model due to the computational limitation. Fortu-
nately, with the saved computational cost of the binary net-
works, we can implement additional distillation modules in
our model.
Binary Baseline for Multitask Dense Prediction,
Bi-MTPD. To obtain dense predictions with BNNs under
a multitask learning framework, we practically binarize
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Figure 4. The pipeline of Bi-MTPD. We introduce a VIB layer after the backbone network to filter-out the nuisance factors which may
lead to model overfitting issue in the forward propagation. In addition, we deploy a feature-based knowledge distillation mechanism to
guide the optimization direction in the backward propagation.

the MTI-Net [47] as the binary baseline. Specifically, the
main modules in the full-precision MTI-Net, including
backbone, heads, and multi-modal distillation module, are
replaced with binary modules (both weights and activations
are 1-bit). We call this baseline as Bi-MTPD.

3.3. Information Flow Supplementation

Although we build a fully binarized baseline Bi-MTPD for
multitask dense predictions and train the pipeline with com-
mon techniques, the performance is still of major concern.
The baseline suffers an immense information degradation
as the nuisance factors are over-fitted in the forward prop-
agation and optimization directions severely mismatch in
the backward propagation. To solve these problems, in
this section, we further propose the variant of Bi-MTPD,
Bi-MTPD-F. Specifically, we introduce a variational infor-
mation bottleneck (VIB) layer after the output of the shared
binary backbone to precisely enforces the feature extractor
to preserve the minimal sufficient information of the input
data. As well, we deploy the feature-based knowledge dis-
tillation to guided the optimization direction. We present
more details in the following section.
Variational Information Bottleneck for Filter-Out Nui-
sance Factors. Obtaining the initial binary representations
of input images by the shared backbone, we need to train
a series of targeted heads to split them. A straightfor-
ward strategy is to feed these representations into the fol-
lowing MMD module. However, the binarized representa-
tions lack homogenization leading to model overfitting is-
sue [48]. Therefore, the need to regularize the binarized
representations, while the regularization would not to con-
taminate the information flow in the representations. For-
tunately, the information bottleneck (IB) principle directly
relates to compression with the best hypothesis that the data
misfit and the model complexity should simultaneously be
minimized [43, 48].

As the VIB could effectively capture the relevant parts
and filter out the irrelevant ones from inputs, we design a
novel VIB-based layer after the backbone. In particular,
it explicitly enforces the feature extractor to preserve the
minimal sufficient information of the input data. In other
words, it can help ensure the information flow flexibly to
learn clean representation for the targeted tasks. The objec-
tive function of our VIB-based classification can be formu-
lated as a term of information loss, written as follows:

Lvib = KL [p(Z | AB), r(Z)] , (4)

where AB is the input binary backbone representation, B
is the latent representation variable, p(Z | AB) is a multi-
variate Gaussian distribution, and r(Z) is a standard normal
distribution. Generally, the latter is a regularization term
controlling how much information of the input is filtered
out. A more detailed discussion about the VIB for binarized
models filtering out irrelevant information is in Supplemen-
tal Materials.
Feature-based Knowledge Distillation for Guiding the
Direction of Information Flow. Distillation is a common
and essential optimization approach to alleviate the per-
formance drop of quantized models on ultra-low bit-width
settings, which can be flexibly deployed for any architec-
tures to utilize the knowledge of a full-precision teacher
model [3, 16, 30, 51]. The usual practice is to distill the
activations in a layerwise manner from the full-precision
teacher to the quantized counterparts, i.e., FB,l and FFP,l

(l = 1, · · · , L, where L represents the number of net-
work layers), respectively. We use the mean squared errors
(MSE) as the distance function to measure the difference
between corresponding from features student and teacher.
The knowledge distillation loss can be written as follows:

Lkd =

L∑
l=1

MSE(FB,l,FFP,l). (5)
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Figure 5. (a) Grad-cam visualization of feature maps of different multitask dense prediction methods. (b) t-SNE visualization of learned
features of all 20 classes on Pascal-Context. (c) Centered Kernel Alignment analyzing the information flow within different networks.

3.4. Counter-Intuitive Results of Bi-MTDP-A

Intuitively, implementing binarization on FP network in-
evitably induces representations degradation, as the gradi-
ent of the sign function cannot be perfectly estimated [1].
Thus, binarized models are impossible to outperform their
full-precision counterpart models. However, Bi-MTPD-C,
a variant of Bi-MTPD (i.e., full-precision backbone with
only binarized multi-modal distillation) outperforms its
fully FP version. Specifically, just binarizing the multi-
modal distillation can simultaneously accelerate the model
by∼39% and improve the mIoU for segmentation by∼4%,
as shown in Table 1. This result demonstrates that our
method is not a naive trade-off between model performance
and efficiency but a powerful tool for boosting multitask
dense predictors. This exciting ‘free-lunch’ achievement is
even a bit of counter-intuitive. We speculate the reasons are
that i) binarization on MMD can filter out task-irrelevant in-
formation; ii) and thus the information flow in the network
is more effective. To testify this speculation, we conduct a
series of experiments in two aspects, the representation abil-
ity of Bi-MTPD-C and information flow supplementation
within the network.
Qualitative Study of Learned Features with
Bi-MTPD To investigate the representation ability of
Bi-MTPD-C and its FP counterparts, we visualize i) the
feature maps behind the Binarized Multi-Modal Distillation
(MMD) module in 2-D space via the t-SNE [44] algorithm,
and ii) the regions where the network considers important
via the Grad-Cam algorithm [35]. The results are shown
in Fig. 5. It is clear that binarized model, Bi-MTPD-C is
able to filter the irrelevant information out via the binarized
attention module (see Fig. 5 (a)), and thus helps learn
more discriminative features (see Fig. 5 (b)) resulting in
higher quantitative results. Overall, the generated spatial
feature maps for segmentation are better. The enhanced

representative ability can contribute to higher quantitative
results.
Analysis of Information Flow Supplementation within
Network via Centered Kernel Alignment. Analyzing dis-
tributional information flow within layers of neural net-
works is challenging because outputs of layers are dis-
tributed across a large number of neurons. Centered ker-
nel alignment (CKA) [6, 22, 33] can address these chal-
lenges, by quantitatively comparing activations within or
across networks. Specifically, for a network feed by m sam-
ples, CKA algorithm takes X ∈ Rm×p1 and Y ∈ Rm×p2

as inputs which are output activations of two layers (with
p1 and p2 neurons respectively). Letting K ≜ XX⊤ and
L ≜ YY⊤ denote the Gram matrices for the two layers
CKA computes:

CKA(K,L) =
HSIC(K,L)√

HSIC(K,K)HSIC(L,L)
, (6)

where HSIC is the Hilbert-Schmidt independence crite-
rion [10]. Given the centering matrix H = In − 1

n11
⊤ and

the centered Gram matrices K′ = HKH and L′ = HLH,
HSIC = vec(K′)vec(L′)

(m−1)2 , the similarity between these cen-
tered Gram matrices. Importantly, CKA is invariant to or-
thogonal transformation of representations (including per-
mutation of neurons), and the normalization term ensures
invariance to isotropic scaling. These properties enable
meaningful comparison and analysis of neural network hid-
den representations.

Therefore, we introduce CKA to study the information
flow in the multitask dense prediction models. In the heat-
map, the lighter the dot, the more similar the two corre-
sponding layers. Higher similar score between two layers’
output representations means those two layers share more
information. The results are presented in Fig. 5 (c), we can
see that the similar scores among front layers and back lay-
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Table 1. Results on NYUD-v2. Bi-MTPD-C: only implementing the binarization in the multi-modal distillation module, Bi-MTPD-F:
fully-binarized model.

Model SemSeg ↑ Depth ↓ Normal ↓ Bound ↑ float32 binary FLOPs
Method Backbone Params (M) Params (M) (G)

Cross [28] 36.34 0.629 20.88 76.38 241.46 0 338.09
PAP [53] 36.72 0.617 20.82 76.42 189.10 0 256.86
PSD [54] 36.69 0.625 20.87 76.42 224.67 0 315.60
PAD [49] CNN 36.61 0.627 20.85 76.38 170.98 0 230.91
MTI [47] 45.70 0.537 20.27 77.86 144.87 0 212.98
ATRC [2] 45.87 0.540 20.09 77.34 180.00 0 249.24

MTI + Bi-MTPD-F 39.20 0.612 21.04 76.86 6.45 138.42 18.07
MTI + Bi-MTPD-C 47.71 0.530 20.06 77.36 90.28 54.59 130.65

InvPT [50] ViT-B 50.30 0.536 19.00 77.60 154.79 0 244.71
InvPT + Bi-MTPD-C 51.20(0.90↑) 0.528(0.08↓) 19.50(0.50↑) 77.68(0.08↑) 127.92 26.87 183.81

InvPT [50] ViT-L 53.56 0.518 19.04 78.10 239.22 0 331.60
InvPT + Bi-MTPD-C 54.86(1.30↑) 0.515(0.03↓) 19.50(0.46↑) 78.20(0.10↑) 212.34 26.87 301.88

ers in Bi-MTPD-C is much higher than the ones in MTI-
Net [47]. This indicates that Bi-MTPD-C is able to supple-
ment information flow within network, and thus boost the
model performance.

4. Experiments
In this section, we conducted comprehensive experiments
to evaluate our proposed method on two datasets for dense
prediction tasks: PASCAL Context [8] and NYUD-v2 [41].
We first describe the implementation details of Bi-MTPD,
and then compare our method with SoTA binary neural net-
works in the task of object detection to demonstrate superi-
ority of the proposed method. Finally, we validate the effec-
tiveness of information bottleneck and feature-based knowl-
edge distillation by a series of ablative studies.

4.1. Datasets, Evaluation, Implementation Details

Datasets. PASCAL-Content is a popular dataset for dense
prediction tasks. We use the split from PASCAL-Context
which has annotations for semantic segmentation, human
part segmentation, semantic edge detection, surface nor-
mals prediction and saliency detection. Note that some
annotations were distilled by [27] using pre-trained SoTA
models [4]. NYUD-v2 contains various indoor scenes such
as offices and living rooms with 795 training and 654 test-
ing images. It provides different dense labels, including se-
mantic segmentation, monocular depth estimation, surface
normal estimation and object boundary detection.
Evaluation. Semantic segmentation (Semseg) and human
parsing (Parsing) are evaluated with mean Intersection over
Union (mIoU); monocular depth estimation (Depth) is eval-
uated with Root Mean Square Error (RMSE); surface nor-
mal estimation (Normal) is evaluated by the mean error
(mErr) of predicted angles; saliency detection (Saliency) is
evaluated with maximal F-measure (maxF); object bound-
ary detection (Boundary) is evaluated with the optimal-
dataset-scale F-measure (odsF). To evaluate the model ef-
ficiency w.r.t. memory cost and inference speed, we adopt
the number of parameters and FLOPs for a single round of

the model inferring an input image.
Implementation details. We build our approach on the
most prevalent backbone architecture, i.e., HRNet as pre-
vious SoTA methods [2, 47]. The task-specific heads are
also implemented as two basic residual blocks, i.e., bina-
rized BasicBlock and binarized Bottleneck with additional
binary shortcuts as BiReal-Net [23]. We use ℓ1 loss for
depth estimation and cross-entropy loss for semantic seg-
mentation on NYUD-v2. As in the prior work, the edge
detection task is trained with a positive weighted wpos =
0:95 binary cross-entropy loss. We do not adopt a particu-
lar loss weighing strategy on NYUD-v2, but simply sum the
losses together. On PASCAL, we reuse the training setup
from [47] to facilitate a fair comparison. We reuse the loss
weights from there. The initial task predictions in the front-
end of the network use the same loss weighing as the final
task predictions. We refer to the supplementary material for
further implementation details. Importantly, we use Adam
optimizer [20] in training, but with different learning rates
for binary parameters (1e-5) and FP parameters (1e-4), as
Adam with a larger learning rate for binary parameters can
lead to better training results [24]. Note that our project is
based on the codebases for MTI-Net [47] and more details
can be found in the codes in the Supplemental Materials.

4.2. Comparison with State-of-the-Art

Tabs. 1 and 2 present a comparative analysis of the
proposed Binary Multitask Dense Predictor (Bi-MTPD)
with current state-of-the-art models on the NYUD-v2
and PASCAL-Context datasets. This comparison in-
cludes notable CNN-based methods such as PAD-Net [49],
ASTMT [27], MTI-Net [47], and ATRC [2], among oth-
ers. Bi-MTPD demonstrates exceptional performance, out-
performing other models in 6 of the 9 evaluated metrics,
particularly in complex scene understanding tasks like Se-
mantic Segmentation and Parsing. Remarkably, on the
NYUD-v2 benchmark, Bi-MTPD surpasses the previously
best-performing CNN-based method (ATRC) by a margin
of +1.8 (mIoU) in Semantic Segmentation, while requiring
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Table 2. Results on PASCAL-VOC. Bi-MTPD-C: only implementing the binarization in the multi-modal distillation module,
Bi-MTPD-F: fully-binarized model.

Model SemSeg ↑ Parsing ↑ Saliency ↑ Normal ↓ Bound ↑ float32 binary FLOPs
Method Backbone Params (M) Params (M) (G)

ASTMT [27] 68.00 61.10 65.70 14.70 72.40 364.72 0 501.27
PAD [49] 53.60 59.60 65.80 15.30 72.50 231.80 0 289.46
MTI [47] 61.70 60.18 84.78 14.23 70.80 218.56 0 280.12
ATRC [2] CNN 62.69 59.42 84.70 14.20 70.96 241.45 0 310.19

ATRC-A [2] 63.60 62.23 83.91 14.30 70.86 249.87 0 320.57
ATRC-B[2] 67.67 62.93 82.29 14.24 72.42 280.01 0 383.21

MTI [47] + Bi-MTPD-F 48.10 56.28 64.42 14.29 76.89 13.67 204.89 31.38
MTI [47] + Bi-MTPD-C 62.98(1.28↑) 60.44(0.26↑) 83.56(1.22↓) 14.31(0.08↑) 71.28(0.26↑) 153.71 64.85 194.51

InvPT[50] ViT-B 77.50 66.83 83.65 14.63 73.00 176.35 0 274.68
InvPT[50] + Bi-MTPD-C 76.84 (0.66↓) 67.10(0.27↑) 84.97 (1.32↑) 13.69(0.94↓) 73.04 (0.04↑) 154.68 21.67 220.76

InvPT[50] ViT-L 79.03 67.61 84.81 14.15 73.00 422.93 0 425.37
InvPT[50] + Bi-MTPD-C 79.83 (0.80↑) 68.17(0.56↑) 84.92 (0.11↑) 13.92(0.23↓) 73.03 (0.03↑) 401.26 21.67 382.68

only 62% of the storage space for weights and 56% of the
computational FLOPs.

Furthermore, the application of Bi-MTPD to the
ViT-based state-of-the-art method, InvPT [50], show-
cases Bi-MTPD’s ability to enhance model performance
while also improving efficiency. This demonstrates
the broad applicability and generalization capability of
Bi-MTPD across different architectural frameworks.

For a qualitative assessment, Figs. 7 and 6 displays pre-
diction examples from various models. These examples il-
lustrate that Bi-MTPD-C not only competes with but occa-
sionally surpasses the state-of-the-art ATRC in qualitative
performance.

4.3. Ablative Studies

Tab. 3 shows a series of ablative studies of Bi-MTPD-C and
Bi-MTPD-F with an HRNet-48 backbone on NYUD-v2.
We verify how different components of our model con-
tribute to the multi-task improvements. In summary, every
designed module positively impacts the overall model. We
would like to highlight the main intuition of our method
that binarized dense prediction models in a multitask man-
ner largely outperform the binarized single models through
Bi-MTPD-F w.o. VIB & KD vs. Bi-Single.

Table 3. Ablative studies on NYUD-v2.

Model SemSeg ↑ Depth ↓ Normal ↓ Bound ↑

Bi-MTPD-C 47.71 0.530 20.06 77.36
Bi-MTPD-C w.o. binary MMD 45.70 0.537 20.27 77.86
Bi-MTPD-F 39.20 0.612 21.04 76.86
Bi-MTPD-F w.o. VIB 35.04 0.652 22.31 73.88
Bi-MTPD-F w.o. KD 36.20 0.640 21.99 74.86
Bi-MTPD-F w.o. VIB & KD 33.99 0.667 23.24 71.30
Bi-Single 16.20 0.872 29.36 69.24

5. Conclusion

In this paper, we significantly accelerate cumbersome dense
prediction models, in which BNNs for relevant tasks are
modeled and optimized under a multitask framework to sup-
plement degraded information caused by binarization op-
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Figure 6. Qualitative comparison with ATRC on NYUD-v2.
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Figure 7. Qualitative comparison with MTI-Net on PASCAL-
Context.

erations. Based on this binary baseline, we further intro-
duce variational information bottleneck and feature-based
knowledge distillation to supplement information flow. Ex-
periment results show that our method significantly acceler-
ates existing SoTA methods with comparably small perfor-
mance drop over the mainstream dense prediction tasks on
PASCAL VOC and NYUD-v2. Intriguingly, Bi-MTPD not
only reaches SoTA w.r.t. performance but also saves com-
putational costs, compared with SoTA method ARTC [2].
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