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Abstract

Concept Bottleneck Models (CBMs) map the black-box
visual representations extracted by deep neural networks
onto a set of interpretable concepts and use the concepts
to make predictions, enhancing the transparency of the
decision-making process. Multimodal pre-trained models
can match visual representations with textual concept em-
beddings, allowing for obtaining the interpretable concept
bottleneck without the expertise concept annotations. Re-
cent research has focused on the concept bank establish-
ment and the high-quality concept selection. However, it
is challenging to construct a comprehensive concept bank
through humans or large language models, which severely
limits the performance of CBMs. In this work, we propose
the Incremental Residual Concept Bottleneck Model (Res-
CBM) to address the challenge of concept completeness.
Specifically, the residual concept bottleneck model employs
a set of optimizable vectors to complete missing concepts,
then the incremental concept discovery module converts the
complemented vectors with unclear meanings into poten-
tial concepts in the candidate concept bank. Our approach
can be applied to any user-defined concept bank, as a post-
hoc processing method to enhance the performance of any
CBMs. Furthermore, to measure the descriptive efficiency
of CBMs, the Concept Utilization Efficiency (CUE) metric
is proposed. Experiments show that the Res-CBM outper-
forms the current state-of-the-art methods in terms of both
accuracy and efficiency and achieves comparable perfor-
mance to black-box models across multiple datasets.

1. Introduction

Deep neural networks (DNNs) [31, 45] have achieved
unprecedented success in a wide range of machine learn-
ing tasks, including computer vision [16, 32], natural lan-
guage processing [14, 59], and speech recognition [34, 41].

*Work done during an internship at Shanghai AI Laboratory.
†Corresponding author.
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Figure 1. Challenges in CBMs. When a concept contains many
atomic attributes, making it too complex for human to compre-
hend. When a concept is too high-level, DNNs may struggle to
provide accurate prediction. Additionally, there is a risk of human-
designed concept bank missing some important concepts.

However, due to their complex and deep structures, they
are often regarded as black-box models [7, 49], which are
too difficult to understand and interpret. In fields that de-
mand high levels of trustworthiness, such as medicine [44],
healthcare [21], education [60], and finance [39], model in-
terpretability has become increasingly crucial. It indicates
whether we can trust the DNNs’ decisions, and how we can
rectify the errors when the DNNs make mistakes. Making
deep learning models more interpretable is a significant yet
challenging research topic.

A promising approach for achieving interpretability in
deep learning is through concept-based models [46], which
leverage human-generated high-level concepts to explain
the black-box features of DNNs. Among these approaches,
Concept Bottleneck Models (CBMs) [26] map the visual
representations to a set of concept values that are under-
standable to humans. These interpretable concepts are then
used to make the final decision by a linear function, greatly
enhancing our understanding of the decision-making pro-
cess. Of greater significance, humans can repair models’
faults by directly editing or intervening on the concept bot-
tleneck [3, 48].

Due to the considerable cost of the fine-grained and pre-
cise annotation for each concept in CBMs, multimodal pre-
trained model-based CBMs [58] have recently emerged as
a research hotspot. CLIP [40] demonstrates the capacity to
establish correspondences between visual information and
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textual descriptions. Accordingly, we can utilize the CLIP
text encoder to encode human-understood concepts into
concept embeddings and use the visual encoder to encode
images into visual representations. By projecting visual
representations to each concept embedding, we can obtain
the concept bottleneck. The recent innovations have pri-
marily concentrated on comprehensive concept bank estab-
lishment and efficient high-quality concept selection. How-
ever, these methods face three critical challenges as shown
in Fig.1:

• Purity: The essence of concepts is to abstract complex
information into a combination of simple foundational el-
ements, which can generalize to unseen data through the
infinite combinations of finite concepts, offering an effi-
cient way to describe the world. Long and complex de-
scriptions like small, black insect with six legs or long,
thin tool with a wooden handle, can be composed entirely
of combinations of simple concepts such as small, black,
insect, leg, etc., which may increase the productivity of
concept utilization. Since these complicated concepts are
excessively detailed, they may not be shared across differ-
ent classes, which will limit their ability to capture shared
knowledge between different categories.

• Precision: Each concept should be clearly understand-
able for both humans and multimodal pre-trained models
when annotating concepts. Specifically, concepts should
not be markedly more difficult than classes. For exam-
ple, high-level concepts like amphibians or perennial,
are relatively harder for humans to understand and ex-
hibit weaker interpretability. Moreover, we cannot ascer-
tain whether CLIP possesses the capability to understand
these high-level concepts, which can potentially lead to
errors in concept annotation.

• Completeness: Concept bank should strive to include
as much relevant visual information that is beneficial for
downstream classification tasks as possible. It is essen-
tial to avoid losing too much information in the process.
However, it is challenging to establish a comprehensive
concept bank directly [57]. The exhaustive capability of
language descriptions is limited, making it difficult to ac-
complish a fully thorough concept bank through manual
design and selection.

In this work, we propose the Incremental Residual
Concept Bottleneck Model (Res-CBM) to address the three
challenges above. First, we establish a simple and pure
base concept bank and candidate concept bank to ensure
that the CLIP can accurately recognize each concept. Next,
we initialize a set of optimizable vectors as filling concepts
and optimize this set of filling concepts through the residual
concept bottleneck model, to make up for the inadequacy in
the base concept bank. Finally, the incremental concept dis-
covery module is utilized to translate these complemented
vectors with unclear meanings into potential concepts in the

candidate concept bank, improving the performance while
preserving the interpretability of the CBM. Our main con-
tributions can be summarized as follows:
1. We systematically reviewed the research on the CLIP-

based CBMs, clarifying the importance of the concepts’
purity, precision, and completeness.

2. We proposed the residual concept bottleneck model to
make up for the insufficiency in the base concept bank
and converted these complemented unknown vectors
into potential concepts in the candidate concept bank
through the incremental concept discovery module. It
should be emphasized that our approach can be applied
to any user-defined concept bank, as a post-hoc process-
ing method to enhance the performance of any CBMs.

3. To measure the descriptive efficiency of CBMs, we in-
troduced the metric of the concept utilization efficiency.
We performed extensive experiments to validate our
methodology and elaborate ablation studies to illustrate
the effectiveness of each component.

2. Related Work
Deep neural networks (DNNs) can be explained through

pixels [8, 47], samples [15, 22], weights [54], individ-
ual neurons [5, 13], subnetworks [2, 12], representations
[4, 19, 20], etc [43]. Concept-based models [23, 33, 52, 53]
are representation-level interpretable approaches, whose
core idea is to map representations with unknown meanings
extracted by the black-box DNNs to a set of concepts that
can be comprehended by humans [9, 11, 35, 36]. Concept-
based models can be broadly categorized into Concept Bot-
tleneck Models (CBMs) [26], which describe concepts as
independent values annotated by experts, and Concept Ac-
tivation Vectors (CAVs) [24], which represent concepts as
normal vectors of the decision boundaries that distinguish
positive and negative samples of a concept. CBMs involve
the datasets labeled with fine-grained and precise attributes
by expert knowledge, such as CUB-200 [18], OAI [10], and
LAD [61], whereas CAVs require learning the concept ac-
tivation vectors on additional probe datasets, and the direc-
tions of the concept activation vectors are strictly correlated
with the probe datasets [42]. These limitations severely re-
strict the development of concept-based models.

Recently, there has been a rapid development of multi-
modal pre-trained models [17], among which CLIP does an
excellent job of relating visual information to text through
contrastive learning, giving researchers confidence for un-
supervised concept labeling with CLIP. PCBM [58] gen-
erates a concept bank via ConceptNet [50] and calculates
the projection distance between the CLIP textual concept
embeddings and the CLIP visual representations of images,
analogous to the CAVs, to obtain the concept bottleneck.
PCBM-h [58] introduces an uninterpretable residual linear
layer to compensate for incomplete concept extraction by
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Figure 2. Different CBMs’ structures. (a): CLIP linear probing [40]. (b): Original Concept Bottleneck Model (CBM) [26]. (c) Post-hoc
Concept Bottleneck Model (PCBM) [38, 56, 58]. (d): Hybrid Post-hoc Concept Bottleneck Model (PCBM-h) [58].

fitting the difference between the PCBM’s result and the
ground truth through the original visual representations of
CLIP. Label-free CBM [38] only leverages CLIP to concept
annotation, maximizing the similarity between the concept
bottleneck of the features extracted by arbitrary visual back-
bone and the concept annotations labeled by CLIP. LaBo
[56] generates a set of candidate concepts through large lan-
guage models and designs a submodular optimization block
to select the concepts.

3. Method

3.1. Problem Formulation

Consider a dataset of image-label pairs D = {(x, y)},
where x ∈ X is the image and y ∈ Y is the label. We have
N human-selected concepts to describe the essential infor-
mation of these images, which can be denoted as discrete
tokens E = {e1, e2, ..., eN}. Multimodal pre-trained align-
ment model (e.g., CLIP [40]) has an image encoder ΦI :
X → Rd and a text encoder ΦT , which can map images and
text into a shared d-dimensional feature space respectively.
We encode the discrete tokens with the CLIP text encoder
then perform L2 normalization1 to obtain the concept em-
beddings {w1, w2, ..., wN |wi = ΦT (ei), i = 1, 2, ..., N}
with the length of 1 and the dimension of d. We concate-
nate these concept embeddings to a concept projection ma-
trix WN×d : Rd → RN in arbitrary order, also identified as
a concept bank.

Correspondingly, we utilize the CLIP image encoder to
get the visual representations f = ΦI(x). Considering that

1The symbol of L2 normalization is omitted for writing convenience.

CLIP has aligned the images with the textual data when pre-
training, the visual representations share the feature space
with any concept embedding, and the projection length
∥f∥2 · cos⟨wi, f⟩ can reflect the presence of a particular
concept in the image. Since undergoing L2 normalization
on wi, the concept probability can be directly formulated in
terms of the dot product c = W · f .

Fig.2 illustrates the structure of common CBMs. For
CLIP Linear Probing [29], an uninterpretable linear clas-
sifier Ψ : Rd → Y is trained directly from visual represen-
tations:

ŷ = Ψ(f) = Ψ(ΦI(x)) (1)

Original CBM [26] first extracts concepts using a con-
cept extractor Ψcpt : Rd → RN and then linearly unites the
extracted concepts for label prediction by concept classifier
Ψcls : RN → Y .

ŷ = Ψcls(Ψcpt(f)) (2)

Post-hoc CBM [58] stands for a category of CLIP-based
CBMs, including Label-free CBM [38], LaBo [56], etc.
They attain concept bottleneck by projecting visual repre-
sentations f directly to a concept bank W , rather than by
learning a concept extractor. After getting concepts, only a
linear concept classifier Ψc : RN → Y needs to be learned.

ŷ = Ψc(c) = Ψc(W · f) (3)

PCBM-h [58] adds a linear layer Ψr : Rd → Y between
the original visual representation and the labels on the basis
of PCBM, which is used to predict the difference between
the PCBM result and the ground truth.

ŷ = Ψc(c) + Ψr(f) = Ψc(W · f) + Ψr(f) (4)
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3.2. Concept Bank Establishment

Candidate Concept Bank. To ensure precision, we
need to make sure that CLIP is capable of recognizing each
concept, and one straightforward way is to construct the
concept bank from the CLIP pre-trained dataset. For pu-
rity, it is desirable for each concept to be at the atom level
rather than the compound level, thus maintaining the clarity
and specificity. We find that the scene graph [27] consisting
of visual concepts to be an appropriate foundation, in which
an atom is defined as a singular visual concept, correspond-
ing to a single scene graph node. Atoms are subtyped into
objects, relationships, and attributes. We pick the nouns
and adjectives in them as the candidate concept bank E∗.

Base Concept Bank. Although our method can recover
missing concepts from a diverse base concept bank, a high-
quality base concept bank can remarkably improve the effi-
ciency of our approach. A base concept bank is expected to
consist of two parts. Firstly, it should include general con-
cepts that are applicable across various scenarios. We select
the pre-defined concept library proposed by [24], which has
been widely used in various tasks [1, 55], as our general
concept bank Ege. Secondly, it is supposed to include con-
cepts relevant to the specific classification task. Following
the PCBM [58], we collect all concepts from ConceptNet
[50] that have relations of hasA, isA, partOf, HasProperty,
and MadeOf with the classes in each classification task to
build the associated concept bank Eas. Both concept banks
should be included in the candidate concept bank, from
which we can derive the base concept bank:

E0 = (Ege ∩ E∗) ∪ (Eas ∩ E∗) (5)

We encode the discrete concept tokens with the CLIP
text encoder then perform L2 normalization to obtain the
base and candidate concept embedding matrices:

W0 = ΦT (E0), W ∗ = ΦT (E∗) (6)

3.3. Residual Concept Bottleneck Model

Previous methods have typically involved pre-generating
a set of relevant concepts and then deleting some of them
to get the final concept bank. However, on the one hand,
the pre-generated concepts might be insufficient, as their
scale has often limitations. On the other hand, manual filter-
ing without leveraging dataset information may result in the
omission of important concepts. Therefore, we propose the
residual concept bottleneck model to learn the missing con-
cepts from the dataset content in an incremental approach
compared to other decremental methods as shown in Fig.3.

We first randomly initialize D optimizable vectors
UD×d = {u1, u2, ..., uD} with dimensions consistent with
those of the existing concept embeddings. We likewise
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Figure 3. Incremental Residual Concept Bottleneck Model.

project the visual representations onto these vectors, result-
ing in residual concepts r = U · f with unclear meanings.
The prediction result of using the residual concepts to com-
plement the original concepts is as follows:

ŷ = Ψc(c) + Ψr(r) = Ψc(W · f) + Ψr(U · f) (7)

where Ψc : RN → Y is the original concept linear classifier
using existing concepts and Ψr : RD → Y is the residual
concept linear classifier using unknown residual concepts.

For one thing, we intend to maximize the accuracy when
using only the original concepts, which can be formulated
as the following optimization problem:

min
Ψc

E
(x,y)∈D

[
L
(
Ψc(W · ΦI(x)), y

)]
+ λ · Ω(Ψc) (8)

where L(ŷ, y) is the cross-entropy loss function, Ω(Ψc) is
a complexity measure to regularize the model, and λ is the
regularization strength.

From another perspective, we aim to improve the perfor-
mance after incorporating the residual concepts, which can
be solved by the following optimization problem:

min
Ψr,U

E
(x,y)∈D

[
L
(
Ψc(W ·f)+Ψr(U ·f), y

)]
+λ·Ω(Ψr) (9)

where f = ΦI(x).
To simultaneously address these two problems, we per-

form two forward and backward propagations in each batch
to update the parameters. When performing the first propa-
gation, we utilize only the original concepts to optimize the
original concept classifier Ψc. During the second propaga-
tion, we fix the parameters of the original concept classifier
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Ψc and optimize the residual concept classifier Ψr as well
as the learnable unknown concept vectors U using both the
original and the residual concepts.

To avoid the influence of extreme values from unknown
residual concepts, we employ cosine similarity instead of
projection distance as the concept bottleneck and standard-
ize the activations of each concept to have a mean of 0 and a
standard deviation of 1 to speed up convergence [38]. These
operations are reversible and do not affect the relative order
of concepts or introduce additional information.

3.4. Incremental Concept Discovery

Through the aforementioned steps, the residual concepts
effectively compensate for the incompleteness of the orig-
inal concepts. However, these randomly learned concepts
lack human interpretability, so we next translate them into
human-understandable concepts.

Parameters Initialization. We first initialize another
optimizable vector vd, denoted as the discovered concept
vector, whose value is the mean concept embeddings of the
base concept bank with added noise. Subsequently, we ap-
pend the discovered concept vector to the base concept bank
and remove one of the learned unknown residual concept
vectors, whose residual concept embedding matrix changes
to U−vd

= U(D−1)×d and residual classifier changes to
Ψr−vd : RD−1 → Y . After performing L2 normalization
and projection, the visual representations will also obtain a
similarity score cd = vd ·f to the discovered concept vector,
and there will be a corresponding discovered concept linear
classifier Φd : R → Y . We adopt the language priors as the
initial weights to ensure stable updating of the discovered
concept vector. In particular, the weights of the discovered
concept classifier are initialized as the cosine similarity be-
tween the discovered concept embedding and the text em-
beddings for each class name, while other parameters and
weights are kept untouched.

Concept Similarity Loss Function. After adding the
discovered concept vector to the base concept bank, the pre-
diction under the original and residual strategy is as follows:

ŷorg = Ψc(c) + Ψd(cd) = Ψc(W · f) + Ψd(vd · f) (10)
ŷres = ŷorg +Ψr−vd(U−vd · f) (11)

To further guarantee that the discovered concept vector is
interpretable, we propose the concept similarity loss func-
tion Lsim, which utilizes the candidate concept bank W ∗ to
constrain the discovered concept embedding:

Lsim = 1− E
[
Rank

(
W ∗ · vTd

∥vd∥2
,M

)]
(12)

where Rank(v,M) denotes sorting v from largest to small-
est and selecting the first M of them.

Referring to the update strategy of the residual concept
bottleneck model, we just add the discovered concept with
its classifier during the first pass propagation:

min
Ψc,Ψd,vd

E
[
L(ŷorg, y)

]
+ α · Lsim + λ · Ω(Ψc,Ψd) (13)

where α is the weight of the concept similarity loss.
When performing the second propagation, we fix the

parameters of the original concept classifier Ψc, the dis-
covered concept classifier Ψd, and the discovered concept
embedding vd, optimizing the residual concept classifier
Ψr−vd and the unknown residual concept vectors U−vd :

min
Ψr−vd

,U−vd

E
[
L(ŷres, y)

]
+ λ · Ω(Ψr−vd) (14)

We recover concepts in an incremental way until all the
learned unknown residual concept vectors are transformed
into pure, accurate, and human-interpretable concepts. At
this point, the base concept library is fully updated, and ex-
periments confirm its superior completeness.

4. Experiments
4.1. Experimental Setup

Datasets. We conduct comprehensive experiments on
7 datasets, including: CIFAR-10, CIFAR-100 [28], Tiny-
ImageNet [30], LAD [61], CUB-200 [51], Food-101 [6],
Flower-102 [37]. For a fair comparison, we apply CLIP-
RN50 when comparing with other CBMs and CLIP-ViT-
L/14 on few-shot classification tasks as the backbone, and
all linear classifiers are optimized with the Adam [25] op-
timizer. For more detailed information, please refer to the
supplementary material.

Baselines. To evaluate our proposed approach, we com-
pare it with the following baseline methods:
• CLIP Zero-shot[40]: the cosine similarities between the

visual representations and the textual embeddings of each
class name are calculated directly without any training.
The class with the highest cosine similarity score is se-
lected as the final classification result.

• Linear Probing (LP)[40]: We exclusively utilize the CLIP
visual encoder and the obtained visual representations are
then used to predict the label by training a linear classifier.

• Original CBM[26]: The original CBM relies on fine-
grained concept annotations, so we compare our method
with it only on LAD and CUB with available attribute an-
notations. In addition, CBMs may suffer from concept
leakage, which can only be alleviated by CBMs trained
independently [36]. Hence, we choose CBM-independent
as the baseline for comparison.

• PCBM[58]: PCBM uses the ConceptNet[50], a knowl-
edge graph dataset, to conduct a concept bank. It treats
classes as nodes and incorporates surrounding neighbor-
ing nodes in the concept bank. More concepts can be
included by expanding multiple layers outwards.
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Table 1. Comparison with other CLIP-based CBMs. Bold indicates the best interpretable result, underline indicates the 2nd-best result,
italic indicates the black-box methods.

Method Interpretability Length CIFAR 10 CIFAR 100

Accuracy Number CUE Accuracy Number CUE

Zero-shot Yes N/A 0.6796 N/A N/A 0.2620 N/A N/A
LP No N/A 0.8858 N/A N/A 0.6995 N/A N/A

PCBM-1r Yes 9 0.8044 175 5.1073 0.5379 440 1.3583
PCBM-2r Yes 9 0.8074 383 2.3423 0.5450 1175 0.5153
PCBM-3r Yes 9 0.8208 1058 0.8620 N/A N/A N/A
PCBM-h No 9 0.8757 175 N/A 0.6683 440 N/A
Lf-CBM Yes 12 0.8677 143 5.0565 0.6745 892 0.6301
LaBo-10c Yes 27 0.8489 100 3.1441 0.6618 1000 0.2451
LaBo-20c Yes 27 0.8669 200 1.6054 0.6736 2000 0.1247
LaBo-30c Yes 26 0.8752 300 1.1221 N/A N/A N/A
Res-CBM Yes 7 0.8803 237+10 5.0914 0.6791 372+15 2.5396

Table 2. Comparison with CBMs with labeled concept annotations. The labeling significance is consistent with Tab.1.

Method LAD-A LAD-E LAD-F LAD-H LAD-V CUB Mean

LP 0.9432 0.8661 0.7393 0.4924 0.8671 0.7214 0.7714
Original CBM 0.8964 0.7826 0.5535 0.3388 0.7907 0.6513 0.6689

PCBM-annotation 0.8934 0.7711 0.5982 0.2982 0.7814 0.6363 0.6631
Res-CBM-before 0.7897 0.7709 0.4356 0.1429 0.7548 0.5987 0.5812
Res-CBM-after 0.8979 0.8045 0.6624 0.3862 0.8301 0.6243 0.7009

• PCBM-h[58]: After training the PCBM, PCBM-h is ap-
plied as a post-processing method that connects the visual
representation and the class labels result through short-
cuts. It utilizes a linear classifier to predict the difference
between the result of PCBM and the ground truth.

• Lf-CBM[38]: In contrast to PCBM, Lf-CBM generates
concepts through a large language model (LLM). It solely
utilizes CLIP as the concept annotator, allowing it to act
on any visual backbone. We directly select CLIP as the
visual backbone, thus omitting the process of computing
the similarity matrix.

• LaBo[56]: LaBo similarly applies the LLM to generate
candidate concepts. However, the quantity of concepts in
LaBo is specific to each class. So we generate 10, 20,
and 30 concepts per class to compare the performance. In
addition, LaBo’s linear classifier differs from the above
baselines. To evaluate the quality of concepts equitably,
we choose the same classifier as the above methods.
Metrics. Besides accuracy, we also concentrate on con-

cepts’ efficiency, including both the average length of each
concept and quantity of concepts. Specifically, we define
the accuracy improvement brought by all concepts’ length
to measure the Concept Utilization Efficiency (CUE):

CUE =
10000×Acc

N × L̄
(15)

where Acc is the classification accuracy, N is the quantity
of concepts and L̄ is the average number of letters included
in each concept. Larger CUE means higher efficiency.

4.2. Accuracy and Efficiency

We compare our method with other CBMs in terms of
accuracy and efficiency. Tab.1 provides the results of our
method compared to other CLIP-based CBMs.2 Res-CBM
attains higher accuracy than PCBM by 5.95% on CIFAR-10
and 13.41% on CIFAR-100 and even outperforms the inex-
plicable PCBM-h. Despite Lf-CBM and LaBo being pow-
erful baselines, our methodology still achieves state-of-the-
art results. Particularly, it should be noted that our method
considerably exceeds both Lf-CBM and LaBo in terms of
efficiency, as evidenced by the CUE metric.

On LAD and CUB-200 with attribute annotations, we
still use CLIP-50 with frozen parameters as the visual back-
bone to train Original CBM according to formula (2), as
the results are shown in Tab.2.3 The close performance of
the Original CBM and PCBM-annotation suggests that the
CBMs’ performance heavily relies on the expert-selected
concepts more than the model structure. Although Res-
CBM-before performs poorly, a remarkable improvement is
observed in Res-CBM-after after applying our unsupervised
incremental concept discovery, which even surpasses super-
vised CBMs with concept annotations on most datasets.

2PCBM-#r represents expanding outward to include neighboring nodes
# times. LaBo-#c represents selecting # concepts per class.

3PCBM-annotation refers to PCBM that utilizes the textual embeddings
of the annotated attributes as the concept bank. Res-CBM-before indicates
the performance on the initial base concept bank. Res-CBM-after repre-
sents the performance after incremental concept discovery.
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Figure 4. Test accuracy (%) comparison between Res-CBM and LP on 6 datasets. The x-axis represents the number of labeled images.
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Figure 5. Ablation results on residual vector numbers, concept similarity loss weights and candidate concept numbers.

4.3. Interpretability

In this subsection, we visualize the mechanism of Res-
CBM and demonstrate how the newly discovered concepts
assist in advancing classification performance. For each im-
age, we display the top 5 concepts with the highest activa-
tion scores in the concept bottleneck, as shown in Fig.6.
Through a sparse concept classifier, we can obtain predic-
tions, which signifies predicting the class by a linear com-
bination of concepts.

However, due to the incompleteness of the base con-
cept bank, it is challenging to achieve accurate classifica-
tions by solely relying on these concepts in several images,
e.g., dragonfly and honeybee, peach and hawthorn, both of
which possess concepts from the base concept bank. With
the help of Res-CBM, we have discovered 2 concepts, nec-
tar and rough, from the candidate concept bank. Unlike
dragonflies, honeybees often gather nectar from the center
of flowers, thus associating them with the concept of nectar.
Moreover, hawthorns have a rougher surface compared to
peaches. By incorporating these discovered concepts into
the base concept bank, these initially misclassified samples
are now correctly categorized, achieving automatic model
debugging to a certain extent.

4.4. Few-shot Capability

Fig.4 illustrates the performance comparison under dif-
ferent data volume settings between Res-CBM and LP.
Compared to the end-to-end black-box model, our method
achieves superior performance when little data is available,
and exhibits a slight performance gap with larger amounts
of sample sizes, which indicates that our method has main-
tained the accuracy without sacrificing interpretability.

For common object datasets, our approach demonstrates
excellent performance with 1, 2, 4, and 8 labeled images
per category. We credit its success to the incorporation of
human concept information, which helps the model extract
vital aspects relevant to the categories from the representa-
tions of the black-box backbone.

For fine-grained object datasets, our method outperforms
the black-box model when the data volume is extremely
low. As the data volume increases, the unexplainable black-
box model’s performance becomes more prominent, espe-
cially in expert datasets such as Flower-102 and CUB-200.
It might be attributed to common concepts struggling to dis-
tinguish the subtle differences between these fine-grained
objects. A feasible solution is to enhance the specificity of
concepts by a tailored specialized concept candidate bank.
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Figure 6. Concepts applied in Res-CBM on LAD-A (top) and
LAD-F (bottom). Solid boxes represent concepts from the base
concept bank, dashed boxes indicate the discovered concepts.
Heatmaps refer to learned linear concept classifiers, in which the
x-axis represents classes, the y-axis represents concepts, and the
values represent the contribution of concepts to categories.

4.5. Ablation Study

Residual Vector Number. To investigate the impact
of residual vector numbers on performance improvement
and demonstrate that our method can be applied as a post-
processing approach to any CBMs, we record the results of
attaching different residual vector numbers for Lf-CBM on
CIFAR-10, as shown in Fig.5-left. As the quantity of vec-
tors increases, the performance of Lf-CBM continuously
improves and gradually saturates at around 15 vectors.

Candidate Concept Number. We fix the residual vec-
tor number at 10 and set the concept similarity loss weight
to 0.1, then record the final accuracy and the average simi-
larity between the discovered concepts and the most similar
concepts in the candidate concept bank during the discov-
ery process in Fig.5-middle. When the candidate concept
number is small, the model tends to converge to this unique
concept, making it difficult to escape local optima. When it
is large, the optimizing vectors easily oscillate between dif-
ferent concepts, resulting in lower accuracy and similarity.
Overall, setting the candidate concept number to 5 seems to
be a good hyperparameter choice.

Concept Similarity Loss Weight. With a fixed candi-
date concept number at 5, we also record the final accuracy
and average similarity for different loss weights as shown
in Fig.5-right. When the weight is low, the similarity of
the discovered concepts is extremely low, which resembles
a random selection strategy, leading to poorer performance.
When the weight is large, the model tends to converge to
a local optimum only satisfing the concept similarity loss,
sacrificing the ability to explore more appropriate concepts.
Since Res-CBM has already saturated after the completion
of unknown concept vectors, the cross-entropy loss value is
small. Therefore, a weight of 0.1 realizes optimal results.

5. Discussion and Conclusion

Rethinking CBMs. Indeed CBMs are valuable attempts
towards transparency of the decision-making process, one
important and fundamental problem may be still unclear,
which is: how many concepts are good? especially when
lacking a well-accepted and rigorous definition of concepts.
In this paper, we have tried to explore this problem. Firstly,
the number of concepts should not be the larger the better.
From the optimization perspective, the operation of CBMs
to project visual representations into concept space is a lin-
ear transformation. If its rank is greater than or equal to
the dimension d of the concept vector, this process is in-
vertible. Therefore, it is straightforward to re-estimate the
inverse transformation matrix to preserve classification ac-
curacy in subsequent linear classifiers. The number of con-
cepts larger than d may decrease the efficiency, making the
interpretability less effective.

On the other hand, the concept should be an efficient way
to express categories. Humans can describe objects in the
world exponentially using a finite set of concepts. Theoreti-
cally, from informatics, when each concept weight is binary,
the concept quantity needed to distinguish n categories will
be enough approximately log2 n. This is the reason for the
poor CUE of LaBo [56], which finds concepts for each cat-
egory in a way that the CUE complexity is O(n) rather than
O(log2 n). This suggests that the CUE is crucial in CBMs,
and a reasonable number of concepts should lie in the inter-
val of

[
⌈log2 n⌉, d

)
.

Conclusion. In this paper, we emphasize the signifi-
cance of purity, precision, and completeness in CBMs and
introduce the CUE metric to evaluate the descriptive effi-
ciency of CBMs. Our proposed Res-CBM complements the
missing concepts in any CBM with an incremental concept
discovery approach, which achieves optimal accuracy with
the best concept utilization efficiency.

Limitation and Future Work. For our proposed Res-
CBM, the candidate concept bank construction for fine-
grained datasets remains a challenge. Additionally, the
sequential concept discovery approach increases computa-
tional time costs, while more efficient concept similarity
calculation and parallel concept discovery techniques are
needed to develop. For the CBM structure, existing CBMs
represent all concepts into a single bottleneck, disregarding
the hierarchical nature of concepts, where simple concepts
can be combined to form more complicated ones.
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