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Abstract

Referring image segmentation (RIS) aims to segment the
target referent described by natural language. Recently,
large-scale pre-trained models, e.g., CLIP and SAM, have
been successfully applied in many downstream tasks, but
they are not well adapted to RIS task due to inter-task dif-
ferences. In this paper, we propose a new prompt-driven
framework named Prompt-RIS, which bridges CLIP and
SAM end-to-end and transfers their rich knowledge and
powerful capabilities to RIS task through prompt learning.
To adapt CLIP to pixel-level task, we first propose a Cross-
Modal Prompting method, which acquires more compre-
hensive vision-language interaction and fine-grained text-
to-pixel alignment by performing bidirectional prompting.
Then, the prompt-tuned CLIP generates masks, points, and
text prompts for SAM to generate more accurate mask
predictions. Moreover, we further propose Instance Con-
trastive Learning to improve the model’s discriminability to
different instances and robustness to diverse languages de-
scribing the same instance. Extensive experiments demon-
strate that the performance of our method outperforms the
state-of-the-art methods consistently in both general and
open-vocabulary settings.

1. Introduction

Referring Image Segmentation [6, 11, 14] is one of the
most challenging tasks in the field of vision-language un-
derstanding, which aims to segment corresponding target
referent given a natural language description. Compared
with semantic segmentation task [3, 40] that only segment
predefined fixed categories, RIS can more flexibly segment
targets of any category, location or attribute based on free-
from language, which requires a more comprehensive un-
derstanding and alignment between diverse language ex-
pressions and images, so it can be widely used in real-world
scenarios like robots and human-computer interactions.
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Figure 1. Existing methods (a) of adapting CLIP to segmentation
typically adopt two-stage mask-classification manner. Our method
(b) bridges CLIP and SAM end-to-end through prompt learning.

Most existing methods [14, 19, 41, 46] typically use tra-
ditional single-modal pre-trained image or text backbones
to extract features for RIS tasks. Recently, with the rise
of large-scale pre-trained models [9, 23, 38], their power-
ful generalization capabilities have attracted increasing re-
search attention. Among them, vision-language models,
like CLIP [38] and ALIGN [17], that are pre-trained on
large-scale image-text pairs, demonstrates powerful gener-
alization capabilities in multiple downstream tasks. And the
large-scale segmentation model SAM [23] also shows the
ability to generate promising segmentation results based on
its data engine and diverse prompts.

Currently, increasing researchers focus on how to adapt
these pre-trained models, represented by CLIP [38], to dif-
ferent downstream tasks. On the one hand, to avoid CLIP
forgetting the generalized knowledge during fine-tuning,
many prompt learning methods [18, 21, 25, 52] are pro-
posed, which freeze the model parameters and introduce
additional learnable prompt tokens for new task adaptation.
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On the other hand, since CLIP is trained by image-level
tasks and lacks pixel-level recognition capabilities. To adapt
CLIP to more fine-grained tasks like segmentation, most
existing methods adopt a two-stage “mask-classification”
manner [7, 28, 50], as shown in Fig. 1(a), which first use
pre-trained mask generators such as Maskformer [5] or
SAM [23] to generate class-agnostic mask proposals, then
crop the image based on the foreground in the masks, and
finally use CLIP to classify the foreground.

However, the above methods are not adapted well to
RIS. Firstly, most of the existing prompt learning methods
are unidirectional information flow prompting, like vision-
to-language [52] or language-to-vision [4, 21] prompting.
RIS task requires sufficient cross-modal interaction to cor-
respond different contents of the text with different regions
in the image, while the unidirectional prompting makes it
difficult to capture text-pixel correspondences due to the
lack of sufficient cross-modal interaction. Secondly, RIS
is not a simple task of classifying instances in images. The
content of the text may not explicitly contain the category
of the target, but describes the target’s location, attributes,
and relationships with other instances, while the ”mask-
classification” methods only focus on the foreground in-
stance in the mask and ignore to understand more global
contexts such as the different instances and their relation-
ships in the image. The original SAM used for the RIS task
also needs to input the mask-cropped images into CLIP to
generate approximate text prompts, which also ignores the
contextual information about the referent, so it is difficult
to generate accurate segmentation results without positional
priors provided by additional point prompts.

To address the above problems, we propose a new frame-
work called Prompt-RIS, which bridges CLIP and SAM
intuitively and explores the powerful capabilities of these
two models for RIS through prompt learning, as shown
in Fig. 1(b). Firstly, to adapt CLIP to the pixel-level RIS
task and improve the cross-modal interaction between im-
age and text in the encoding process, we propose a new bidi-
rectional information flow prompt learning method called
Cross-Modal Prompting (CMP). During the CLIP encod-
ing, the two modalities generate prompts for each other, and
the prompts contain rich context information from the other
modality, thus the two modalities achieve mutual alignment
through prompting. Then, we further adopt SAM to gen-
erate more accurate segmentation results. Since CLIP ac-
quires more text-pixel alignment capabilities through cross-
modal prompting, we use the prompt-tuned CLIP to provide
mask prompts and point prompts for SAM, and we also
project CLIP-encoded text features as the text prompts of
SAM. Based on the cross-modal prompting and the above
three types of prompts from CLIP to SAM, we bridge CLIP
and SAM end-to-end and form a powerful model for RIS.

Moreover, to further improve the accuracy of mask and

point prompts for SAM, we observed that there are often
multiple instances that have descriptions in the same im-
age, and each instance often has multiple different descrip-
tions. Therefore, we propose Instance Contrastive Learning
(ICL), which simultaneously samples multiple sentences
corresponding to the same image, and learns to improve
the similarity of the predicted masks corresponding to sen-
tences describing the same instance, while suppress the
overlap between the masks corresponding to sentences de-
scribing different instances. Based on contrastive learning
between instances from the same image, the model further
improves its localization ability to distinguish different in-
stances and alignment ability between instances and texts.

Our contributions are summarized as follows:
• Structurally, we propose a new prompt-driven frame-

work named Prompt-RIS to intuitively bridge CLIP and
SAM end-to-end, which transfers their rich knowledge
and powerful capabilities to referring image segmenta-
tion task through prompt learning.

• Methodologically, we propose Cross-Modal Prompting
CMP to adapt CLIP to pixel-level RIS tasks and improve
the information interaction between vision and language
modalities. And we further propose Instance Contrastive
Learning ICL to improve the model’s discriminability to
different instances and robustness to diverse languages
describing the same instance.

• Experimentally, we conduct extensive experiments on
three benchmarks and further evaluate the generalization
ability on unseen categories. The performance of our
method consistently outperforms the previous SOTAs.

2. Related Works
Referring Image Segmentation. The goal of referring im-
age segmentation (RIS) is to understand natural language
based on images, and locate and segment the target referent
described in the language. This task was first proposed by
[11], and early works [2, 27, 30, 35] mainly focus on con-
catenating visual and linguistic features generated by CNN
and LSTM [10] directly, and utilize convolutional networks
to achieve multi-modal fusion and understanding. With the
application of attention mechanisms in multi-modal learn-
ing, more works [8, 13, 39, 47] are proposed to enhance the
alignment relationship between words and different targets
in images through cross-modal attention. CMPC [14] maps
language features into entities, attributes and relationships,
and constructs a multi-modal graph, and then captures the
correct entity through graph reasoning. LSMC [15] further
introduces the Dependency Parsing Tree to obtain more ac-
curate linguistic structures of the input sentence.

Recently, with the rise of Transformers [42], VLT [6]
introduces a transformer framework to capture language in-
formation from different visual aspects. ReSTR [22] pro-
poses a vision-language transformer encoder to fuse the
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Figure 2. The overview of Prompt-RIS. Our method bridges CLIP and SAM based on prompt learning. CLIP is first adapted to RIS
through Cross-Modal Prompting, then the prompt-tuned CLIP generates masks, points and text prompts for SAM to obtain final predictions.

features from two modalities, and introduce a class token
to capture the target referent. LAVT [46] proposes to per-
form cross-modal fusion in the process of image encoding.
CGFormer [41] introduces the paradigm of mask classifica-
tion into RIS task and groups visual features into the query
tokens for cross-modal reasoning. DMMI [12] proposes
two transformer decoders to align vision and language from
dual directions. With the vision-language model CLIP [38]
adapts to a variety of downstream tasks, CRIS [43] adds a
cross-modal decoder based on CLIP to adapt CLIP to pixel-
level RIS task. ETRIS [44] further performs cross-modal
feature fusion in the encoding process. Our method aims
to adapt CLIP to more fine-grained tasks while preserving
the rich knowledge of CLIP for unseen categories through
prompt learning.
Prompt Learning. To transfer large-scale language models
to downstream tasks and avoid forgetting the learned gen-
eralization knowledge through fine-tuning, prompt learn-
ing [24, 31] is proposed to adapt the model to specific
tasks by adding handcrafted or learnable tokens to the fixed
model. Recently, with the success of applying vision-
language pre-trained models e.g., CLIP [38] and ALIGN
[17], to downstream tasks, prompt learning has been further
extended to computer vision [1, 18] and multi-modal learn-
ing [25, 45, 52, 53] tasks. CoOp [53] employs learnable
prompting tokens as context and jointly inputs them with
category words to adapt CLIP to image recognition tasks.
Co-CoOp [52] further proposes to obtain the context tokens
conditioned on image information. MaPLe [21] generates
vision prompts based on language prompts.

Most existing prompt learning methods focus on image-
level tasks and adopt unidirectional information flow
prompting, e.g., vision-to-language or language-to-vision.
For pixel-level tasks like segmentation, SAM [23] is pro-
posed to generate promising segmentation results based on
different prompts, but it is still difficult to generate accurate
mask predictions for RIS task without point prompts. In this
paper, we bridge SAM and CLIP end-to-end for RIS based
on prompt learning, and further propose a new cross-modal

prompting method to better adapt CLIP to pixel-level task
and perform cross-modal interactions more sufficiently.

3. Method
3.1. Prompt-RIS Structure

Our proposed Prompt-RIS bridges two large-scale pre-
trained models CLIP [38] and SAM [23] based on prompt
learning, and explores to transfer their rich knowledge and
powerful capabilities to the RIS task. The overall structure
of our method is shown in Fig. 2. CLIP is first adapted to
the pixel-level RIS task through Cross-Modal Prompting,
and then the prompt-tuned CLIP generates masks, points
and text prompts and inputs them into SAM to generate fi-
nal segmentation predictions. Next, we will elaborate the
structure details of our proposed framework.

Image&Text Encoding. Our Prompt-RIS framework
mainly consists of CLIP and SAM, so there are two im-
age encoders corresponding to the two models respectively,
and we use the vision transformer (ViT) of CLIP and SAM
as image encoders in this paper. The image is resized to
different resolutions for the two encoders, thus the image is
split into NC = HCWC (for CLIP) and NS = HSWS (for
SAM) patches respectively, and NC < NS in our method.
Then the patches projected to image embedding features
F 0
IC
∈ RNC×DIC and F 0

IS
∈ RNS×DS , and input into two

image encoders, where F 0
IC

is input into the CLIP image
encoder EIclip jointly with a class [CLS] token c0 ∈ RDIC ,
and EIclip generates image features FIC ∈ RNC×DIC .

Given a language description with length L, we first
add [SOS] and [EOS] at the beginning and end of the sen-
tence following CLIP, and project it to an text embedding
feature sequence F 0

T ∈ R(L+2)×DT , and then input F 0
T

into CLIP’s text encoder ETclip
to generate text features

FT ∈ R(L+2)×DT . In the process of CLIP image and text
encoding, the visual and linguistic features in the interme-
diate layer generate prompt tokens to each other for cross-
modal interaction and text-pixel alignment, which will be
introduced in Section 3.2.
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CLIP-based Prompting. After obtaining image FIC

and text features FT from CLIP encoders, we use a tiny
decoder based on cross-attention to further capture relevant
context from the other modality and get updated F ′IC ∈
RNC×DC and F ′T ∈ R(L+2)×DC , which are formulated as:

F ′IC = CrossAttn(FIC , FT );

F ′T = CrossAttn(FT , FIC )
(1)

Then, as the middle part of Fig. 2, we take the feature
at [EOS] position in F ′T as the global text feature tg ∈
RD, and calculate the text-pixel response map S′ ∈ RNC

through the inner product:

S′C = F ′IC · tg (2)

We reshape S′C to HC ×WC and obtain a mask prediction
of the target referent with low resolution, so we utilize it as
a coarse mask.

To obtain more accurate masks, we further incorpo-
rate a powerful segmentation model SAM into our method.
SAM generates mask predictions based on multiple types
of prompts, including dense prompts (masks) and sparse
prompts (points, boxes and text). As we obtained the coarse
mask prediction S′C and encoded text features FT from
CLIP, intuitively, the generation of CLIP can be used as
prompts for SAM.

As shown in the right part of Fig. 2, firstly, S′C is up-
sampled to a higher resolution mask SC ∈ R4HS×4WS and
projected to mask prompts Pmask ∈ RHS×WS×DS through
SAM prompt encoder. Secondly, SC can provide the target
referent location information, so the location with high re-
sponse scores in SC can be selected to get the point prompts
Ppoint ∈ RDS . The prompt encoder in SAM maps point co-
ordinates to position embeddings, and uses the embeddings
to generate point prompts. However, in the training process,
mask to coordinates is not differentiable, resulting in CLIP
and SAM unable to be trained jointly. To solve this prob-
lem, we operate gumbel-softmax [16] (differentiable based
on straight-through estimator) on flattened SC to generate
M ′ ∈ R16HSWS that hard assigns a high response posi-
tion discretely, and reshape M ′ back to get a one-hot point
map M ∈ R4HS×4WS . And since the SAM parameters
are frozen during training, the embeddings of all positions
E ∈ R4HS×4WS×DS in SAM can be pre-calculated and are
fixed. Therefore, we store E and perform a weighted sum of
E using M to obtain the position embedding of the one-hot
point ep ∈ RDS , the process is formulated as:

M = Gumbel − SoftMax(SC);

ep =
∑16HSWS

i=1
MiEi

(3)

where the reshape operation is omitted for simplicity. In this
way, we can derive the position embedding ep of the point
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Figure 3. Cross-Modal Prompting (CMP). At each CLIP encod-
ing layer, image and text features generate prompts for each other,
facilitating cross-modal interaction and text-pixel alignment.

from mask SC differentiably. In inference, we directly se-
lect the position embedding at the highest response position
of SC . Finally, for text prompts Ptext ∈ R(L+2)×DS , we
utilize two transformer blocks composed of self- and cross-
attention modules, which takes the text features FT gener-
ated by CLIP as queries, and projects into text prompts con-
ditioned on the image features FIS ∈ RHS×WS×DS from
the SAM image encoder.

SAM Decoding. Based on the dense mask prompts
Pmask ∈ RHS×WS×DS and the sparse prompts Ppoint ∈
RDS and Ptext ∈ R(L+2)×DS , we obtain the mask predic-
tion S′ ∈ R4HS×4WS with higher resolution through SAM
mask decoder Dsam, the process is formulated by:

S′ = Dsam([Tiou;Tout;Ppoint;Ptext], (Pmask + FIS ))
(4)

where Tiou ∈ RDS and Tout ∈ R4×DS are the output to-
kens in SAM for IoU and mask predictions, and [;] is con-
catenation. And S′ is further ×4 upsampled to get the fi-
nal 16HS × 16WS segmentation prediction S. The SAM
decoder will generate multiple mask predictions for each
image-text pair, and we only use the first prediction follow-
ing the multiple prompts settings of SAM.

3.2. Cross-Modal Prompting

Sufficient cross-modal interaction is essential for multi-
modal learning to improve text-pixel alignment [14, 43, 46].
However, in the CLIP encoding, there is no interaction pro-
cess between vision and language, and only the final global
features of the two modalities are learned to match through
contrastive learning, which is effective for image-level tasks
like classification or image-text retrieval, but suboptimal
for pixel-level RIS task. Moreover, to transfer the rich
knowledge of CLIP to downstream tasks, existing methods
[4, 21, 52] propose prompt learning that project the informa-
tion from one modality to the prompts of another modality,
but such unidirectional information stream prompting meth-
ods still cannot perform sufficient cross-modal interaction.
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Therefore, to adapt the CLIP to the pixel-level RIS task
and improve the interaction of visual and linguistic infor-
mation more sufficiently during the CLIP encoding process,
we propose a new Cross-Modal Prompting (CMP) method,
as shown in Fig. 3, which is the bidirectional prompting
fashion. In the intermediate layers of image and text encod-
ing, we symmetrically perform Vision-to-Language (V2L)
prompting and Language-to-Vision (L2V) prompting.

Specifically, taking V2L prompting as an example. For
the image features F i

IC
∈ RNC×DIC and text features

F i
T ∈ R(L+2)×DT output from the i-th encoding layer, the

most straightforward way is to project all visual patch fea-
tures F i

IC
or the global [CLS] features ci ∈ RDIC as the

V2L prompt tokens, and then concatenated with F i
T and in-

put into next text encoding layer. However, using all vi-
sual patch features as V2L prompts will greatly increase the
computational complexity of the text encoder, while using
visual global visual feature makes it difficult to achieve fine-
grained vision-to-language interaction. To solve this prob-
lem, we propose to introduce an additional set of learnable
tokens T i

V ∈ Rn×DIC , where n << NC . Then we employ
the cross-attention module to take T i

V as queries and visual
features F i

IC
as keys and values to generate visual-aware

V2L prompt tokens T i
V 2L ∈ Rn×DT . The V2L prompting

process can be formulated as:

T i
V 2L = CrossAttn(T i

V , F
i
IC );

[ ;F i+1
T ] = Ei+1

Tclip
([T i

V 2L;F
i
T ])

(5)

where Ei+1
Tclip

denotes the i+1-th layer of the text encoder
ETclip

. In this way, the tokens in T i
V 2L correspond to differ-

ent visual contents through the attention mechanism, which
is not only more fine-grained than using global features, but
also more computationally efficient. For L2V prompting,
the process is symmetric:

T i
L2V = CrossAttn(T i

L, F
i
T );

[ ; ci+1;F i+1
IC

] = Ei+1
Iclip

([T i
L2V ; c

i;F i
IC ])

(6)

We implement cross-modal prompting at each layer of the
CLIP image and text encoders, and visual and linguistic in-
formation are interacted more sufficiently during the encod-
ing process through cross-modal prompting.

3.3. Instance Contrastive Learning

In our proposed framework, the mask and point prompts in-
put to SAM are derived by the coarse mask S′C from CLIP,
thus the accuracy of the target referent location in S′C will
affect the accuracy of the final segmentation prediction gen-
erated by SAM. We observed that there are often multiple
instances that have language descriptions in the same im-
age, and each instance often has multiple different descrip-
tions. Therefore, to further improve the model’s discrim-

inability of different instances and its robustness to differ-
ent languages describing the same instance, we propose In-
stance Contrastive Learning (ICL).

Specifically, we sample b descriptions for one image,
which may or may not describe the same instance in the
image, so the model produces b mask predictions based on
this image and b sentences. We use contrastive learning
to encourage masks corresponding to sentences describing
the same instance to be similar, and suppress the overlap
of the mask corresponding to sentences describing different
instances. We adopt the Dice coefficient [36] to calculate
the overlaps between two masks. Given one image and b
descriptions, b mask predictions can be obtained. We can
get O ∈ Rb×b by calculating the overlaps between each
two masks, and the overlap score between the i-th and j-th
final masks Si and Sj is calculated by:

Oij =
2
∑HW

k=1 Sk
i S

k
j∑HW

k=1 Sk
i
2
+

∑HW
k=1 Sk

j
2 (7)

where i, j ∈ 1, 2, ..., b, Oij ∈ [0, 1], H and W is the size
of S, Sk

i is the value of the i-th mask Si at position k, the
sigmoid operation is omitted. The instance contrastive loss
is formulated as:

Licl =
1

b2

b∑
i=1

b∑
j=1

−wi(Yij log(Oij)

+ (1− Yij)log(1−Oij))

(8)

where Yij indicates whether the Si and Sj correspond to the
same instance, and wi is the IoU between the i-th mask Si

and the ground truth, which is used to prevent the mislead-
ing of the wrong mask prediction. Licl is also applied on
coarse mask S′C .

For segmentation loss, we adopt binary cross-entropy
loss and Dice loss [36] on both the coarse mask S′C and
the final mask S respectively, denoted as Lclip seg and
Lsam seg . The total loss of our method is:

L = Lclip seg + Lsam seg + Licl (9)

4. Experiments
4.1. Datasets and Metrics

Datasets. To verify the effectiveness of our proposed
method, we conduct extensive experiments on three
datasets: RefCOCO [48], RefCOCO+ [48], G-Ref [34, 37].

RefCOCO [48] is one of the most commonly used
datasets for RIS task. It adopts 19,994 image data from
the MS-COCO [29] and collects 142,210 referring descrip-
tions used to describe 50,000 instances through a two-player
game [20]. The expressions are mainly used to describe
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Table 1. Comparison with state-of-the-arts on RefCOCO, RefCOCO+ and G-Ref datasets using oIoU and mIoU metrics.

Method RefCOCO RefCOCO+ G-Ref
val testA testB val testA testB val(G) val(U) test(U)

oIoU

RMI [30] 45.18 45.69 45.57 29.86 30.48 29.50 34.52 - -
MattNet [49] 56.51 62.37 51.70 46.67 52.39 40.08 - 47.64 48.61
CMSA [47] 58.32 60.61 55.09 43.76 47.60 37.89 39.98 - -
CMPC [14] 61.36 64.53 59.64 49.56 53.44 43.23 49.05 - -
EFN [8] 62.76 65.69 59.67 51.50 55.24 43.01 51.93 - -
ReSTR [22] 67.22 69.30 64.45 55.78 60.44 48.27 54.48 - -
LAVT [46] 72.73 75.82 68.79 62.14 68.38 55.10 60.50 61.24 62.09
DMMI [12] 74.13 77.13 70.16 63.98 69.73 57.03 61.98 63.46 64.19
CGFormer [41] 74.75 77.30 70.64 64.54 71.00 57.14 62.51 64.68 65.09

Ours 76.36 80.37 72.29 67.06 73.58 58.96 64.79 67.16 69.01

mIoU

CGAN [33] 64.86 68.04 62.07 51.03 55.51 44.06 - 51.01 51.69
LTS [19] 65.43 67.76 63.08 54.21 58.32 48.02 - 54.40 54.25
RefTR [26] 74.34 76.77 70.87 66.75 70.58 59.40 - 66.63 67.39
VLT [6] 65.65 68.29 62.73 55.50 59.20 49.36 49.76 52.99 56.65
CRIS [43] 70.47 73.18 66.10 62.27 68.08 53.68 - 59.87 60.36
ETRIS [44] 70.51 73.51 66.63 60.10 66.89 50.17 57.88 59.82 59.91
CGFormer [41] 76.93 78.70 73.32 68.56 73.76 61.72 65.79 67.57 67.83
Ours 78.10 81.21 74.64 71.13 76.60 64.25 69.17 70.47 71.29

the location of the instance with an average length of 3.5
words. RefCOCO+ [48] adopts 19,992 images from MS-
COCO [29] and collects 141,564 referring expressions for
49,856 instances. The expressions mainly describe the at-
tributes of instances G-Ref [34, 37] is also collected from
MS-COCO [29], including 26,711 images and 104,560 re-
ferring expressions for 54,822 objects. The average expres-
sion length of G-Ref is 8.4 words, and the expressions are
more diverse. G-Ref can be split based on two types of par-
titions: Google [34] and UMD [37] partitions.

Moreover, to verify the generalization of our method to
unseen categories, following [41], we divide the categories
of instances in the datasets into seen and unseen splits based
on the open-vocabulary detection setting [51], and train our
method only on the seen categories, and evaluate the perfor-
mance on the splits of seen and unseen respectively.
Metrics. Following the metrics used in previous works
[41, 46], we adopt overall Intersection over Union (oIoU),
mean Intersection over Union (mIoU) and P@X to evalu-
ate the performance of our method, where P@X represents
the proportion of IoU between mask predictions and ground
truth higher than thresholds X∈ {0.5, 0.7, 0.9}.

4.2. Implementation Details

We build our method based on CLIP and SAM, and adopt
ViT-B/16 as the image encoder of both models. The input
image is resized to 480 × 480 for CLIP and 1024 × 1024
for SAM, thus HC = WC = 30 and HS = WS = 64.
The number n of prompt tokens in CMP is set to 16. In
the training process, we sample 16 images per batch and

further sample b = 4 sentences corresponding to per image
for instance contrastive learning, so our batch size is B =
64. To provide richer sentences for each image, we combine
the three datasets with all images in validation or test sets
removed to train our model. If the number of expressions
corresponding to one image is less than b, we repeat the
sampling while randomly masking out a portion of words.

We trained the model for 50 epochs using the AdamW
optimizer [32] with an initial learning rate 1e-4 and polyno-
mial decay power of 0.9. To accelerate the convergence, we
first train CLIP with CMP and ICL for the first 20 epochs
to generate coarse masks, and then jointly train the entire
model end-to-end for the last 30 epochs. To reduce the de-
coder’s over-reliance on certain prompts and the error accu-
mulation from the coarse mask generated by CLIP, we ran-
domly dropout the three types of prompts during training to
improve the effectiveness of each type of prompt.

4.3. Comparison with State-of-the-arts

We first perform experiments on three common datasets and
compare the performance with the state-of-the-art methods.
As reported in Table 1, our method consistently outperforms
the previous state-of-the-art methods on all splits. For the
RefCOCO which mainly describes location information,
our method outperforms the previous best by an average
of 2.11 points on oIoU and 1.67 points on mIoU. For Re-
fCOCO+ which focuses on describing instance attributes,
our method improves by over 2.5 points on both oIoU and
mIoU compared to the previous best, and the improvements
are more obvious than RefCOCO, indicating that the model
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Table 2. Comparison of generalization performance using mIoU. † denotes results from [41], and ∗ denotes our re-implemented results.

Method
RefCOCO RefCOCO+ G-Ref

val test val test val(G) val(U) test(U)
seen unseen seen unseen seen unseen seen unseen seen unseen seen unseen seen unseen

CRIS† [43] 68.66 52.77 52.77 52.66 61.49 48.08 60.46 45.26 42.36 32.84 58.64 42.63 59.68 38.88
LAVT† [46] 73.05 61.35 72.31 57.66 61.17 41.49 60.97 38.67 57.33 40.43 60.16 42.33 60.37 41.38
ETRIS* [44] 71.78 59.76 70.94 56.97 60.12 49.29 62.99 46.30 57.99 40.24 59.35 43.82 58.90 41.04
CGFormer† [41] 75.52 63.17 74.63 59.03 67.44 51.24 66.35 48.11 62.85 45.05 65.60 46.11 65.67 42.31
Ours 78.74 65.07 78.15 62.02 71.96 52.05 71.35 53.50 66.71 47.99 68.75 46.41 69.70 45.66

Table 3. Components ablation results on RefCOCO val set. We
use CLIP with a cross-modal decoder as the baseline, add our pro-
posed CMP in Sec. 3.2 to generate coarse masks, and then add
ICL in Sec. 3.3 and SAM in Sec. 3.1 to get our complete model.

CLIP CMP ICL SAM P@0.5 P@0.7 P@0.9 oIoU mIoU
X 78.72 65.26 16.37 65.24 67.94
X X 84.75 74.71 24.38 71.51 73.10
X X X 85.55 76.90 26.16 72.57 73.97
X X X 88.33 81.35 36.55 75.86 77.40
X X X X 88.46 82.07 39.78 76.36 78.10

can understand the different attributes at different regions
of the image in a more fine-grained manner and align them
with linguistic information. On more challenging dataset G-
Ref, our method has a stronger ability to understand longer
and more complex languages. Our method outperforms the
previous best by 2.89 points on oIoU and 3.25 points on
mIoU, which shows that our method obtains more accurate
language semantics understanding and referent segmenta-
tion based on CLIP and SAM.

Compared to other CLIP-based methods CRIS [43] and
ETRIS [44], our method outperforms the two methods by
a large margin (6∼10 points) on three datasets. The sec-
ond row of Table 3 is the ablation results (on RefCOCO
val set) of our method when only using prompt-tuned CLIP,
which has the similar structure as CLIP-based CRIS and
ETRIS. So, for a more fair comparison, we compare the per-
formance of our method in the second row of Table 3 with
CRIS and ETRIS in Table 1 on RefCOCO val set, and our
method still outperforms CRIS and ETRIS by ∼2.5 mIoU
points on RefCOCO, which demonstrates that our Cross-
Modal Prompting can still achieve more accurate segmen-
tation results without complex decoders, and verifies the ef-
fectiveness of our proposed cross-modal prompt learning.

Moreover, we further perform model generalization ex-
periments, and the mIoU comparison results are shown
in Table 2, and we re-implement the CLIP-based method
ETRIS [44] on the generalization setting. It can be observed
that our method outperforms the previous methods in both
seen and unseen categories on three datasets. Compared to
the previous best CLIP-based CGFormer, the average per-
formance of our method outperforms CGFormer by over 2.5
points on the unseen split of three datasets, demonstrating

Table 4. Comparison results of different prompting methods.

Method P@0.5 P@0.7 P@0.9 oIoU mIoU
Baseline 78.72 65.26 16.37 65.24 67.94
V2LP 80.45 67.70 17.68 67.48 69.53
L2VP 83.72 73.40 23.61 70.52 72.44
CMP 84.75 74.71 24.38 71.51 73.10

our proposed method exploits the rich knowledge in CLIP
and SAM more sufficiently.

4.4. Ablation Studies

To verify the effectiveness of our proposed framework with
cross-modal prompting (CMP) and instance contrastive
learning (ICL), we perform ablations on RefCOCO val set.

Component Ablations. Our method mainly consists of
CLIP and SAM, and further adds CMP and ICL. To verify
the effectiveness of each component, we use CLIP with a
cross-modal decoder as the baseline, which is introduced at
the start of CLIP-based Prompting part in Section 3.1. As
shown in Table 3, we first added CMP to the CLIP-baseline.
Compared with the baseline, CMP brings 5.16 points im-
provement on mIoU, which demonstrates the importance of
cross-modal interaction. Compared with the 6.03 points im-
provement on P@0.5, P@0.9 is improved by 8.01 points,
which shows that CLIP+CMP can generate more accurate
mask predictions, and verifies that our proposed CMP can
adapt CLIP more effectively to pixel-level RIS task.

Next, we add SAM to the model, and achieve 4.3 points
mIoU performance improvements, and as the threshold of
P@X increases from 0.5 to 0.9, the benefits brought by
SAM become more obvious. SAM improves P@0.5 by
3.58 points compared to CLIP+CMP, and significantly im-
proves P@0.9 by 12.17 points, which shows that powerful
SAM can distinguish different instances more accurately
and generate more detailed masks. Finally, we add ICL
to CLIP+CMP and the whole model respectively, and ICL
brings 1.87 and 3.32 points improvement on P@0.9, further
improving the accuracy of the model’s positioning and seg-
mentation of referent targets.

Analysis of CMP. In our method, we propose CMP
to adapt CLIP to pixel-level tasks and improve cross-
modal interaction through bidirectional prompting, includ-
ing vision-to-language prompting (V2LP) and language-to-
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(a): A white goat grazes beside a street sign. (b): A man jumping over the stairs with a skateboard.

(c): An orange and white cat laying its head on another cat.

Image Coarse Mask Final Mask GT

(d): The boat furthest to the right.

Image Coarse Mask Final Mask GT

Figure 4. Comparison of visualization results of the coarse masks and final masks on G-Ref val set.

Table 5. Effectiveness of mask, point and text prompts.

mask point text P@0.5 P@0.7 P@0.9 oIoU mIoU
37.24 15.00 1.55 42.88 42.63

X 84.65 71.0 22.9 70.82 72.01
X 61.79 35.36 5.1 55.34 55.18

X 85.88 76.91 34.86 72.61 75.11
X X 85.50 72.83 26.45 70.95 73.24
X X 88.33 81.35 36.55 75.86 77.40

X X 87.78 79.48 36.52 74.34 76.75
X X X 88.46 82.07 39.78 76.36 78.10

vision prompting (L2VP). To verify the effectiveness of the
bidirectional prompting fashion, we add V2LP and L2VP
to the baseline respectively. As shown in Table 4, compared
with the baseline, V2LP brings 1.59 points improvement
and L2VP brings 4.5 points on mIoU, and CMP gets bet-
ter performance by combining the two promptings, which
shows that our proposed bidirectional prompting method
can achieve better vision and language alignment.

Effectiveness of CLIP-based Prompting. To bridge
CLIP and SAM, we employ three types of prompts gen-
erated by CLIP. Therefore, we further perform an ablation
experiment on these three types of prompts to evaluate their
impact on the final segmentation performance. As reported
in Table 5, the model can achieve competitive performance
using only one or two types of prompts in inference, in-
dicating that the model does not over-rely on a particular
prompt, which verifies that the model can benefit from dif-
ferent prompts to generate more accurate mask predictions.

Compared with the original SAM that uses manual
points and CLIP-based text as prompts in the RIS task, our
method uses masks and points prompts generated by CLIP,
reducing additional human interaction costs. And as shown
in the last two rows of Table 5, compared with using points
and text prompts, adding mask prompts to our method fur-
ther improves the performance by 1.35 mIoU points, verify-
ing the effectiveness of the mask prompts generated in our
method for further improving segmentation performance.

Effectiveness of ICL. Since an image often contains

multiple instances with multiple descriptions, we test the
image average accuracy (ImgAcc) and the instance average
accuracy (InstAcc) w/ and w/o ICL respectively. ImgAcc
means first calculating the mIoU of all samples correspond-
ing to the same image and getting mIoUimg , then calculat-
ing the average mIoUimg of all images. Similarly, InstAcc is
applied on instances. Compared with the performance w/o
ICL (ImgAcc=77.61, InstAcc=76.02), our method obtains
better results w/ ICL (ImgAcc=79.34, InstAcc=77.74).

Qualitative Results. Fig. 4 shows the visualized seg-
mentation results of our proposed Prompt-RIS. We com-
pared the coarse masks generated by the prompt-tuned
CLIP with the more detailed final masks generated by the
whole model. For examples (a) and (b) in the first row, al-
though the coarse masks accurately locate the target refer-
ents, the quality of the masks is poor, and our method can
further improve the coarse masks with better details. For
examples (c) and (d) in the second row, the coarse masks do
not locate the targets accurately, but our method can correct
the final masks based on the mask and text information, and
generate more accurate segmentation results.

5. Conclusion
In this paper, we propose a new framework, Prompt-RIS, for
referring image segmentation, which combines CLIP and
SAM intuitively through prompt learning. Based on this
framework, we further propose the Cross-Modal Prompting
method to adapt CLIP to pixel-level tasks and improve the
vision-language alignment through cross-modal interaction.
We propose Instance Contrastive Learning to improve the
model’s discriminability of different instances and robust-
ness to different languages describing the same instance.
The performance and generalization of our method outper-
form the SOTAs on three datasets.
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