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Abstract

Tracking by natural language specification (TNL) aims
to consistently localize a target in a video sequence
given a linguistic description in the initial frame. Exist-
ing methodologies perform language-based and template-
based matching for target reasoning separately and merge
the matching results from two sources, which suffer from
tracking drift when language and visual templates miss-
align with the dynamic target state and ambiguity in the
later merging stage. To tackle the issues, we propose a joint
multi-modal tracking framework with 1) a prompt mod-
ulation module to leverage the complementarity between
temporal visual templates and language expressions, en-
abling precise and context-aware appearance and linguistic
cues, and 2) a unified target decoding module to integrate
the multi-modal reference cues and executes the integrated
queries on the search image to predict the target location in
an end-to-end manner directly. This design ensures spatio-
temporal consistency by leveraging historical visual infor-
mation and introduces an integrated solution, generating
predictions in a single step. Extensive experiments con-
ducted on TNL2K, OTB-Lang, LaSOT, and RefCOCOg val-
idate the efficacy of our proposed approach. The results
demonstrate competitive performance against state-of-the-
art methods for both tracking and grounding. Code is avail-
able at https://github.com/twotwo2/QueryNLT

1. Introduction
Tracking by natural language specification (TNL) aims

to localize the target object in a video sequence based on
a given language description on the initial frame. It offers
a more user-friendly interaction to specify the target object
compared to traditional tracking-by-bounding-box methods
[2, 9, 15, 37], which has a wide range of applications in
video surveillance, robotics, and autonomous vehicles.
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Figure 1. Given a video sequence, the tracking object is charac-
terized as “white bird on the left” of the initial frame. Existing
two-step approaches separately perform language-search match-
ing (a) and appearance-search matching (b). However, “on the
left” which is inconsistent with the current target and the back-
ground contained in the grounded target may confuse the identi-
fication of the target. In contrast, our QueryNLT (c) forms a dy-
namic and context-aware query for target localization by integrat-
ing visual and language references. (Zoom in for a better view).

Previous research efforts [5, 6, 18, 30, 35] generally di-
vide language-guided tracking into two fundamental sub-
tasks: visual grounding and visual tracking. These stud-
ies initially localize the target object solely based on the
given language description, i.e. visual grounding, and the
grounded target serves as the visual template to establish
correspondence with the search image, i.e. visual track-
ing. The final results are derived through the amalgamation
of the outcomes obtained from both visual grounding and
visual tracking. Despite the significant success, these ap-
proaches typically process the language and template inde-
pendently until merging their matching results, which may
lead to ambiguity in target identification. As illustrated in
Fig. 1(a), due to the target’s movement, the initially pro-
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vided language description (“white bird on the left”) may
no longer align with the current state of the target (the bird
moves to the middle at kth frame). This misalignment con-
fuses the tracker’s judgment of whether to focus on “white
bird” or “on the left” during the matching process. What is
more, occlusions of objects may bring background clutters
into the template. As shown in Fig. 1(b), a small yellow
bird is contained in the template, which may further inter-
fere with the identification of the target “white bird”. The
late fusion at the resultant level makes it difficult for the
tracker to discern which candidate object is the real target,
thus leading to tracking drift.

Based on the observation, we argue that the language
description and the visual template are complementary and
combining these two for matching contributes to a compre-
hensive understanding and perception of the target. To form
the accuracy and context-aware target information as guid-
ance, we propose a multi-modal prompt modulation mod-
ule to filter out descriptions in the initial verbal reference
and the visual reference accumulated in the tracking history
that does not align with the current state. As illustrated in
Fig. 1(c), the historical results embed the target’s motion
information, which helps filter out status descriptions that
fail to align with the actual target in the language expres-
sion. For instance, “on the left” referring to a small yellow
bird rather than the true target, should be removed. Simul-
taneously, the categorization of the target, as depicted in the
language description, serves as a reliable cue for filtering
out extraneous background features in the visual template.
Specifically, patches belonging to “white bird” are assigned
high attention weights, and patches belonging to the yellow
bird and background are masked. The revised language de-
scription collaborates with the accurate visual template to
help point to the true target in the challenging scene.

Afterward, we present a query-based target decoding
module that jointly establishes the correspondence between
the multi-modal references with the search image in a one-
step fashion. The key insight is to consider the language-
based matching subtask and the appearance-based match-
ing subtask as a unified instance-level retrieval problem. To
achieve this, this module comprises a multi-modal query
generator that aggregates visual and verbal cues into a holis-
tic object vector, and a query-based target locator that estab-
lishes the correspondence between the query vector and the
search image for target retrieval. Compared with the pre-
vious works that need post-processing for merging results,
it can directly predict the target location in an end-to-end
manner. The prompt modulation module along with the tar-
get decoder module forms a unified framework to utilize the
verbal and visual reference for natural language tracking.
With such a design, our proposed framework not only effec-
tively improves the target discrimination through integrated
perception, but also ensures the spatio-temporal consistency

by forming context-aware query information.
We validate the effectiveness of our proposed frame-

work through comprehensive evaluations on three tracking
benchmarks and a grounding benchmark, including TNL2K
[30], OTB-Lang [18, 31], LaSOT [4], and RefCOCOg [23].
Without bells and whistles, our QuertNLT achieves compet-
itive performance compared with state-of-the-art trackers.
Our main contributions are as follows.
• We propose a novel framework for the natural language

tracking task, termed QueryNLT. This framework inte-
grates diverse modal references for target modeling and
matching, fostering a holistic understanding of the target
and improving discrimination capabilities.

• We propose a prompt modulation module that explores
the complementarity of multi-modal reference to elimi-
nate the inconsistent descriptions in the reference, gener-
ating precise and context-aware cues for target retrieval.

• We conduct comprehensive experiments on three chal-
lenging natural language tracking datasets and a visual
grounding dataset, validating the efficacy of our proposed
framework. The results showcase its robust performance
and suitability for diverse tracking scenarios.

2. Related Work
In this work, we aim to improve the performance of

language-guided tracking by joining heterogeneous visual
and language references. In the following, we will discuss
related work that explores the utilization of these two het-
erogeneous references in existing language-guided tracking
approaches, as well as how language-assistant target track-
ing approaches to underscore the potential benefits of the
multi-modal tracking approach.

2.1. Language-guidance Object Tracking

The emerging field of tracking by natural language spec-
ification (TNL) has garnered significant attention in recent
years. It presents a unique approach to precisely localizing
target objects within video sequences based on correspond-
ing language descriptions. As the pioneering work in this
area, Li et al. [18] first define the task of tracking by nat-
ural language specification and demonstrate the feasibility
of language description replacing bounding boxes to spec-
ify targets. Subsequently, Yang et al. [35] and Feng et al.
[6] share the same solution that divides this task into two
subtasks: a grounding task solely relying on language to
find the target and a tracking task based on the grounding
results as the template. To better utilize the semantic infor-
mation of the target during the tracking phase, [35] simul-
taneously performs visual matching based on the history
of grounded objects, as well as performs grounding based
on the language query for each subsequent frame. Besides,
they propose an integration module to combine the predic-
tion results of both processes adaptively. With the help
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of the region proposal network, [6] follows the tracking-
by-detection formulation, leveraging language to select the
most suitable proposal as the target template for tracking.

In order to accelerate research for TNL, Wang et al. [30]
release a new benchmark and propose an adaptive switch
framework that performs global search with language ref-
erence or local matching with visual template reference.
While all of these approaches have made great progress,
however, the grounding module used to initialize the tem-
plate and the subsequent tracking used for tracking are sep-
arate, and cannot be trained end to end. Recently, Zhou
et al. [41] introduce a joint framework to replace a sepa-
rate framework aiming at linking the language and template
reference. However, it overlooks that the language expres-
sion may be inconsistent with the current tracking scene,
which may cause references to be ambiguous. In this paper,
we present a novel and effective framework that takes into
account both linguistic descriptions and visual template in-
formation to improve target discrimination, while utilizing
the complementary nature of heterogeneous information to
form more accurate target reference information.

2.2. Language-assisted Object Tracking

Different from the language-guidance tracking ap-
proaches the target object is specified only by the language
description of the first frame, the tracking object of the
language-assisted approaches [7, 8, 10, 16, 27, 29, 40] is
specified by both box and language. With language descrip-
tion as an auxiliary cue, these works often focus on trans-
forming a traditional box-guided tracking approach into a
multi-modal target tracking approach.

Some work has been done to improve the performance
of the tracker, in terms of improving visual feature repre-
sentation [10, 29] and enhancing the matching associations
with the search image [7, 16]. On the one hand, Feng et al.
[7] propose to perform symmetrical language-based match-
ing alongside template-based matching [14, 15], where the
results of both branches are weighted to obtain the final re-
sult. On the other hand, Guo et al. [10] treat language as a
selector to reweight visual features and enhance visual fea-
ture representation through neural architecture search tech-
nology [25, 43]. In contrast to the aforementioned meth-
ods where the language description is provided by the user,
Li et al. [16] propose to automatically generate the cor-
responding semantic descriptions based on the input tem-
plate. Taking advantage of the text-image alignment capa-
bility of CLIP models [24], [16] designs to select the corre-
sponding semantic descriptions from predefined attributes
can be used as complementary descriptions. These methods
demonstrate that verbal cues alongside visual cues signifi-
cantly enhance the overall understanding of the target, thus
improving target discrimination.

3. Method
3.1. Overview

Our goal is to consistently and accurately localize the
target within a video sequence, which is specified by lan-
guage description. The main observation of our work is
that the dynamic visual cue and the language expression
provide complementary information that enhances target
perception and discrimination. Diverging from previous
methods [18, 29, 30] that employ separate networks for
language-based and template-based matching, our proposed
QueryNLT treats these two sub-tasks as an instance retrieval
problem. To this end, we propose a unified multi-modal
matching network for language-guided tracking.

The framework of QueryNLT is depicted in Fig. 2. Dur-
ing the tracking phase, we collect the appearance feature ha
and positional feature hp of the target based on the histori-
cal localization results of the target and store in a template
memory M = {ha, hp} as the dynamic visual reference.
Given a search image Is and a language description D, we
first employ a feature extraction module (in section 3.2) to
obtain the search feature fs and language feature fl, respec-
tively. Subsequently, in section 3.3, we utilize a prompt
modulation module to filter out the inconsistent description
in the initial verbal reference and the visual reference, thus
forming more precise prompt information to guide the tar-
get location. Finally, in section 3.4, a target decoding mod-
ule is responsible for integrating the multi-modal prompts
and performing target retrieval within the search image.

3.2. Feature Extraction and Enhancement

Visual backbone. Considering the notable achievements
of transformer models in image processing, we adopt the
vanilla Swin-Transformer [21] as our visual backbone. To
strike a balance between tracking accuracy and computa-
tional cost, we retain only the first three stages of the Swin-
Transformer architecture, with the output of the third stage
serving as our visual feature representation. For the in-
put search image Is ∈ R3×Hs×Ws , we feed it into the vi-
sual backbone and a channel adjustment layer to obtain the
search region feature fs ∈ RNs×C , whereNs andC denote
the number of features and channels, respectively. Herein
we set C = 256.

Text backbone. To process the language description D,
we employ the widely adopted linguistic embedding model,
RoBERTa [20], for the extraction of textual features. A pro-
jection layer is added behind the text backbone for adjust-
ing feature dimensions. The output text feature is denoted
as f l ∈ RL×C , where L represents the length of the input
text and C = 256 corresponds to the number of channels.

Feature enhancement. To extract discriminative fea-
tures, we employ a bi-attention mechanism between the
search image and the target reference for feature enhance-
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Figure 2. Overview of our proposed framework. It comprises three key components: a feature extraction module for extracting image and
text features, a prompt modulation module that generates precise appearance and language descriptions of the target, and a target decoding
module that jointly establishes the correlation between the search image and the multi-modal target prompts for target retrieval.

ment. In detail, the search feature fs attends to both the text
feature fl and the historical appearance feature ha to obtain
the enhanced search feature f̂s, while the text feature fl and
the historical appearance feature ha separately attend to the
search feature fs to obtain the enhanced feature f̂l and ĥa.
This process can be formulated as:

f̂s = ωs(fs + softmax(
fsf

T
l√
C

)fl + softmax(
fsh

T
a√
C

)ha),

(1)

f̂l = ωl(fl + softmax(
flf

T
s√
C

)fs), (2)

ĥa = ωa(ha + softmax(
haf

T
s√
C

)fs), (3)

where ωs, ωl and ωa are linear layers. To avoid disturbing
the motion information of the object, here we only augment
the appearance feature in template memory.

3.3. Target Prompt Modulation

Accurate target cue information is essential for target
tracking. However, due to the dynamics of the target in the
course of tracking, the state description in language may
not match the current target. As depicted in Fig. 2, the po-
sitional state ”on the left” in the language description corre-
sponds to the object in the initial frame. However, as the ob-
ject moves in subsequent frames, this description no longer
aligns with the object. In fact, the object is currently in
the middle of the image. Meanwhile, due to mutual occlu-
sion between objects, the object’s appearance features in the
template memory may include background features. For in-
stance, in Fig. 2, the red bounding box erroneously encom-
passes the yellow bird, bringing further interference to the
tracker. Using inaccurate language features and appearance
features as the object prompt to retrieve the target in the

search region may lead to tracking drift. To address this is-
sue, we present a multi-modal prompt modulation module
that exploits the complementarity between dynamic histor-
ical information and the language description, facilitating
the formation of a more accurate target prompt.

Language modulation. We use motion cues from
the template memory to adjust the language description.
Specifically, hp in the M stores the object position infor-
mation of multiple previous frames, serving as a motion
cue to assess whether the state description in the text fea-
ture f̂l aligns with the current scene. Meanwhile, ĥa in
the M contains the object appearance information, acting
as a visual cue to evaluate whether the target appearance
description in the text feature f̂l is correct. As shown in
Fig. 3(a), we utilize a multi-head cross-attention operation
(MHCA) to generate the language prompt. Before inputting
to a cross-attention network, we first apply a self-attention
operation on the ĥa and hp, respectively, to capture tempo-
ral changes in appearance and position. Subsequently, we
add an appearance identifier vector va ∈ RC to ĥa and a
motion identifier embedding vp ∈ RC to hp. These two
identifier vectors serve as indicators for different temporal
cues. The process can be expressed by:

M̂ = [θa(ĥa) + [va]
Na , θp(hp) + [vp]

Np ], (4)
where θa and θp represent a self-attention operation. [·]n de-
notes the duplicate the vector n times and [·, ·] denotes the
concatenation operation. Na and Np denotes the number
of appearance feature and position feature saved in the tem-
plate memory. The resulting M̂ is a matrix of size N × C,
where N = Na +Np.

Next, we utilize f̂l as Query and linearly transform M̂ to
obtain Key and Value for cross attention. This process can
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Figure 3. Architecture of the proposed language prompt modula-
tion module (a) and the appearance modulation module (b).

be formulated as:

pl = φagg(f̂l + softmax(
φq(f̂l)φk(M̂)T√

C
)φv(m̂)), (5)

where φ(·) represents different linear layer for feature trans-
formation. After the above processing, the language fea-
tures are re-weighted to generate the context-aware lan-
guage prompt. Intuitively, the word that is more compatible
with the template memory will be given higher attention,
and the opposite will be given lower attention. We visualize
the activation map of the language feature before and after
modulation in Fig. 6(b).

Appearance modulation. The purpose of appearance
modulation is to generate a binarized mask based on the
category or appearance description of the tracked object in
the sentence D, which can better fit the shape of the target.
The appearance modulation is shown in Fig. 3(b). We first
calculate a similarity matrix Al 7→a between ĥa and f̂l:

Al 7→a = softmax(
δa(ĥa)δl(f̂l)

T

√
C

), (6)

where δa and δl is a linear layer for feature transformation.
This matrix Al 7→a ∈ RNa×L establishes the pixel-to-word
correspondence, and pixels that correspond to the linguistic
description yield high similarity scores. However, the track-
ing objects are often specified by describing their relative
position to other objects, such as “the fox on the bottom of
the tree”. In this case, the pixel belonging to the “tree” also
gets a high similarity score. Therefore, we compute bina-
rized subjecthood scores Aobj for the words via a Gumbel-
Softmax [12, 22] operation. For the ith word, its importance
in the sentence is scored by:

Ai
obj =

exp(Wobj f̂l
i
+ γi)∑L

j=1 exp(Wobj f̂l + γj)
(7)

where Wobj ∈ R1×C is the weights of the learned linear
projections for the text feature, γi and γj are random sam-
ples drawn from the Gumbel (0, 1) distribution. Then a sub-
jecthood matrix score Âobj ∈ RL×1 assigned all the words
in the sentence is calculated by taking the one-hot [32] op-

eration:
Âobj = one− hot(Aargmax

obj ) +Aobj − sg(Aobj), (8)
where sg is the stop gradient operator. Finally, we multiply
the Al 7→a and Âobj as the target mask, and the appearance
prompt is formed by:

Mobj = Al 7→a × Âobj , (9)

pa = ĥa ×Mobj , (10)

where Mobj ∈ RNa×1 indicates the probability that pixel
belongs to the target. With such a design, we can filter out
the background feature in the template, which produces a
more accurate appearance prompt of the target for subse-
quent retrieval of the target.

3.4. Target Decoding

Appearance information and language information are
both important for accurate object tracking. Different from
the previous works, we treat language-based matching and
appearance-based matching as a unified instance tracking
problem and propose a target decoding module to achieve
it. This module is composed of a query generator that aims
to produce a query vector derived from the language prompt
and appearance prompt. A query-based target locator that
establishes the correlation between the search image and
the query vector. The target decoding module is imple-
mented by a transformer-based architecture proposed by a
one-stage Deformable-DETR [42] for its flexible query-to-
instance fashion.

As illustrated in Fig 4, an empty vector qinit is con-
currently injected into the prompt information through an
attention-based mechanism. Then it transforms into an
object-aware query vector qobj . The process can be formu-
lated as:

qobj = ψ(qinit + α

Nt∑
i=0

aipia + (1− α)

Nl∑
j=0

bjpjl ), (11)

where ψ is a linear layer, and α is a coefficient balancing
the information from the different modal prompts. ai and
bj denote the attention weights assigned to ith element in
appearance prompt and jth element in the language prompt,
respectively. Take the ai for example, it is calculated by:

ai =
exp(Wap

i
aWqqinit)∑Nt

k=0 exp(WapkaWqqinit)
, (12)

where Wa ∈ R1×C , Wq ∈ R1×C represent a transforma-
tion matrix. When there is only language description as the
target cue in the first frame of the sequence, we set α to 0
and the rest of the stage to a learnable parameter. In this
way, our decoder can use the same parameters for single-
modal or multi-modal target tracking. Afterward, in the
query-based target locator, the object query qobj performed
cross-attention with the search image to infer the target. In
detail, the search feature f̂s is fed into the transformer en-
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Figure 4. Architecture of the proposed target decoding module.

coder network to serve as the Key and Value for the cross
attention, with the query vector qobj acting as the Query.
The object query is iteratively refined over stacked decoder
layers and outputs a query response r which contains the
target state within the search region.

To accommodate the diversity of linguistic expressions
and target categories, which may result in a diversity of
prompts, we adopt multiple vectors as a query set for target
retrieval. Each query vector captures a unique interpretation
of linguistic expressions and visual templates, emphasizing
different aspects of the target. We conduct an ablation study
on the number of queries as presented in Tab. 2.

Finally, we employ a classification head and a regression
head to predict a score and box for each query. The bound-
ing box with the highest score is selected as the final predic-
tion. Following [42], the regression head is supervised by
the L1 loss and GIoU [26] loss, and the classification head
is supervised by cross-entropy loss.

After obtaining the position of the target in the current
frame, we update the prediction result to template mem-
ory. In detail, the target feature is generated by a ROI align
operation and is updated ha. The corresponding query re-
sponse which embeds the object’s center position, width,
and height in the current frame, is stored in hp. Dynami-
cally updated template memory facilitates the perception of
the target’s temporal changes.

4. Experiment

4.1. Implementation Details

The proposed QueryNLT is implemented in Pytorch on 6
NVIDIA RTX-3090 GPUs. We utilize Swin-B [21] pre-
trained on ImageNet [13] as the visual backbone. The
RoBERTa [20] model is selected as the text backbone,
with its parameters frozen throughout the entire training
phase. The size of the template image and search image
are set to 128 × 128 and 320 × 320, respectively. Fol-
lowing the training strategies of [41], our training dataset
comprises TNL2K [30], OTB-Lang [18], LaSOT [4] and
RefCOCOg[23], with an equal sampling ratio across the
datasets. The batch size is set to 12 per GPU, with a to-
tal of 300 epochs. We implement a warmup strategy where
the initial learning rates for the visual and other parameters

Table 1. Ablation study on the components of QueryNLT. All
models are trained on the same training set and evaluated on
TNL2K [30] under the “NL” setting.

#ID Model AUC

0 QueryNLT(Full Model) 53.3

1 w/o language modulation 52.2
2 w/o appearance modulation 51.6
3 separate matching 49.8
4 static template 51.0

Table 2. Ablation study on the query number on TNL2K [30]
under the “NL” setting.

Query number 1 3 5 7

AUC 51.6 52.8 53.3 53.4

increase linearly to 10−5 and 10−4, respectively, within the
first 30 epochs. Subsequently, the learning rates are reduced
by a factor of 10 on the 200-th and 290-th epochs.

Following the protocols in [30], we evaluate our ap-
proach with two settings: (1) “NL”: the tracker is initial-
ized with the natural language; (2) “NL+BB”: the tracker is
initialized with both the natural language and the bounding
box. To ensure consistency in training and inference, we
extract three frames from each video for training our net-
work. During this process, the tracker is first initialized us-
ing linguistic descriptions. Subsequently, visual templates
stored in memory are jointly utilized to predict the target in
the subsequent frames. During the inference phase, We up-
date the template memory by replacing outdated trajectories
with new ones, limiting the memory to a maximum capacity
of three frames.

4.2. Ablation Study

To assess the effectiveness of our proposed components,
we conduct an ablation study on the TNL2K [30] dataset
under the “NL” evaluation setting. All variants are trained
with the same training strategy as the full model. Tab. 1
reveals the significance of each component. Line 2 and
line 3 show that accurate target reference is important to
improve the discrimination of the tracker. When replaced
with the modulated language feature and modulated appear-
ance, the AUC score improved from 52.2% and 51.6% to
53.3%, presenting improvements of 1.1% and 1.7%, respec-
tively. Model 3 is a variant that disentangles the language-
search matching and template-search matching within the
proposed framework. The prediction with the highest score
of the query set is considered the target prediction. When
replaced with the full model that simultaneously establishes
the correspondence between multi-modal reference with
search image, there is a notable improvement of 2.5% in
AUC. This result demonstrates that the complementary na-
ture of multi-modal information effectively boosts the holis-
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Table 3. Comparison of our method with state-of-the-art approaches on OTB-Lang [18, 31], LaSOT [4] and TNL-2K [30] datasets. Top-2
results are highlighted in red and blue respectively.

Tracker Initialize OTB-Lang LaSOT TNL-2K
AUC Prec NPrec AUC Prec NPrec AUC Prec NPrec

SiamRPN++ [15] BB - - - 49.6 49.1 56.9 41.3 41.2 48.0
Ocean [38] BB - - - 56.0 56.6 65.1 38.4 37.7 45.0
AutoMatch [39] BB - - - 58.3 59.9 67.4 47.2 43.5 -
TrDiMP [28] BB - - - 63.9 61.4 - 52.3 52.8 -
TransT [1] BB - - - 64.9 69.0 73.8 50.7 51.7 -
SwinTrack-B [19] BB - - - 61.3 76.5 - - 55.9 57.1
OSTrack-384 [36] BB - - - 71.1 77.6 81.1 55.9 - -

TNLS-II [18] NL 25.0 29.0 - - - - - - -
RVTNLN [5] NL 54.0 56.0 - - - - - - -
RTTNLD [6] NL 54.0 78.0 - 28.0 28.0 - - - -
GTI [35] NL 58.1 73.2 - 47.8 47.6 - - - -
TNL2K-1 [30] NL 19.0 24.0 - 51.1 49.3 - 11.4 6.4 11.0
CTRNLT [17] NL 53.0 72.0 - 52.0 51.0 - 14.0 9.0 -
JointNLT [41] NL 59.2 77.6 - 56.9 59.3 64.5 54.6 55.0 70.6
JointNLT [41] * NL 57.8 77.0 70.5 52.8 54.4 60.8 52.1 51.2 68.8
Ours NL 61.2 81.0 73.9 54.2 55.0 62.5 53.3 53.0 70.4

TNLS-III [18] NL+BB 55.0 72.0 - - - - - - -
RVTNLN [5] NL+BB 67.0 73.0 - 50.0 56.0 - 25.0 27.0 34.0
RTTNLD [6] NL+BB 61.0 79.0 - 35.0 35.0 - 25.0 27.0 33.0
SNLT [7] NL+BB 66.6 80.4 - 54.0 57.6 - 27.6 41.9 -
TNL2K-2 [30] NL+BB 68.0 88.0 - 51.0 55.0 - 41.7 42.0 50.0
JointNLT [41] NL+BB 65.3 85.6 79.5 60.4 63.6 69.4 56.9 58.1 73.6
JointNLT [41] * NL+BB 63.6 87.1 78.8 58.8 62.3 68.7 56.6 57.9 74.8
Ours NL+BB 66.7 88.2 82.4 59.9 63.5 69.6 57.8 58.7 75.6
* our reproducing results using the officially released code.

tic understanding and perception of the target. Model 4,
relying solely on grounded results as the visual template,
achieved an AUC score of 51.0%. However, introducing
multiple dynamic templates led to a significant improve-
ment from 51.0% to 53.3%, underscoring the crucial role
of temporal information in enhancing tracking robustness.

We provide an analysis of the impact of the query num-
ber for each frame as shown in Tab. 2. The model con-
sistently demonstrates significant results across all settings.
Overall, the performance improves with an increase in the
query count. There is no noticeable improvement when the
query number increases from 5 to 7. This observation sug-
gests that a count of 5 already provides a sufficient variety of
combinations to comprehend the cues. It is noteworthy that
since queries are processed in parallel, an increase in the
number of queries does not affect the speed of the tracker.

4.3. State-of-the-art Comparison

In this section, we compare our approach with state-of-
the-art trackers, including JointNLT [41], CTRNLT [17],
TNL2K [30] and others approaches, on three challenging
natural language tracking datasets. Following the protocols
in [30], we test the performance of our approach for ini-
tialization using only “NL” and using “NL+BB”. We also
provide experimental results on the visual grounding dataset

NL: “the torch light in the person's hand” 

NL: “the yellow car on the road”

NL: “the head of the man”

Ours (NL)
TNL2K-II (NL+BB)

JointNLT (NL)
OSTrack (BB)

TNL2K-I (NL)
GT

#0142 #0343#0001 #0037

#0001 #0095 #0600 #1024

#1044#0222 #1252#0001

Figure 5. Qualitative comparisons of the proposed QueryNLT with
the state-of-the-art trackers on three challenging sequences. Our
QueryNLT can accurately target locations even when objects suf-
fer from severe appearance variations, background clutters, and
similar distractors.

to demonstrate that our proposed method is effective in es-
tablishing text-image correlation. All comparison results
are obtained from the paper. Additionally, we retrained the
JointNLT [41] using the official release code, denoted as
“JointNLT*”. By deploying in the same experimental set-
ting, the result of “JointNLT*” serves as an important base-
line to measure the effectiveness of our method.
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Table 4. Comparison of our method with state-of-the-art ap-
proaches for visual grounding on RefCOCOg [23] dataset.

Method LBYL
[11]

ReSC
[34]

TransVG
[3]

VLTVG
[33]

JointNLT
[41]

Ours

val-g 62.70 63.12 67.02 73.0 70.07 72.0
val-u - 67.3 68.67 76.0 - 75.3
test-u - 67.2 67.73 74.2 - 73.2

Evaluation on TNL2K dataset. TNL2K is a bench-
mark specifically designed for evaluating natural language-
guided tracking algorithms. It comprises a diverse collec-
tion of videos, including natural, animation, infrared, and
virtual game videos, thereby facilitating a comprehensive
evaluation of the framework’s adaptability across different
domains. The rich and discriminative annotated language
makes the TNL2K dataset particularly well-suited for the
task of tracking based solely on natural language descrip-
tions. As shown in Tab. 3, under the “NL”, our QueryNLT
is the second best only behind the JointNLT [41] but sur-
passes the reproduction of the model JointNLT* by 1.2%,
1.8% and 1.6% on three metrics. Under the “NL+BB” set-
ting, our QueryNLT performs best in terms of all indicators.
Compared with TNL2K-2 [30], which employs adaptive
switching between templates and language cues for target
inference, our proposed approach (NL+BB) achieves no-
table improvements of 15.8%, 16.7%, and 25.1% in terms
of AUC, precision, and normalized precision, respectively.
It demonstrates the complementary nature of multi-modal
information in recognizing targets. Besides, our QueryNLT
outperforms JointNLT [41], which utilizes a static language
description across all video frames, achieving superiority by
0.9%, 0.6%, and 2.0% in terms of three metrics. The result
emphasizes the effectiveness of dynamic and context-aware
linguistic descriptions for improving tracking performance.
Qualitative results are provided in Fig. 5.

Evaluation on OTB-Lang dataset. The OTB-Lang
dataset is originally released in [31] and later extended with
a sentence description of the target object per video by
[18]. It encompasses 11 challenging interference attributes,
such as motion blur, scale variation, occlusion, out-of-view
scenarios, background clutter, and more. The results on
OTB-Lang are shown in Tab. 3. Remarkably, our proposed
approach outperforms all other trackers under the “NL”
setting. Specifically, our proposed QueryNLT surpasses
JointNLT [41] by 2.0% and 3.4% in terms of AUC and pre-
cision, respectively. And compared with JointNLT*, our
approach shows improvements of 3.4%, 4.0%, and 3.4% in
three metrics. Additionally, under the “NL+BB” setting,
our QueryNLT is the second best in terms of AUC, only
behind TNL2K [30], within which the tracking module is
trained on a larger training dataset. These results collec-
tively highlight the robustness of our proposed approach,

Template OriginalRevised prompt

 the man in white gym suit with number 41 and black hat

Original
 the man in white gym suit with number 41 and black hat

Revised prompt

the fox on the bottom of the tree.

Original
the fox on the bottom of the tree

Revised prompt

Template memory

(a) Activation map of appearance prompt (b) Activation map of language prompt

Figure 6. Visualization of the appearance and language prompts.

indicating its ability to effectively handle various challeng-
ing factors encountered in tracking tasks.

Evaluation on LaSOT dataset. The LaSOT is a long-
term tracking dataset that provides both bounding box and
natural language annotations. It comprises 1120 training
video sequences and 280 testing video sequences. It should
be noted that the linguistic information in LaSOT lacks a
description of the relative positions of the objects, and thus
the given linguistic description is ambiguous when similar
objects are interfering. This means that this dataset is not
suitable for accomplishing language-assist tracking tasks,
and a similar view can be found in [30, 35]. Here we mainly
discuss the comparison results under the “NL+BB” setting.
As shown in Tab. 3, our proposed approach achieves the
performance of 57.8% 58.7%, and 75.6% in terms of AUC,
precision, and normalization precision, respectively. It sur-
passes the TNL2K-2 [30] by 5.9% in AUC and 5.9% in
precision. These results demonstrate that our approach is
competitive for long-term tracking tasks.

Evaluation on RefCOCOg dataset. We evaluate the vi-
sual grounding performance on both the validation and test
sets of the RefCOCOg dataset [23]. The assessment is con-
ducted using the average IoU as the evaluation metric.” As
shown in Tab. 4, our method is second only to VLTVG [33]
although we are not specialized for visual grounding. This
also explains that our tracking method can perform robust
tracking even when only the language description is given.

5. Conclusion

In this paper, we have introduced a unified framework
for natural language tracking that effectively leverages both
visual and verbal references to improve target perception
and discrimination. We proposed the prompt modulation
module to filter out the description in target references, thus
forming accurate and context-aware visual and verbal cues.
Besides, the target decoding module is designed to integrate
multi-modal reference information to reason about the posi-
tion of the target within the search image. Incorporating the
target decoding network with precise target prompts greatly
improves the discrimination of the tracker. Extensive exper-
iments on the natural language tracking datasets and the vi-
sual grounding dataset demonstrate our proposed approach
achieves competitive performance.
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