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Figure 1. We propose Control4D, an approach to high-fidelity and spatiotemporal-consistent 4D portrait editing with only text instructions.
Given the multi-view videos as shown in the left and text instructions ”Jensen Huang is roasting steak”, Control4D generates realistic and
4D consistent editing results presented in the middle and right.

Abstract

We introduce Control4D, an innovative framework for
editing dynamic 4D portraits using text instructions. Our
method addresses the prevalent challenges in 4D editing,
notably the inefficiencies of existing 4D representations and
the inconsistent editing effect caused by diffusion-based ed-
itors. We first propose GaussianPlanes, a novel 4D repre-
sentation that makes Gaussian Splatting more structured by
applying plane-based decomposition in 3D space and time.
This enhances both efficiency and robustness in 4D edit-
ing. Furthermore, we propose to leverage a 4D generator to
learn a more continuous generation space from inconsistent
edited images produced by the diffusion-based editor, which
effectively improves the consistency and quality of 4D edit-
ing. Comprehensive evaluation demonstrates the superior-
ity of Control4D, including significantly reduced training
time, high-quality rendering, and spatial-temporal consis-
tency in 4D portrait editing. The link to our project website
is: https://control4darxiv.github.io/

1. Introduction
The realm of 4D scene reconstruction has witnessed ad-
vancements with the advent of dynamic neural 3D rep-
resentation [12, 36, 47, 51, 57]. These innovations have
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significantly enhanced our ability to capture and repre-
sent dynamic scenes. Despite these advances, the inter-
active editing of these 4D scenes still poses substantial
challenges. The primary challenge involves ensuring both
spatial-temporal consistency and high quality in 4D editing.

Available 4D editing techniques [26, 52], while effective
for fundamental tasks like object removal or color modifica-
tion, often fall short in delivering interactive and advanced
editing functionalities. Recently, a groundbreaking frame-
work based on text-to-image (T2I) diffusion model [50] has
emerged for 3D generation and editing. It integrates a neu-
ral 3D representation such as NeRF with an image diffusion
model and achieves text-to-3D generation [8, 35, 40, 50] or
editing [18] by iteratively aligning images rendered from
the 3D representation with those generated by the diffusion
model. This diffusion-based framework allows for more
flexible and enhanced editing through textual control.

Building on this framework, a straightforward approach
to 4D editing involves transitioning from a 3D to a 4D
representation. However, it faces two primary challenges:
First, 4D representations such as dynamic NeRFs require
dense sampling along the rays to render images, which is
slow and highly memory-intensive [12, 51, 57]. Such inef-
ficiency significantly increases the time required for editing
in 4D scenarios. On the other hand, current T2I diffusion
models lack consistency in editing different images [18].
This inconsistency is more apparent in 4D editing, as the
results vary across different spatial perspectives and over

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

4556

https://control4darxiv.github.io/


time, making 4D editing extremely challenging.
In this paper, we address these challenges and present

Control4D, a novel method for efficient, high-quality, and
consistent 4D dynamic portrait editing with text as input.
Firstly, to enhance the efficiency of 4D representation, we
propose to extend an explicit 3D representation, Gaussian
Splatting, to a 4D dynamic representation. Gaussian Splat-
ting is an emerging representation that has demonstrated
its efficiency in training and rendering for 3D reconstruc-
tion [27] and generation [65]. However, as it uses dis-
crete Gaussian point clouds where every point is indepen-
dent from each other, it easily introduces noise during the
4D editing process, where the edited images are not consis-
tent in both space and time. To address this issue, we first
propose to construct the spatial structure to describe the at-
tributes of discrete Gaussian points by a unified, structured
tri-plane [7] representation. Specifically, we project each
Gaussian point onto three feature planes and employ an
MLP to integrate features and derive their attributes, which
not only ensures efficiency but also enhances robustness.
Then, we extend Gaussian Splatting to 4D by defining a
canonical Gaussian point cloud and allowing each point to
move with time. To regularize the flow of discrete points,
we also project their positions with time into 9 planes [57] to
make the flow more structured. With the tri-planar structure
for the canonical space and the 4D plane-based structure for
the 4D flow, we introduce GaussianPlanes representation,
which significantly reduces the time cost and improves spa-
tiotemporal consistency in 4D editing.

Although GaussianPlanes significantly improves the effi-
ciency of representation, implementing 4D editing based on
it still encounters a bottleneck. This bottleneck lies in the
T2I diffusion model, as the diffusion-based editor adopts a
2D generation process and produces inconsistent edits in 4D
space across time and viewpoints. Consequently, when op-
timized with these inconsistent images, the dynamic scene
model tends to diverge or produce blurry and smoothed out-
comes. To overcome this challenge, we propose a 4D gener-
ator to mitigate the issue of inconsistent supervision arising
from the edited dataset. The key insight of our method is
to learn a more continuous GAN latent space based on the
edited images produced by the editor, avoiding direct but
inconsistent supervision. Specifically, we introduce addi-
tional latent properties to GaussianPlanes and incorporate it
with a 2D super-resolution module, constructing a 4D gen-
erator, capable of producing high-resolution images based
on the rendered latent features. Simultaneously, we employ
a discriminator to learn the generation distribution from the
edited images, which then provides discrimination signals
for updating the generator. To ensure stable training, we
extract multi-level information from the edited images and
utilize it to facilitate the generator’s learning process.

We conduct comprehensive evaluation of our approach

using a diverse collection of dynamic portraits. To vali-
date the efficacy of our design, we conduct ablation studies
and compare our method with a 4D extension of Instruct-
NeRF2NeRF [18]. The evaluation demonstrates the effi-
ciency and remarkable capabilities of our method in achiev-
ing both photo-realistic rendering and spatio-temporal con-
sistency in 4D portrait editing. To sum up, our main contri-
butions are listed as follows:
• We propose an efficient and robust 4D representation

GaussianPlanes for 4D editing by applying plane-based
decomposition to structure Gassian Splatting in both
space and time.

• We introduce a 4D generator to learn from the 2D
diffusion-based editor, which reduces the effect of incon-
sistent supervision signals and enhances the quality of 4D
editing.

• Building upon the proposed GaussianPlanes and 4D gen-
erator, We introduce Control4D, a novel framework for
flexible 4D portrait editing with text, which significantly
reduces the training time, achieves high-quality render-
ing, and ensures spatio-temporal consistency.

2. Related Work
2.1. 2D Diffusion Models

Diffusion models iteratively transform random samples into
ones resembling target data [9, 21, 29, 62]. Enhanced with
pre-trained models [53], they solve multi-modal tasks like
text-to-image generation [20, 44, 54]. VQdiffusion[15] and
LDMs [55] bolster performance by operating within an au-
toencoder’s latent space. Although these models have found
success, temporally inconsistent issues emerge in videos
and 4D scenes.

Research has also concentrated on diffusion-based
video generation and editing. Video Diffusion Models
(VDM)[23] use U-Net architecture to train image and video
data jointly, while approaches like ImagenVideo[22] en-
able high-resolution video generation. Various methods
aim to transfer text-image generation to text-video, but due
to training costs, many focus on text-prompted video edit-
ing [2, 6, 11, 28, 31, 60, 76, 85]. These efforts underscore
the potential of text-based video editing, yet challenges re-
lated to temporal consistency, quality generation, and view-
point alterations persist.

2.2. NeRF-Based 3D Generation and Editing

NeRFs [41] have gained widespread popularity for pro-
ducing realistic 3D scene reconstruction and novel views
based on calibrated photographs, and have been further de-
veloped in numerous subsequent studies [67]. Neverthe-
less, NeRFs still pose a challenge for editing purposes, pri-
marily due to their underlying representation. NERF edit-
ing researchers have focused on utilizing GANs [13] and
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Diffusion models for their powerful generative capabilities.
GAN-based methods have seen a proliferation of novel ar-
chitectures that combine implicit or explicit 3D representa-
tions with neural rendering techniques, achieving promis-
ing results [7, 14, 42, 43, 75, 86]. However, voxel-based
GANs face challenges such as high memory requirements
and computational burden when training high-resolution 3D
GANs. On the other hand, diffusion-based methods have
two primary approaches for extending 2D editing to 3D
NeRFs. The first involves using Stable Diffusion with score
distillation sampling (SDS) loss to generate 3D NeRFs us-
ing the 2D diffusion-prior, as seen in DreamFusion [50] and
its follow-ups [5, 8, 24, 32, 35, 38, 49, 56, 58, 59, 61, 64–
66, 70, 72]. However, these methods can only generate
isolated objects lacking fine-level control over synthesized
outputs. The second approach utilizes dataset update(DU)
to guide NeRF convergence iteratively, as seen in Instruct-
NeRF2NeRF [18], but it has network convergence issues
and can be cost-intensive.

2.3. NeRF for Dynamic Scenes

To expand the success of NeRF into the temporal domain,
researchers have pursued the strategy of modeling scenes in
4D domain with time dimension. DyNeRF [30] proposes
a keyframe-based training strategy to extend NeRF with
time-conditioning. VideoNeRF [77] learns a spatiotempo-
ral irradiance field directly from a single video and resolves
the shape-motion ambiguities in monocular inputs by in-
corporating depth estimation. Meanwhile, NeRFlow [10]
and DCT-NeRF[69] utilize point trajectories to regularize
network optimization. Park et al.[46, 47]; Pumarola et al.
[51]; Tretschk et al. [68] adopt a similar framework that
introduce a separate MLP to predict scene deformations for
multi-view and monocular videos, respectively.Another ap-
proach for dynamic scenes is DeVRF [36], which adopts a
voxel-based representation to model both the 3D canonical
space and the 4D deformation field. Additionally, meth-
ods including Neuralbody [48] and [37, 73, 83, 84] lever-
age parametric body templates as semantic priors to achieve
photo-realistic novel view synthesis of complex human per-
formances. Recently, to achieve higher quality with lower
memory, NeRFPlayer [63] have decomposed the 4D space
into regions of static, deforming, and newly appeared con-
tent. Meanwhile, more compact and efficient representa-
tions, such as [4, 12, 25, 79] are proposed, significantly
boosting the rendering quality and efficiency.

2.4. Gaussian Splatting

3D Gaussian Splatting (3DGS) [16, 27, 34] offers a high-
quality, swift alternative to Neural Radiance Fields (NeRF),
leveraging differentiable 3D Gaussians for efficient raster-
ization. Unlike NeRF and other implicit 3D representa-
tions [45, 71] which render images based on volume render-

ing, 3D-GS employs a splatting method for image render-
ing, resulting in real-time speed. The successor, dynamic
Gaussian Splatting [33, 39, 74, 78, 82], extends this with
per-frame dense tracking and novel view synthesis for dy-
namic scenes by utilizing a lightweight deformation field to
model Gaussian motions and shape changes.

3. Overview
To achieve high-quality, efficient, and consistent 4D portrait
editing, we first extend the Gaussian Splatting to 4D repre-
sentation and structure it through a spatial-temporal plane-
based decomposition (Sec. 4). To address the issue of in-
consistencies in edited images generated by diffusion-based
editors, we integrate a 4D Editor with GaussianPlanes to ef-
fectively mitigate instability and blurring issues and achieve
the realism and quality of 4D editing (Sec. 5). Building on
the GaussianPlanes and 4D Editor, we finally introduce sev-
eral efficient training strategies for 4D editing in the Con-
trol4D framework (Sec. 5.3).

As shown in Fig. 2, our framework consists of the Gaus-
sianPlanes and a 4D generator. Given multi-view videos,
we first reconstruct the 4D portrait based on Gaussian-
Planes. Subsequently, we edit the reconstructed rendering
results and latent features through a multi-level generator
to obtain the edited results. Simultaneously, we employ an
iterative approach to achieve dataset update through a 2D
diffusion-based editor, which is a ControlNet [81] in prac-
tice. The outputs of the editor serve as real images, while
the generator’s results function as fake images for the dis-
criminator’s input. As the GAN training progresses, we pro-
gressively incorporate the generator’s outputs to refine the
inputs of the 2D diffusion-based editor, facilitating train-
ing convergence. Ultimately, the discrimination outcomes
are utilized to compute the GAN loss, driving the iterative
refinement of both the generator and discriminator. This
methodology ensures the efficient and precise realization of
4D editing through our GAN-based framework.

4. GaussianPlanes
In this section, we propose an efficient and robust 4D rep-
resentation GaussianPlanes for 4D portrait editing. The key
idea is to structure the discrete points of Gaussian Splat-
ting in both space and time. First, we introduce the spatial
tri-plane decomposition, which makes Gaussian Splatting
structured in the spatial domain (Sec. 4.1). Following this,
we expand Gaussian Splatting into 4D representation and
structure the flow of each Gaussian point by performing a
temporal-spatial plane-based decomposition (Sec. 4.2).

4.1. GaussianPlanes in 3D

Gaussian Splatting is an emerging explicit 3D representa-
tion that utilizes a set of Gaussian point clouds to represent
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Figure 2. Pipeline of Control4D: Our method first utilizes GaussianPlanes to train the implicit representation of a 4D portrait scene,
which are then rendered into latent features and RGB images using Gaussian rendering, serving as inputs for the GAN-based generator.
Meanwhile, we apply the 2D-diffusion-based editor to edit the dataset with the noisy results and conditions as inputs, leading to updated
results that are used as real images while the Superres. Module’s outputs serve as fake images fed into the Discriminator for discrimination.
The discriminative results are used to calculate loss, allowing for iterative updates of both the Generator and Discriminator.

3D scenes. Each point is described with attributes of the
center position x ∈ R3, the rotation quaternion r ∈ R4,
the scale factor s ∈ R3, the opacity value α ∈ R and
the color feature c ∈ R3. The rendering process of Gaus-
sian Splatting involves projecting the Gaussian point cloud
onto the rendering viewpoint according to camera parame-
ters, followed by rasterization and volume rendering. Since
each point in the Gaussian point cloud is independent and
unstructured, noise easily occurs during optimization. To
enhance robustness, we propose a spatial tri-plane decom-
position to represent the attributes of the Gaussian points.
Specifically, we decompose the color ci, opacity αi and ro-
tation ri of i-th Gaussian point into tri-plane features:

ci = fc(F
xy
c (xi, yi), F

xz
c (xi, zi), F

yz
c (yi, zi)),

αi = fα(F
xy
α (xi, yi), F

xz
α (xi, zi), F

yz
α (yi, zi)),

ri = fr(F
xy
r (xi, yi), F

xz
r (xi, zi), F

yz
r (yi, zi)),

(1)

where F xy, F xz, F yz are the decomposed feature planes,
and f is an MLP that fuses features to predict specific at-
tributes. In this way, although the Gaussian points remain
independent, their attributes are structured and low-rank in
spatial space, which helps to reduce noise and improve the
robustness of Gaussian Splatting. The scale factor s and
center position x are not decomposed, as splitting Gaussian
points would abruptly halve the scale factor and the center
position of each point is used for querying attributes itself.

4.2. GaussianPlanes in 4D

To extend Gaussian Splatting for 4D editing, we regard
the Gaussian point cloud at the first frame as the canonical
space and represent the 4D scene at different times by de-
forming the canonical Gaussian point cloud. Specifically,
we define the flow x̂, r̂ for both position and rotation at-
tributes of Gaussian points. Then, for time t, we move each

Gaussian point in the canonical space (t = 0) with the flow:

xi(t) = xi(0) + x̂i(t),

ri(t) = ri(0) + r̂i(t).
(2)

In this way, we enhance temporal consistency since the
Gaussian point cloud at all times corresponds to its canon-
ical space. However, the flow of each gaussian point is
still discrete and independent. To further structure the
flow of Gaussian points in space and time, we adopt
spatial-temporal plane-based decomposition proposed by
Tensor4D [57] and decompose the flow attributes of i-th
point into nine feature planes:

x̂i(t) = fx̂(xi, yi, zi, t) = π3(Π3(Fx̂)),

r̂i(t) = fr̂(xi, yi, zi, t) = π3(Π3(Fr̂)),
(3)

where Π3, π3 are the hierarchical 4D decomposition in Ten-
sor4D and F represents feature planes. Through spatial tri-
planar decomposition and 4D plane-based decomposition,
we structure the 4D Gaussian Splatting to enhance its con-
sistency while maintaining efficiency.

5. 4D Editing with GaussianPlanes

To solve another challenge raised by diffusion-based edi-
tors, we propose a GaussianPlane-based 4D generator to
edit 4D scene from the 2D inconsistent editing images with
stable optimization. Instead of utilizing direct supervision
with the edited images [3], our method learns a continu-
ous generation space via GAN [13] to establish a connec-
tion between GaussianPlanes and dynamically edited im-
ages. Specifically, we integrate GaussianPlanes with a 2D
GAN-based super-resolution module into a 4D generator
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and learn a generation space from the edited images gen-
erated by the diffusion model. Leveraging its generative
capabilities, the 4D generator can effectively distill knowl-
edge from the diffusion-based editor and distinguish be-
tween the rendering images (fake samples) and edited im-
ages (real samples). Subsequently, GaussianPlanes can be
optimized within a continuous generative space supervised
by the discrimination loss. With such a learning-to-generate
mechanism, our method effectively alleviates blurry effects,
resulting in high-fidelity and consistent 4D editing. In the
following, we will introduce 1) integrating GaussianPlanes
with GAN for 4D scene generation; and 2) the generation
with multi-level guidance.

5.1. Connecting GAN to GaussianPlanes

Directly using GaussianPlanes to fit editing images is dif-
ficult because editing images are inconsistent across views
and times, leading to blurry results. Therefore, we first pro-
pose to add latent features [7] as the property of Gaussian-
Planes and align them with the distribution of inconsistent
editing images in a generative way. Then we build a 4D
generator by connecting the GaussianPlanes representation
with a GAN-based super-resolution module. Specifically,
we assume the latent features follow a normal distribution
and augment the Gaussian attributes with their means µ and
variances σ, thus enabling subsequent sampling. We also
adopt the same tri-plane decomposition for these latent dis-
tribution parameters. Then we can render a “distribution
parameter map” to sample the latent features, which will be
fed into a super-resolution module G. Meanwhile, we also
render an RGB image for auxiliary supervision. The distri-
bution map consists of a latent mean map and a latent vari-
ance map, denoted as Iµ and Iσ , respectively, which capture
the mean and variance of latent features. By leveraging this
distribution map, we then proceed to sample a latent feature
map that will be fed into G:

Il = Iµ + tIσ, t ∼ N(0, 1). (4)

Then, we concatenate the rendered RGB images Ir and
the latent feature maps Il and feed them into the super-
resolution module to synthesize high-resolution images:

IG = G(Ir, Il). (5)

As mentioned above, the edited images are temporally in-
consistent due to the frame-by-frame editing. To avoid the
discrete and inconsistent issue of direct supervision, our
method learns a more continuous generation space via GAN
from these edited images. Specifically, the generated im-
ages IG are considered as fake samples, while the edited
images are regarded as real samples. The GAN loss can be
formulated as follows:

LD = D(IG)−D(Ied) + Lgp

LG = −D(IG),
(6)

Figure 3. Illustration of the Generation with Multi-level Guid-
ance: we propose a three-level image generation process to bal-
ance the generator training, where Eg denotes for the global en-
coder and El denotes for the local encoder.

where Ied are the edited images generated by diffusion-
based editor, D is the discriminator and Lgp is the Wasser-
stein GAN gradient penalty loss [1].

5.2. Multi-level Generation with Guidance

When training GAN with the loss in Eqn. 6, we observe
that the learning process often suffers from mode collapse
issues. This may be caused by the fact that there is a limited
number of edited images, and it is easy for the discrimina-
tor to learn how to distinguish between different sources of
samples. To stabilize the learning process, we propose to
extract multi-level information from the edited images and
use these global and local cues to guide the learning of the
generator.

Specifically, we propose the 2nd level for global training
stabilization and the 3rd level for details generation learn-
ing. As shown in Fig. 3, during the training process, we con-
struct two networks—global encoder Eg and local encoder
El—to extract the global code and local feature maps of the
edited image Ied, respectively. Therefore, in the 2nd level,
the diverse global style could be represented by the global
feature extracted by Eg . In the 3rd level, The diverse incon-
sistent details are represented by the local feature maps, and
the super-resolution module could focus on learning details
generation with these conditions as additional inputs. Our
generator can synthesize images on three levels:

I1G = G(Ir, Il, Eg(Ir))

I2G = G(Ir, Il, Eg(Ied))

I3G = G(Ir, El(Ied), Eg(Ied))

(7)

Throughout the progression from level 1 to level 3, the
generator produces images that gradually approach real
edited images:
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• At level 1, the generator directly synthesis images based
on Tensor4D.

• At level 2, global information from the real edited images
is introduced as conditions, guiding the generator to pro-
duce results consistent with the overall style of the real
images.

• At level 3, both the global and local information from the
real edited images is used as conditions, enabling the net-
work to generate images that exhibit consistency in both
the overall pattern and finer details with the real edited
images.

To facilitate training, we also utilize different losses at dif-
ferent levels:

L1 = −D(I1G)

L2 = −D(I2G) + LP (I
2
G, Ied)

L3 = −D(I3G) + LP (I
3
G, Ied) + ∥I3G − Ied∥1

(8)

Level 1 employs the original GAN loss. At level 2, a per-
ceptual loss is introduced as an additional constraint to en-
force consistency in the global style. At level 3, the loss
function simultaneously incorporates L1 loss, perceptual
loss, and GAN loss as penalties, as the consistency in details
and global style is desired. This multi-level information
guides the generator to converge progressively towards the
generation space of the diffusion model, improving training
stability in single scenarios and accelerating convergence
compared to the original GAN training process.

5.3. Training Strategy

To address the high iterative optimization cost associated
with using the diffusion-based editor, we propose several
strategies to further improve the efficiency of 4D editing.
Staged Training Strategy. We adopt a staged training strat-
egy that facilitates convergence. First, we fix the flow in the
static stage and focus solely on editing the canonical space.
This simplifies the editing process from 4D to 3D static edit-
ing, resulting in faster convergence. Once the editing of the
canonical space has converged, we proceed to train Gaus-
sianPlanes across the entire 4D sequences. We also adopt
a smaller noise timestep t ∈ U(0.02, 0.6) for the diffusion-
based editor in the dynamic stage since most of the editing
effect is done in the static stage.
Batch-based Dataset Update. To improve the editing con-
sistency across different images, instead of editing a sin-
gle image per iteration like InstructN2N, we group several
images as a batch and edit them simultaneously. In edit-
ing each batch, we incorporate an attention module [17]
for multi-frame image generation into our diffusion-based
editor to capture the temporal-spatial correspondences and
thereby improve editing consistency.

Figure 4. Qualitative comparisons with Instruct-NeRF2NeRF
(static): In a static scenario, given the prompt “Turn him into Elon
Musk”, train the model to converge and we can see that, on the
same dataset, our method (the top row) produces highly realis-
tic renderings of human portraits, while Instruct-NeRF2NeRF ex-
hibits lower levels of realism and consistency, along with unex-
pected distortions in facial features.

Figure 5. Qualitative comparisons with baseline (dynamic): In
a dynamic scenario, given the prompt “Mark Zuckerberg”, com-
pared to the baseline result (the second row) that only employs
the dataset update (DU) method, our proposed approach (with the
addition of GAN, the second row) demonstrates higher levels of
realism and consistency in our rendered results.

6. Experiment

We primarily conduct experiments on the dynamic Ten-
sor4D dataset, which captures dynamic half-body human
videos by four sparsely positioned, fixed RGB cameras.
The calibration is performed using a checkerboard. Each
data sample captures a diverse range of human motions in
1-2 minute duration. For our experiments, we extract 2-
second segments, consisting of 50 frames, from the full-
length videos for 4D reconstruction and editing. Further-
more, to showcase the capabilities of our method in 360-
degree scenes, we also select scanned human models from
Twindom [80] dataset for additional evaluation. For the dif-
fusion model, We use Openpose and normal ControlNet as
the control signal, and the base model is Stable Diffusion
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Figure 6. Qualitative results on Tensor4D dataset. Our method produces coherent and realistic outcomes that maintain high fidelity and
accurately preserve intricate details throughout the dynamic editing procedure. The prompts we use are ”Emma Watson”, ”Taylor Swift”,
”Iron Man wearing armor”, ”Captain Jack Sparrow”, ”Lionel Messi” and ”Elon Musk”.

1.5. When batch-based updating, we use the Animatediff
V2 LoRA module, which can be directly loaded into the
cross-attention layer of SD1.5 and compatible with Control-
Net. Please refer to the suppl. for more experiment details.

6.1. Qualitative Evaluation

6.1.1 Static scene

Since the task of 4D editing with text has not been addressed
in previous works, we first conduct an experiment on static
scenes to validate our proposed methods. To validate the ef-
ficiency of our proposed GAN, we first conduct a compar-
ison between NeRF+GAN and instruct-NeRF2NeRF under
static scenes. We select some human models from the Twin-
dom dataset and sampled 180 viewpoints randomly within
a 360-degree range to render images. Subsequently, we
evaluate NeRF+GAN and instruct-NeRF2NeRF for editing
with prompt ”Turn him into Elon Musk”. In Fig. 4, we
present the results after 50,000 iterations of training. Ob-
serving the results, it is evident that our GAN can generate
images of high quality, exhibiting rich detail and enhanced

realism. In contrast, the instruct-NeRF2NeRF outputs ap-
pear smoother, with some issues observed in the blending
of side views. This comparison highlights the significant
advantage of our GAN in terms of editing capabilities.

6.1.2 Dynamic scene

In dynamic scenarios, we compare our proposed method
and the baseline method that only utilize GaussianPlanes,
and the results are presented in Figure 5. We also present
the results of different individuals engaged in various ac-
tions, which can be referenced in Figure 6. In the base-
line approach, where GAN-based generation is not utilized,
GaussianPlanes is directly tasked with fitting a dynamically
changing editing dataset in both space and time. This di-
rect fitting process often leads to the optimization of smooth
results that may lack consistency and high-quality details.
Our proposed method incorporates GAN-based generation,
leveraging the GAN to learn a more continuous 4D genera-
tion space. This allows us to leverage the smooth supervi-
sory signals for optimization. Thus, our method generates
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Method FID↓ CLIP Similarity ↑
Static scene
InstructPix2Pix - 0.3089
ControlNet - 0.3313
InstructNeRF2NeRF 126.3 0.2989
Tensor4D 118.7 0.3316
Tensor4D+GAN 27.81 0.3334
GaussianPlanes 49.32 0.3301
Control4D (Ours) 14.11 0.3323
Dynamic scene
ControlNet - 0.3185
Tensor4D 155.6 0.3144
Tensor4D+GAN 47.39 0.3178
GaussianPlanes 67.58 0.3175
Control4D (Ours) 18.59 0.3192

Table 1. Quantitative Comparisons on static and dynamic scenes.

Method FID↓ CLIP Similarity ↑
Only 1st and 3rd level 45.19 0.3174
Only 3rd level 54.29 0.3151
Our method 18.59 0.3192

Table 2. Ablation study of multi-level guidance on Tensor4D
dataset.

consistent and high-quality results that exhibit improved fi-
delity and capture finer details in the dynamic editing pro-
cess. The comparison between the baseline approach and
our method demonstrates the effectiveness of our proposed
4D generator in enhancing the overall quality and consis-
tency of the generated results.

6.2. Quantitative Experiment

We conducted quantitative experiments in 5 static and 4
dynamic scenarios. The results are presented in Tab. 1.
First, we compare the diffusion-based editor including In-
structpix2pix [3] and ControlNet [81] in the context of por-
trait editing. ControlNet exhibited better consistency be-
tween the subject and the editing prompt than Instruct-
pix2pix. We further compared our method, Control4D,
with the baseline approaches including Tensor4D, Ten-
sor4D+GAN, and GaussianPlanes to validate the efficiency
of our proposed representation and GAN. We evaluated the
Fréchet Inception Distance (FID) metric [19] between the
edited dataset and generated images. We also compute
CLIP cosine similarity [53] between the generated images
and text. Compared with Tensor4D and Tensor4D+GAN,
our method achieves superior performance, which demon-
strates the efficiency of GaussianPlanes. The results also
reveals that our method outperforms the baseline and In-
structNeRF2NeRF [18] significantly, demonstrating the ef-
fectiveness of our proposed 4D editing pipeline.

Figure 7. Ablation study of multi-level guidance on Tensor4D
dataset.

6.3. Ablation Study

Multi-level guidance. We perform ablation studies of
multi-level guidance on Tensor4D dataset. As shown in
Fig. 7 and Tab. 2, when only GAN loss is used, mode
collapse occurs easily due to the small size of the dataset.
When only the first or third levels are used, the results be-
come blurred. This indicates that our progressive guidance
strategy improves the stability of the GAN and gradually
enhances the quality of the rendered images. Please refer to
Supp. material for more ablation studies.

7. Conclusions
In conclusion, Control4D is a novel approach for efficient,
high-fidelity and temporally consistent editing in dynamic
4D scenes. It utilizes an efficient 4D representation Gaus-
sianPlanes and a 2D diffusion-based editor. By utiliz-
ing plane-based decomposition to struct Gaussian Splat-
ting, GaussianPlanes ensure both efficiency and robustness
for 4D editing. To tackle with the inconsistency caused
by diffusion-based editor, Control4D leverages a GAN to
generate from the editor, avoiding direct supervision. Ex-
perimental results demonstrate Control4D’s effectiveness
in achieving photo-realistic and consistent 4D editing, sur-
passing previous approaches in real-world scenarios. It rep-
resents a significant advancement in text-based image edit-
ing, particularly for dynamic scenes.
Limitations. Due to utilizing a canonical Gaussian point
clouds with flow representation, our approach relies on
learning flow within the 4D scenes to exhibit simplicity
and smoothness. This poses challenges for our method in
effectively handling rapid and extensive non-rigid move-
ments. Furthermore, our method is constrained by Control-
Net, which limits the granularity of edits to a coarse level.
Consequently, it is unable to perform precise expression or
action edits. Our method also requires iterative optimiza-
tions for the editing process and cannot be accomplished in
a single step.
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