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Abstract

Open-World Few-Shot Learning (OFSL) is a critical field
of research, concentrating on the precise identification of
target samples in environments with scarce data and unre-
liable labels, thus possessing substantial practical signif-
icance. Recently, the evolution of foundation models like
CLIP has revealed their strong capacity for representation,
even in settings with restricted resources and data. This
development has led to a significant shift in focus, tran-
sitioning from the traditional method of “building models
from scratch” to a strategy centered on “efficiently utiliz-
ing the capabilities of foundation models to extract rele-
vant prior knowledge tailored for OFSL and apply it judi-
ciously”. Amidst this backdrop, we unveil the Direct-and-
Inverse CLIP (DelL), an innovative method leveraging our
proposed “Direct-and-Inverse” concept to activate CLIP-
based methods for addressing OFSL. This concept trans-
forms conventional single-step classification into a nuanced
two-stage process: initially filtering out less probable cate-
gories, followed by accurately determining the specific cat-
egory of samples. DelL comprises two key components: a
pre-trainer (frozen) for data denoising, and an adapter (tun-
able) for achieving precise final classification. In experi-
ments, DelL achieves SOTA performance on 11 datasets.
https://github.com/The-Shuai/DeIl.

1. Introduction

Few-shot learning (FSL) [12, 33, 35, 40] has pro-
gressed substantially in data-limited research yet confronts
formidable practical challenges, mainly due to its overly
simplified conditions that frequently presume flawless la-
bels while disregarding prevalent noise and errors. To over-
come this, [1] introduced Open-World Few-Shot Learning
(OFSL), an extension of FSL aimed at enabling efficient
identification even in the presence of noisy labels originat-
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Figure 1. An example to introduce the concept of Direct-and-
Inverse. It is a 4-way classification task. The traditional method
directly categorizes the data (Upper). Our method, however, splits
this into a two-step process (Lower). The first phase filters out the
less probable classes, simplifying the task from 4-way to 3-way
classification. The second phase then precisely identifies the cate-
gory of samples. This two-step approach streamlines the decision-
making process by narrowing down choices, consequently de-
creasing the likelihood of misclassification and enhancing overall
accuracy. We evaluate the concept’s efficiency in Sec. 5.4.

ing from both known and unknown categories within the
training data.

Compared to traditional weakly supervised learning with
mixed noisy and clean labels, and unsupervised learning
without any labels, OFSL encounters greater challenges due
to its unique circumstances. Specifically, with limited train-
ing samples, especially only one per category, the negative
impact of incorrect labeling on the model is more severe
than having no labels at all. Recent advances in OFSL have
been made through techniques like metric learning [1] and
feature aggregation [20], yet these methods still face hur-
dles, particularly when dealing with a high prevalence of
noisy labels. This underscores the urgent need to devise
more robust methods to surmount these challenges.

Recently, foundation models [5, 6, 26] have become in-
creasingly influential. These models, pre-trained on expan-
sive datasets, boast robust architectures that offer strong
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Figure 2. The flowchart of our Direct-and-Inverse CLIP (DelL). The complete procedure encompasses three distinct steps: (1) The 3-
way 1-shot support data initially undergoes processing by the DelL-Pretrainer, aimed at correcting noisy labels. (2) The refined data is
directed through DALL-E, which facilitates the generation of extra training data, thereby broadening its diversity. (3) Both the corrected
and augmented data are subsequently fed into the DelL.-Adapter for executing the classification task. Only the DelL.-Adapter is tunable.

representational capabilities, even in scenarios with limited
data and computational resources. This has prompted a
strategic shift: instead of “building models from scratch”,
there is a growing emphasis on “leveraging the extensive
potential and expertise of these pre-trained foundation mod-
els to address OFSL”. Their advantages stem from exten-
sive validation and optimization, enhancing their robustness
against prevalent overfitting challenges in OFSL while also
saving considerable time and computational resources.

Amidst this backdrop, we present the Direct-and-Inverse
CLIP (DelL), leveraging our “Direct-and-Inverse” concept
(see Fig. 1) to activate CLIP-based methods for tackling
OFSL. This concept transforms conventional classification
tasks (reliant on a singular direct prediction step) into a
more nuanced two-phase process. The initial phase ef-
fectively filters out the less probable categories, streamlin-
ing the decision-making process. Subsequently, the second
phase accurately pinpoints the specific category of the sam-
ples. This two-phase approach enhances decision-making
by methodically narrowing down choices, thereby lowering
misclassification risks and boosting accuracy. We employ
the remarkable CLIP [26] as the direct model for identify-
ing likely categories, and its derivative, CLIPN [31], as the
inverse model for ruling out unlikely categories.

DelL is composed of two principal components and an
auxiliary module (see Fig. 2), thoughtfully designed to ad-
dress the complex OFSL: (1) Frozen DelL-pretrainer lever-
ages the Direct-and-Inverse concept to first pinpoint and
then rectify noisy labels. (2) Tunable DelL-Adapter em-
ploys the same concept, integrating classification and con-
trastive learning loss to enable precise label prediction. (3)
Frozen DALL-E serves to augment data, enriching the di-
versity of samples. The synergy of these elements culmi-
nates in Dell being a well-rounded and robust solution,
adept at addressing the varied demands of OFSL.

Our main contributions are summarized as follows:

* We present DelL,, a method that ingeniously applies the
Direct-and-Inverse concept to capitalize on the intrinsic
capabilities and prior knowledge of CLIP-based methods,
substantially boosting the performance of OFSL.

* We unveil the DelL-Pretrainer and Dell.-Adapter, tai-
lored mechanisms for OFSL to strategically minimize the
adverse effects of noisy labels.

* Our thorough evaluations of Dell. on 11 benchmark
datasets highlight its significant advancement and supe-
riority over current state-of-the-art (SOTA) methods.

2. Related Work

Foundation Models Recently, research on foundation
models is in full swing. Here, we introduce three models
used in our paper: CLIP [26] is a multi-faceted model that
bridges vision and language by aligning image and text rep-
resentations within a shared latent space. It employs con-
trastive learning to enhance the correlation between com-
patible image-text pairs while reducing it for mismatched
pairs. By being trained on extensive datasets comprising
varied images and texts, CLIP acquires an understanding
of concepts and relationships spanning different modalities.
CLIPN [31] is a derivative model stemming from CLIP,
mirrors its predecessor in terms of structure and training
approaches. Its distinctive feature, however, lies in a spe-
cialized functionality. By modifying the prompt template,
CLIPN alters the dynamic between image and text, offering
insights into the likelihood that a certain sample falls out-
side a specific class. DALL-E [27] stands out as a potent
model for generating a wide range of realistic images based
on text descriptions. It operates on an encoder-decoder
framework, where the encoder converts text descriptions
into latent vectors. These vectors are subsequently utilized
by the decoder to create the relevant images.
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Open-World Few-Shot Learning Beginning in 2015,
open-world object recognition [2, 3, 34] has emerged as
an increasingly popular area of research. The initial focus
was on managing extensive samples in open-world environ-
ments and effectively detecting open sets. However, more
recent studies have shifted to addressing recognition issues
in open scenarios with sparse data. This shift has brought
about a heightened focus on the impact of noisy labels from
both visible and invisible classes on results, leading to the
development of OFSL. OFSL can be seen as a specialized
form of weakly supervised learning under situations with
limited samples available. It differs from robust few-shot
learning [21], which is primarily concerned with label noise
in visible classes, OFSL also accounts for noise from un-
seen classes. Departing from traditional solutions such as
metric learning [1], instance reweighting [21], and feature
aggregation [20], our paper introduces a groundbreaking
method. Our method capitalizes on the direct-and-inverse
concept to effectively engage foundation models, offering a
new solution to the inherent challenges of OFSL.

Foundation Solutions on Few-Shot Learning In FSL,
foundation models have driven significant progress, with
key examples being: CLIP [26] stands out as a robust
model initially designed for zero-shot learning, and its util-
ity has been extended effectively into FSL. CALIP [14] is
a parameter-free method that enhances the zero-shot per-
formance of CLIP by enabling visual and textual repre-
sentations to interact through an attention mechanism, and
its parametric solution achieves even higher accuracy in
few-shot scenarios. CLIP-Adapter [13] is a fine-tuning
method for CLIP by applying lightweight residual-style
adapters. APE [40] is an advanced method that refines
CLIP’s adaptive priors, substantially boosting downstream
task performance. It smartly navigates through class dis-
parities and decouples domain-specific knowledge, deliver-
ing exceptional accuracy while maintaining computational
efficiency. CaFo [38] combines GPT’s linguistic prompts
[5], DALL-E’s synthetic images [27], and a learnable cache
model. This integration enhances predictions by amal-
gamating outputs from both CLIP and DINO [6], lever-
aging a variety of pre-trained methods for superior per-
formance. Additionally, numerous subsequent researches
[8, 24, 28, 29, 36, 37, 39] have made substantial contribu-
tions, enriching the breadth and depth of the research com-
munity.

3. Problem Setup

Few-Shot Learning In the standard FSL, the base set, a
large collection of labeled data, is used to pre-train a fea-
ture extraction model for downstream tasks. The novel
set, containing all data for downstream tasks, consists of
two key components: the support set (S) and the query

set (Q), with no overlap between them (S N Q = ().
S = {(x4,yi, ;) lcleK contains a few labeled data points,
each with an image (z; € X), label (y; € ))), and category-
name (¢; € 7). X, Y and T are the image, label and
category-name sets. C' is the number of classes, and K
denotes the number of samples per class, known as C-way
K-shot. On the other hand, Q = {(z;, v, tz)}f;xcii}]v‘” is
the to-be-tested data with N, samples. FSL’s main goal is
to classify Q’s categories using only a few support samples.

Open-World Few-Shot Learning OFSL is more intri-
cate yet valuable for practical applications than FSL, aim-
ing to accurately identify query data categories under
the premise that the support labels are subject to ran-
dom contamination and lack reliability. In OFSL, the
support set consists of clean and noisy samples, i.e.,
S = {Scleanysnoise}ic:XlK7 where Sclean = {(Ihyut7)},
Snoise = { (i, i, 1)} s € y signifies a noisy label, indi-
cating that the image x; belongs to class y; but is mislabeled
as class ;. Meanwhile, £; € T refers to the noisy category
name. ) and 7 are collections of noisy labels and cate-
gory names. The noise sources might be other categories in
the support set or unseen classes, and it’s uncertain during
training which samples are affected by noise.

4. Methodology
4.1. Overview

Departing from traditional OFSL methodologies that typ-
ically depend on additional base data for improving fea-
ture extraction, our paper presents a forward-thinking ap-
proach. We introduce Dell, an inventive method that
employs the Direct-and-Inverse concept to effectively har-
ness CLIP-based foundation models for OFSL. The training
framework is depicted in Fig.2, including 3 steps:

* Feeding the support data into the DelL-Pretrainer (Fig.3)
to correct noisy labels. The DelL-Pretrainer includes two
frozen-parameter foundation models: CLIPN, which uses
inverse reasoning to detect mislabeled data, and CLIP,
which employs direct reasoning for label correction.

» Forwarding the rectified support samples to the frozen
DALL-E model to further enrich the training data.

* Inputting both the rectified original data and the aug-
mented data into our tailor-made DelL-Adapter (Fig.4)
for the final classification. Initially, employing the direct
concept, we combine CLIP and the adapter for label pre-
diction and compute the classification loss. Subsequently,
we bring in contrastive loss, choosing negative samples
through the inverse concept and positive samples based
on prior label predictions. Lastly, we update the adapter
by integrating these two losses.

During the inference stage, only the classification phase
within the DelL-Adapter is required.
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Figure 3. The flowchart of DelL.-Pretrainer. (1) Inverse-phase (Left): We feed all category text information into CLIPN’s text encoder
and all image data into its image encoder to extract the respective features. We then calculate the similarity between these features to gauge
the probability of a sample not belonging to a specific category. This aids in pinpointing samples with noisy labels by comparing them
against the provided labels. (2) Direct-phase (Right): All category information, alongside the identified noisy images, are fed into CLIP’s
text and image encoders. By assessing the similarity between the obtained features, we can effectively correct the noisy labels.

4.2. DelL-Pretrainer for Label Correction

The DelL-Pretrainer (see Fig. 3) is our developed concate-
nated label correction module, primarily consisting of two
key components. It is a plug-and-play freeze module.

Noisy Label Identification (1) We employ an inverse
prompt template to meticulously craft descriptions for
the category names in the support set. The template
can be structured as sentences like “A photo without
[CLASSNAME]”. We denote the inverse prompt for noisy
category names as Template;,, (T).

(2) Following this, we harness frozen CLIPN’s text en-
coder to process these descriptions, yielding informative
text representations for each class. This critical step cap-
tures intricate inverse textual information that accurately
characterizes each category. Simultaneously, we extract
features from the original support images using frozen
CLIPN’s image encoder, allowing us to capture the visual
attributes corresponding to the inverse textual information.
We formulate the processes as:

= Metipny., (Templateim, (7')) (D

ﬁclipnimg = Mclipnimg (X) (2)

where M ciipn,,, and Mcjipn,,,, denote the frozen CLIPN’s

text and image encoders; X € REXK is the collection of
c Rdimxé’

FC”Pntzt

original images; ]?‘Clipnm signifies the features
of textual category names, d¢m denotes the dimension, and
C'is the number of the noisy support label set; f‘dipmmg €
R%mxCK indicates the original image features.

(3) Subsequently, we gauge the similarity between the
text features derived from the class names and the image
features obtained from the original support images by:

f‘inv = (Fclipnimg)TFclipntm (3)

where L;,, € RE5*C is the inverse logits, denotes the
similarity matrix between the original images and the class

names, the element flim, (i, ¢) represents the probability that
the ¢-th sample does not belong to the c-th class.

(4) Afterward, we derive a mask by comparing the pro-
vided label with the corresponding value in I:im]. If the
value exceeds the threshold (e), it is categorized as a noisy
label. The M ask is defined as:

Mask(i, ¢) = { noisy label  if §; = cand L, (i,¢) > €

ignore otherwise
“)
(5) Finally, we identify the noisy images by:
Xysy = Filter(X, Mask) (5)

where X,,5, € RVnsv represents the set of predicted noisy
images, with V,.5, as their count, and F'ilter denotes the
operation for selecting images with noisy labels.

Noisy Label Correction (1) We use a direct prompt tem-
plate to generate elaborate descriptions for the category
names in the support set. This template can take the form of
sentences like “A photo of [CLASSNAME]”, and we
define it as Template;, (T).

(2) Next, we utilize the text encoder from the frozen
CLIP to produce precise and informative text representa-
tions for each class. Simultaneously, we extract features
from the noisy images using the image encoder from the
same frozen CLIP, enabling us to capture the visual charac-
teristics that align with the textual information.

Fclipmt — Mclipmt (Templatedi'r(j-)) (6)
iy = Metipi, (Xosy) )

where M ciip,,, and M iip,,,, denote the frozen CLIP’s text

and image encoders; F;p,., € RY™*C signifies the fea-

. sy dimx N
tures of textual category names; F clipnimg € R v

indicates the features of predicted noisy images.
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(3) Subsequently, we assess the similarity between the
feature representations of noisy images and the textual fea-
tures of class names in the support data. This similarity
measurement establishes a meaningful correspondence be-
tween the textual descriptions and the visual content, en-
abling us to accurately refine and validate the labels associ-
ated with the support set samples.

f‘dir - (Fglzznimy)TFClipt“ (8)
where Ly;, € RN"WXC, the element ﬁdir(i, ¢) represents
the probability that the i-th sample belongs to the c-th class.

(4) We finally use the forecasted labels to replace the
original, erroneous ones:

VT = Refinement()), T, I;dir) 9)

where y and 7 denote the sets of corrective labels and cat-
egory names, respectively. Re finement represents a sam-
pling process to correct labels.

4.3. DALL-E for Data Augmentation

We utilize the frozen DALL-E model to expand the data
for OFSL, generating images based on corrected category
names. This approach, by augmenting and diversifying sup-
port samples, addresses data scarcity in FSL, improving the
model’s generalization and performance on query data. The
augmented data X, € RNaus can be defined as:

Xaug = Mdalle(T) (10)
where M 4411 denotes the frozen DALL-E model.

4.4. DelL-Adapter for Classification

We develop a two-pronged method for final classification
(see Fig. 4). Initially, we merge CLIP with the adapter
for direct reasoning, obtaining predicted labels and classi-
fication loss. We then introduce contrastive learning, using
CLIPN’s inverse reasoning to select negative samples and
determining anchor and positive samples from previous la-
bel predictions for contrastive loss calculation. This tech-
nique successfully integrates the Direct-and-Inverse con-
cept into the trainable adapter, significantly enhancing its
performance and suitability for the inference stage.

Label Prediction We input both the corrected original
data and the augmented data into the CLIP model to ex-
tract their direct-features. Following this, we calculate their
similarity and denote the logits as: L}, .

Folipr.. = Molipa: (Templatedir(j')> (11
Fclimmg = Mclimmg (X, Xaug) (12)
L}lir = (FClipimg)TFCliptzt (13)
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Figure 4. The flowchart of DelL-Adapter. Firstly, in the Direct-
phase (Upper), we calculate the classification loss and determine
the anchor and positive samples. Then, in the Inverse-phase
(Lower), we select negative samples for calculating the contrastive
loss. Finally, we update the adapter based on these two losses.

where F;p,., € R4m*C indicates the CLIP features
of corrective textual category names; c represents the
length of the corrective support label set; Fepp,,, €
R&m>(CK+Naug) denotes the original and augmented im-
age features extracted by CLIP; L}, € R(CK+Naug)xC,

Next, the image features are fed into an adapter structure,
which is constructed with a simple multi-layer perception
(MLP). The output logits are represented as Lfm.

Léir = Madapter(Fclipqymg) (14)

where L2, € RCK+Naug)xC,

Subsequently, we refer to [38] to merge the two sets of
logits as the direct-logits. The purpose of this fusion is to
retain a healthy skepticism regarding the corrected labels
and so it’s necessary to consider the zero-shot classification
capability of CLIP as an essential reference in this process.

Lgir = Ly, + ae? (b Ol —1) (15)

where Ly, € ]R(CK“V'“Q)Xq ® denotes the Hadamard
inner product; « and S are the hyperparameters.

Finally, we compute the classification loss and predict
the labels by:

losscs = CrossEntropy (Softmax (Lgiy)) (16)
labelyreq = argmaz (Softmax (La;r)) 17

Contrastive Learning To further reduce the impact of
noisy labels, we have developed a contrastive learning
method that operates independently of given labels. Within
each mini-batch, we define anchor samples and positive
samples based on the predicted logits. We select the top
Ngn. samples with the highest confidence in each category
as anchor samples, while the samples with confidence rang-
ing from Ny, to Np,s are designated as positive samples.
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Xz;nc = {wll Y; = c,argsort (ng [: Na’ﬂc])} (18)
Xpos = {x;| 9; = ¢, argsort (L, [Nanc : Npos])} (19)
where X7, and X7 . denote the anchor and positive sam-

ples of the c-th class within each mini-batch, respectively.

Following this, we use CLIPN for inverse reasoning to
identify negative samples not belonging to the anchor class,
which can be defined as:

Folipn,., = Metipn,., (Templatemv(j')) (20)
Fclipmmg = Mclipmmg (X, Xaug) (21)
Linv - (Fclipnimg)TFclipnmt (22)

Xﬁeg = {xl‘ yl # ¢, argsort (chnv [: Nneg])} (23)

where Foipn,,, € R¥™*C indicates the CLIPN fea-
tures of corrective textual category names; Fcpn,,,, €
R%m>(CK+Naug) denotes the original and augmented im-
age features extracted by CLIPN; L;,, € R(CK+Naug)xC
is the inverse logits; X7, , denotes the negative samples that
do not belong to the c-th class within each mini-batch, IV,
is the number of negative samples.

Then, InfoNCE [17] loss is defined as:

108Spce = Z —log

ie‘){anc
1 e<mivr;n>/7'
_— Z P (24)
[Xpos (D] | £~ ) Loneuey iy €7

where X0 (%) and X4 (7) represents the positive and nega-
tive samples of anchor-; (., .) denotes the operation to com-
pute the cosine similarity; 7 is the temperature.

Loss Function and Inference The total loss is defined as:

loss = 108S¢is + 7 10SSnce 25)

where 7 is the hyperparameter. In the inference stage, we
can accomplish classification by exclusively relying on Eq.
(17), without the necessity of considering the contrastive
learning branch.

5. Experiments
5.1. Settings

Datasets Our method is tested across 11 renowned and
publicly accessible datasets: ImageNet [9], OxfordPets
[25], Caltech101 [11], DTD [7], Food101 [4], Sun397 [32],
UCF101 [30], EuroSAT [16], FGVC [22], Flower102 [23],
and StanfordCars [19]. We adopted the setting used in CaFo

[38] and APE [40], training our models with 1, 2, 4, 8, and
16 labeled samples per class from the support set, and then
evaluating them on the complete query set. To mimic real-
world conditions, we introduced different levels of noisy
labels into the support data for each dataset.

Comparison Methods We compare foundation model
based methods leveraging frozen foundation models with
adapters for fine-tuning, including CLIP [26], CoOp [39],
Tip-Adapter [37], CLIP-Adapter [13], CALIP-FS [14],
CaFo [38], and APE-T [40].

Implementation Our methodology adeptly integrates the
capabilities of CLIP [26], CLIPN [31], and DALL-E [27].
CLIP and CLIPN are utilized as feature extractors for ex-
tracting direct and inverse features, respectively. We use
ResNet-50 [15] as the backbone for CLIP, and ViT-B-16
[10] as the backbone for CLIPN. DALL-E is key in creat-
ing category-specific images, adhering to the design ethos
of CaFo [38]. Within the DelL-Adapter, the MLP includes
two linear layers, initialized through the Kaiming initializa-
tion. We begin with a learning rate of 0.001, using AdamW
[18] for optimization and CosineAnnealingLR as our learn-
ing rate scheduler. Our training process encompasses data
augmentation methods like random cropping, flipping, and
normalization, executed with a batch size of 256 across 40
epochs. During testing, the batch size is adjusted to 64.

5.2. Performance

On ImageNet Tab. | and Fig. 5 (left) display results un-
der 1-shot conditions with varied noisy label proportions,
and Fig. 5 (right) shows outcomes with a consistent noisy
label ratio of 0.3 and assorted sample sizes per class. These
results yield several key insights: (1) In open-world envi-
ronments, DelL stands out among SOTA methods, achiev-
ing exceptional performance, even with a noise ratio as high
as 100%. Moreover, it strikes a balance between computa-
tional efficiency and high-level performance. (2) In a testing
environment with a 0.3 noise ratio, DelL notably achieves a
success rate of 62.28% in the 1-shot setting, exceeding the
performance of comparable methods in settings up to 16-
shots. (3) Most methods fail to show notable performance
gains with increasing of support data due to the detrimental
effects of noisy labels, but DellL stands out for its excep-
tional ability to resist such disruptions. These results sub-
stantiate DelL as a highly reliable and effective approach,
adeptly addressing the inherent challenges in OFSL.

On Other Datasets To thoroughly assess the resilience of
our DellL model in various conditions, we undertook com-
prehensive evaluations using 10 additional datasets. The
outcomes for datasets like OxfordPets, Caltech101, DTD,
Food101, and Sun397 are depicted in Fig. 6, while the re-
sults for the other datasets are detailed in the Supplementary
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Noisy Label Proportion

Methods Time
0.0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1.0

Linear-probe CLIP (ICML’21) [26] 10min 22.29 19.25 16.51 1398 1148 949 730 5.28 343 1.61 0.08
CoOp (IJCV’22) [39] 45min  57.15 60.04 57.15 56.58 5590 50.70 40.80 3691 2271 944 457
Tip-Adapter-F (ECCV’22) [37] Imin 6132 60.67 60.35 59.97 59.86 59.00 59.94 5892 5832 5735 57.73
CLIP-Adapter (IJCV’23) [13] 2min  61.20 59.21 5745 55.19 53.07 5194 5044 4590 3891 17.74 18.85
CALIP-FS (AAAT’23) [14] 20min  61.35 58.07 57.56 56.86 57.07 56.23 57.07 56.08 58.08 57.56 58.07
CaFo (CVPR’23) [38] 7min  63.80 61.53 60.16 59.99 59.78 58.70 58.64 5798 58.52 58.82 59.03
APE-T (ICCV’23) [40] Imin  62.50 5843 57.00 51.02 54.04 5290 51.72 51.53 51.17 50.80 50.20
DelL (Ours) 2min  62.62 6237 62.16 6228 6237 6242 6233 62.27 6227 62.11 62.02

Table 1. 1-shot accuracy (%) of methods on ImageNet. FM indicates Foundation Models. Time is the training time on one A100 GPU.
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Table 3. Ablation study (%) of different adapters on ImageNet
with 1-shot case. All comparison methods adopt our model archi-
tecture but utilize different final adapters.

Figure 5. Comparison performance (%) on ImageNet. The left
column denotes the results under 1-shot setting with varying pro-
portions of noisy labels. The right column denotes the results un-
der a fixed noisy label ratio of 0.3 on different few-shot settings.

tematically displayed in Tab. 2,

DelL-Pretrainer DelL-Adapter Noisy Label

DALL-E

ID CRC CST CLS 03 07
@ v v 61.44 61.44
® v v v 61.68 61.82
® v v v v 61.82 60.57
@ v v v v 61.95 62.22
® v v v v 61.70 61.52
® v v v v v 62.28 62.27

Table 2. Ablation study (%) of different blocks on ImageNet with
1-shot case. ID, CRC, CST, and CLS are shot for Identification,
Correction, Contrastive Learning, and Classification.

Material. Analysis of these results demonstrates that our
method uniformly outperforms others in open-world sce-
narios across a range of datasets, which underscores its re-
markable robustness. This superior performance is largely
attributed to the synergistic integration of diverse founda-
tional models and the strategic development of specialized
adapters. The consistent outperformance of our method
when compared to others emphasizes its unique effective-
ness in addressing the challenges of OFSL.

5.3. Ablation Study

We carry out detailed ablation studies to ascertain the ef-
ficiency of different components, and the findings are sys-

DelL-Pretrainer The DellL-Pretrainer, crucial for recti-
fying noisy labels, markedly enhances the efficacy of our
pipeline. As illustrated in Tab. 2, integrating the DelL-
Pretrainer as a supportive component results in a signifi-
cant performance boost of at least 0.5% (comparison be-
tween lines @ and ®). This underscores its utility when
used in tandem with other elements of the pipeline. Addi-
tionally, the DelL-Pretrainer uniquely integrates an inverse
concept, forming an identification block that complements
the correction process. The analysis of lines @ and ® re-
veals this block’s vital contribution, accounting for at least
a0.5% increase in performance. Moreover, while the DelL-
Pretrainer is capable of acting as an independent final clas-
sification block, its sole use for this purpose, as shown in
line @, leads to suboptimal results. This highlights the ef-
fectiveness of using the DelL-Pretrainer in conjunction with
other components in the pipeline for optimal performance.

DelL-Adapter The DelL-Adapter, expertly tailored for
OFSL, combines essential classification with supportive
contrastive learning. The latter’s effectiveness is clearly il-
lustrated in Tab. 2 (lines @ and ®), where it shows per-
formance improvements of around 0.1%. To further vali-
date DelL-Adapter’s superiority, we compared it with es-
tablished frameworks like Tip-Adapter and CLIP-Adapter,
and also with adapter-free setups. These comparison results
are detailed in Tab. 3. We observe that the DelL.-Adapter
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Figure 6. Comparison performance (%) on other datasets. The upper column presents the results under 1-shot conditions with different
noisy label proportions, while the lower column presents the results with a fixed noisy label proportion of 0.3 on varying few-shot settings.

consistently outperforms other adapters, delivering impres-
sive performance gains of 1.5% across various noise sce-
narios. These findings emphasize the remarkable attributes
of the DelL.-Adapter, demonstrating its capacity to enhance
performance and maintain stability under noisy conditions.

DALL-E DALL-E plays a crucial role in augmenting the
diversity of samples. A comparative analysis of lines ® and
® reveals that integrating DALL-E results in a notable im-
provement of approximately 0.6% in OFSL tasks.

5.4. Efficiency of Direct-and-Inverse Concept

The foundational idea of this study is to evolve traditional
direct classification prediction into a dual-phase prediction
process, harnessing the novel Direct-and-Inverse concept.
Both the DelL-Pretrainer and DelLL-Adapter are built on this
concept, with each being assessed individually. The experi-
ments of the DelL-Pretrainer and DelL.-Adapter are detailed
in Tab. 4 and Supplementary Material, respectively. Ob-
serving the Tab. 4: The Direct Correction is the method that
labels are identified as noisy and subject to correction if the
predicted probability exceeds 0.85 and does not align with
the initially provided label, and the Direct-and-Inverse Cor-
rection follows Sec. 4.2. We conclude that the strategy of
first identifying incorrect instances using the inverse con-
cept, followed by label correction, is markedly more effec-
tive than direct correction alone, and robustly validates the
effectiveness of the Direct-and-Inverse concept in refining
classification methodologies.

6. Conclusion

To address the challenges of OFSL, we introduce DelL, an
advanced method utilizing the Direct-and-Inverse concept

Methods Noisy Label

01 03 05 07 09
w/o Correction 100 300 500 700 900
Direct Correction 95 247 379 529 681
Direct-and-Inverse Correction 65 172 271 372 471

Table 4. The impact of label correction methods on ImageNet. The
value denotes the number of 1-shot noisy data. Lower is better.

to activate prior knowledge within CLIP-based models. Our
rigorous testing across 11 datasets validates DelL’s effec-
tiveness. Looking ahead, our efforts will be channeled into
two key areas: (1) Broadening the application of OFSL to
cover a more diverse range of practical tasks, going beyond
the current research boundaries. This initiative is aimed
at forging a more robust connection between academic re-
search and tangible real-world implementations. (2) While
acknowledging the strengths of foundation models, we in-
tend to investigate the reasons behind their occasional short-
comings. This exploration is geared towards maximizing
the untapped capabilities of these models, thereby enhanc-
ing their overall utility and impact.
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