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Figure 1. Overview of SplattingAvatar featuring Mesh-Embedded Gaussian Splatting. Our method takes (a) monocular videos as input,

while employing (b) a trainable embedding technique for Gaussian-Mesh association. (c) Animated by mesh through the learned embedding,

the Gaussians render into high-fidelity human avatars. (d) SplattingAvatar demonstrates real-time rendering capabilities in Unity, achieving

over 300 FPS on an NVIDIA RTX 3090 GPU and 30 FPS on an iPhone 13 (images captured in action).

Abstract

We present SplattingAvatar, a hybrid 3D representation

of photorealistic human avatars with Gaussian Splatting em-

bedded on a triangle mesh, which renders over 300 FPS on a

modern GPU and 30 FPS on a mobile device. We disentangle

the motion and appearance of a virtual human with explicit

mesh geometry and implicit appearance modeling with Gaus-

sian Splatting. The Gaussians are defined by barycentric

coordinates and displacement on a triangle mesh as Phong

surfaces. We extend lifted optimization to simultaneously op-

timize the parameters of the Gaussians while walking on the

triangle mesh. SplattingAvatar is a hybrid representation of

virtual humans where the mesh represents low-frequency mo-

tion and surface deformation, while the Gaussians take over

the high-frequency geometry and detailed appearance. Un-

like existing deformation methods that rely on an MLP-based

linear blend skinning (LBS) field for motion, we control the

rotation and translation of the Gaussians directly by mesh,

which empowers its compatibility with various animation

techniques, e.g., skeletal animation, blend shapes, and mesh

editing. Trainable from monocular videos for both full-body

and head avatars, SplattingAvatar shows state-of-the-art ren-

dering quality across multiple datasets. Code and data are

available at https://github.com/initialneil/

SplattingAvatar.

1. Introduction

The demand for personalized, photorealistic, and animat-

able human avatars that render in real-time spans a wide

array of applications, including gaming [48], extended real-

ity (XR) storytelling [10, 19], and tele-presentation [22, 24].

As the quest for digital realism intensifies, practitioners face

a growing challenge: improving the quality of 3D human

models often means increasing the complexity of these mod-

els. This is typically achieved by adding more polygons,

layering skin textures [5], and integrating advanced hair sys-

tems [42]. However, these enhancements invariably lead to
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higher computational demands, creating obstacles in achiev-

ing efficiency and portability in avatar rendering.

In our approach, we categorize the representation of mesh-

based virtual humans into three distinct levels of detail.

The first two levels encompass body motion and surface

deformation, both of which are effectively captured by a

mesh [11, 16, 39]. The third level, however, focuses on geo-

metric details that are crucial for enhancing realism but chal-

lenging to represent with traditional meshes. This level is

not only computationally demanding to render [31] but also

faces limitations due to the rigid connectivity of mesh ver-

tices, which hinders the adaptability to topological changes

and complex or thin structures.

Recent advances in the field have seen a shift towards

using Neural Radiance Fields (NeRF) [32], especially

for capturing high-frequency details in 3D avatar model-

ing [3, 18, 21, 26, 27, 34, 35, 53]. A typical process involves

constructing NeRF in a canonical space and then perform-

ing volume rendering in the posed space. This is done by

tracing ray samples backward from their posed positions to

their canonical origins [21, 34, 35, 53]. However, this reverse

mapping process introduces ambiguities, as a single point in

the posed space might correspond to multiple points in the

canonical space [8, 9], leading to challenges in accurately

rendering details. Additionally, the prevalent use of mul-

tilayer perceptron (MLPs) for motion control [21, 39, 51]

tends to overlook the advantages of mesh-based representa-

tions for capturing surface deformations, an aspect crucial

for realistic avatar movement as highlighted in studies like

DECA [12], CAPE [30], and TalkSHOW [45].

To address the challenges posed by the limitations of

NeRF and MLP-based motion control in capturing high-

frequency details and realistic surface deformations, we in-

troduce a novel solution. Inspired by the recently proposed

Gaussian Splatting technique [23], we propose explicit mo-

tion control of the Gaussians with trainable embeddings on

a mesh. The embedding is described by (k, u, v, d) on the

mesh as Phong surface [38], where (u, v) represents the lo-

cal barycentric coordinates of the embedding triangle k, and

d is the displacement along the interpolated normal vector.

The pose-dependent rotation and scaling adjust dynamically

in response to the mesh warping, while the pose-invariant

properties, i.e., canonical rotation and scaling, color, and

opacity, remain stable and consistent across various poses.

Because the embedding point defined in barycentric coordi-

nates is differentiable only inside the corresponding triangle,

cross-triangle updates must be handled properly [40, 41].

During training, we conduct lifted optimization [38] with

the embedding points walking on the triangle mesh.

Our hybrid representation, Gaussians embedded on a

mesh, can be trained from a monocular video and efficiently

port to Unity that runs in real time (Figure 1) by bringing

together three key advantages. First, the use of the mesh

for representing body motion and surface deformation not

only proves efficient but also allows for high editability. This

flexibility is crucial for adapting the avatar to various sce-

narios and movements. Second, the application of Gaussian

Splatting enriches this model by providing a robust means

to capture high-frequency geometry and appearance details.

This is vital for achieving a level of realism that conven-

tional meshes alone cannot offer. Third, the embedding tech-

nique empowers the Gaussians to be explicitly controlled

by the mesh movements. This integration results in an effi-

cient, clear, and non-ambiguous method for motion control,

significantly reducing the computational load compared to

MLP-based methods.

Furthermore, our approach is distinct from existing hy-

brid models such as AvatarReX [52] and DELTA [14], which

typically segment avatars into body parts like hair, hands,

clothes, and face. Instead, our method achieves a disentan-

glement of motion and appearance. In the SplattingAvatar

framework, although different parts may have specific mo-

tion control, the rendering is uniformly conducted through

Gaussian Splatting. This uniformity achieved by our method

ensures a cohesive and harmonious appearance across all

parts of the avatar.

We summarize our main contributions as follows:

• We introduce a framework that integrates Gaussian Splat-

ting with meshes, offering a new avatar representation

that achieves realism and computational efficiency.

• Our approach applies lifted optimization to avatar model-

ing, allowing for joint optimization of Gaussian parame-

ters and mesh embeddings for accurate reconstruction.

• We demonstrate the capability of real-time rendering and

adaptability to creating diverse avatars through compre-

hensive evaluation and a Unity implementation.

2. Related Work

Mesh-based avatar. The rise of free-viewpoint video in se-

quences of textured meshes has shown the expressiveness of

detailed texture atlas along with as few as 10k triangles [11].

Many efforts [18, 20] have been put into extending this line

of work to build controllable avatars. With the help of human

shape models with strong prior [6, 25, 28, 33] that unwrap

to a unified UV space, texture atlas can be obtained by 2D

image generation supervised through differentiable render-

ing [31, 43]. Such prior models provide consistency across

large motions and can be recovered from monocular videos

or even a single image. To cope with the shape details of

identities and clothes, CAPE [30] predicts displacements on

the vertices with pose-conditioned VAE. Due to the limita-

tion of the base model to topological changes, some treat

the textured mesh as input conditions [31, 36] for image

rendering, while others resort to implicit representations of
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Figure 2. The pipeline of our method. SplattingAvatar learns 3D Gaussians with trainable embedding on the canonical mesh. The motion

and deformation of the mesh explicitly bring the Gaussians to the posed space for differentiable rasterization. Both the Gaussians and

embedding parameters are optimized during training. The position µ is the barycentric point P plus a displacement d along the interpolated

normal vector n. Pose-dependent quaternion and scaling (δq, δs) and pose-invariant quaternion, scaling, opacity, and color (q, s, o, c)
together define the properties of the Gaussians.

the mesh [8, 9, 20, 39], color [16, 20, 39], or materials [4].

Implicit neural avatar. To achieve convincing rendering

beyond the limitation of triangle mesh, especially on the

hair, glasses, and clothes, some recent works [3, 16, 21,

26, 34, 35, 44, 47, 53] focus on constructing NeRF in the

canonical space (usually T-pose of SMPL [28] or neutral

expression of FLAME [25]) and conduct volume rendering

at the posed space. The required backward tracing from pose

to canonical is non-trivial and raises an ambiguity issue. Ex-

isting works propose to adopt pose conditioned inverse LBS

field [17, 34] or to optimize a root-finding loop with mul-

tiple initialization [8, 9, 21]. The increased computational

load upon volume rendering prohibits the potential real-time

applications.

PointAvatar [51], with explicit point primitives, takes

advantage of forward rasterization that only requires non-

ambiguous forward deformation from canonical to pose,

producing photo-realistic appearance and detailed challeng-

ing geometries such as hair and glasses. In transforming to

Gaussian Splatting, we further increase the efficiency and

compatibility with our mesh embedding mechanism instead

of the LBS-based deformation field and achieve two magni-

tude faster rendering speed with on-par quality.

Hybrid avatar representation. First attempts have been pro-

posed to disentangle human avatar modeling into separate

parts with varying properties. AvatarRex [52] learns disen-

tangled models for face, body, and hands. SCARF [13] and

DELTA [14] propose hybrid modeling with textured mesh

for body, and NeRF for hair and clothing. In contrast, our

method handles the disentanglement in terms of motion and

appearance to explicit mesh geometry and implicit Gaussian

Splatting rendering. Different from existing works [3, 20]

that attach features to fixed locations on mesh like mesh

vertices, our trainable embedding enables the Gaussians to

optimize their locations on mesh and distribute unevenly

according to the texture complexity.

3. Method

Overview. Given a sequence of monocular images, each

with a registered mesh template, i.e., the deformed mesh of

SMPL [28] or FLAME [25], we train a hybrid representation

of human avatar as 3D Gaussians [23] embedded on the

canonical mesh. The Gaussians, parameterized by position,

rotation, scale, color, and opacity, are semi-transparent 3D

particles that render into camera views through splatting-

based rasterization.

Each 3D Gaussian is embedded on one triangle of the

canonical mesh in its local (u, v, d) coordinates. The em-

bedding directly defines the position of the Gaussians in

both canonical and posed space. Other than position, each

Gaussian has its own parameters of rotation, scaling, color,

and opacity. With the mesh deformed by animation, the em-

bedding also provides additional rotation and scaling upon

each Gaussian. The additional pose-dependent rotation is

defined by barycentric interpolated per-vertex quaternion

while the additional scaling is defined by the area change of

the embedded triangle.

During optimization, the Gaussian parameters and the

embedding parameters are updated simultaneously. When

the update of (u, v) moves the embedding across the trian-

gle boundary, the barycentric update is re-expressed in the

neighboring triangle as if the Gaussian is walking on the

mesh. To support embedding, we adapt the clone and split

scheme of 3D Gaussians [23] to better suit our needs.

Embedding on mesh. Inspired by the Phong shading in
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computer graphics, Phong surface [38] defines the position

and normal of a point inside a triangle. For the point P on

triangle k with barycentric coordinate (u, v), its position

and normal is a linear interpolation of the triangle’s vertices

{V1, V2, V3} and per-vertex normals {n1,n2,n3}:

P = V(k, u, v) = u ∗ V1 + v ∗ V2 + (1− u− v) ∗ V3 (1)

n = N (k, u, v) = u ∗n1 + v ∗n2 +(1− u− v) ∗n3 (2)

where V maps triangle index k and barycentric coordinates

(u, v) to a point on the mesh and N the interpolated normal.

We define the position of a Gaussian, i.e., the mean µ, by

a displacement d along the interpolated normal vector:

µ = P + d ∗ n (3)

Embedding E = {k, u, v, d} approximates a first-order con-

tinuous space around the mesh surface.

As proposed by Zielonka et al. [53], for the corresponding

triangle in the canonical and posed space at frame t we

compute the matrix {Rcano, Rpose} based on the triangle’s

tangent, bitangent, and normal to track the triangle rotation

from canonical to pose, noted that the notation t is skipped.

The rotation matrix is then converted to a quaternion, and

we calculate the per-vertex quaternion qV by area-weighted

average from surrounding neighbor triangles:

Rk = RcanoR
−1
pose (4)

qV =

∑

k∈ΩV
Akqk

∑

k∈ΩV
Ak

(5)

where ΩV is the neighbor triangles of vertex V , Ak and qk
are the triangle’s area and quaternion respectively. For an

embedding Ei with quaternions {q1, q2, q3} calculated on

the corresponding triangle vertices at frame t, the barycen-

tric interpolated rotation δqi,t is multiplied to the canonical

rotation qi of the Gaussian in the canonical space:

δqi,t = u ∗ q1 + v ∗ q2 + (1− u− v) ∗ q3 (6)

qi,t = δqi,t ∗ qi (7)

The same applies to scaling where the area change of the

embedded triangle is used to represent the scaling caused

by deformation: si,t = (Apose/Acano)si. While the original

implementation of Gaussian Splatting [23] represents color

in view-dependent spherical harmonics, we choose to turn it

off for simplicity [29].

We perform initialization by randomly selecting 10k pairs

of triangle indices and barycentric coordinates on the canoni-

cal mesh. We set the barycentric coordinates to be the current

(u, v) of embeddings and initialize all the d to be zero. With

the position of the Gaussians calculated from the embed-

dings, we initialize other properties of the Gaussians accord-

ing to their original definitions [23]. Initially, the Gaussians

100 iterations 1000 iterations 30000 iterations

10000 Gaussians 26849 Gaussians 266078 Gaussians

Figure 3. The development of Gaussian embeddings on mesh.

Each line segment indicates the position of one Gaussian displaced

from its embedding point on mesh. Gaussians for off-surface ge-

ometries like the hair have positive displacements while others turn

to have negative displacements because when the mesh surface is

correctly aligned to the geometry like in the facial area, the means

for the Gaussians will be inside the mesh.

are positioned on the surface of the mesh. With the training

proceeds with more poses, the embeddings generally bring

the Gaussians to approximate the actual geometry and den-

sify in the regions with rich texture. Figure 3 illustrates the

development of the embeddings.

Differentiable rendering of Gaussian Splatting. With the

position, rotation, and scaling of the Gaussians updated by

the mesh deformation at frame t, we perform differentiable

Gaussian rendering [23] to the observed camera view(s).

The Gaussian in space is defined by its mean µ and a 3D

covariance matrix Σ.

Gi,t(x) = e−
1

2
(x)TΣ−1

i,t
(x) (8)

Σi,t = Ri,tSi,tS
T
i,tR

T
i,t (9)

where Ri,t is the rotation matrix constructed from qi,t, and

Si,t the scaling matrix from si,t. Given the world-to-camera

view matrix W and the Jacobian J of the point projection

matrix. The influence of the Gaussian is splatted to 2D [54]:

Σ′ = JWΣWTJT (10)

The image formation of Gaussian Splatting is akin to NeRF,

where the same volume rendering formula is applied to the

blending from near to far. The color C of a pixel rendered

by N Gaussians is given by a series of α-blending:

C =
N
∑

i=1

ciαi

i−1
∏

j=1

(1− αj) (11)

with αi evaluated from the 2D covariance, and an opacity in

logit oi with sigm() being the standard sigmoid function:

αi(P ) = sigm(oi) exp(−
1

2
(P−µi)(Σi)

−1(P−µi)) (12)

The Equation 11 is implemented in CUDA with a for

loop for each pixel, while in our Unity implementation, each

Gaussian is drawn by a front-parallel Quad primitive based
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on the projection and 2D covariance. We resort to the stan-

dard rasterization pipeline of the rendering engine to enable

α-blending with these semi-transparent Gaussians.

Due to limited viewing angle and pose variations from

monocular video, we propose a scaling regularization term

to prevent Gaussians from growing long and thin. A random

background color is generated every iteration to mix with

the rendered image I and ground truth image Igt, providing

important cues for the silhouette. The loss is the sum of L1,

Lmse, a perceptual loss [49], and a scaling regularization.

L = L1 + λlmse
Lmse + λlLlpips + λsLscaling (13)

Lscaling(i) =

{

|ŝi|, ŝi > max(Ts, Tr ši)
0, otherwise

(14)

With si ∈ R
3 being the scaling of a Gaussian, ŝi and ši

are the maximum and minimum scaling values respectively.

The scaling regularization is posed on ŝi when it is both long

(larger than Ts) and thin (larger than Tr times ši). Please see

Section 4.3 for an ablation study on the regularization term.

Walking on a triangle mesh. The notion Lifted Optimiza-

tion arises in the model-point registration for hand track-

ing [38, 40, 41] in contrast to Iterative Closest Point (ICP),

where the solve for model pose and correspondences are

lifted to be simultaneous. We extend this notion to our avatar

training, where the properties of the Gaussians and the train-

able embeddings are optimized simultaneously. The barycen-

tric coordinate of a point P is (k, u, v) defined within trian-

gle k. When the learned update Q = (k, u, v) + (δu, δv) is

outside triangle k, we find the intersection P ′ on the shared

edge of the adjacent triangle k′ and re-express the remaining

update in k′ as Q′ = P ′ + (δu′, δv′). Because the barycen-

tric coordinates are agnostic to the triangle shape, without

loss of generality, the re-expression is conducted by concep-

tually treating two adjacent triangles as right triangles with

the intersection on the hypotenuse. The update is iteratively

re-expressed until it ends inside the final triangle. We show

the re-expression process in Figure 4. The detailed steps are

presented in Algorithm 1. Noted that we omit the conceptual

re-ordering of the vertices.

Optimization. We use Adam to optimize the Gaussian pa-

rameters and the embedding parameters. The original learn-

ing rate attenuation on position [23] is instead applied to the

embedding parameters. We record the current barycentric

(u, v) and optimize for (δu, δv, d). The triangle walking in

Algorithm 1 is implemented as a pybind11 module in C++.

When an embedding is being transferred to another triangle,

we reset its corresponding optimizer state of the (δu, δv, d).
The densification process [23] plays an important role in

allocating more Gaussians to where in need. In the clone

and prune process, the embedding parameters are copied

𝑄′′෠𝑄𝑃
𝑄′

𝐵
𝐶

𝐷
𝐸𝐴 𝑃 𝑃′ 𝑄′′

𝐷

𝐶

𝐵
𝐴

𝑣

𝑢 𝑃′
𝐸

𝐵

𝐷
𝐴

𝑣

𝑢
෠𝑄

b) Triangle walking

CAB → DBA c) Triangle walking

BAD → EDAa) Barycentric update 

       starting from P

𝑃′ 𝑃′′ 𝑃′′𝑃′′

Figure 4. Walking on triangles for embedding update. a) The

recursion process of walking on a triangle mesh. b) The update

P + δ starting from triangle CAB is re-expressed as P ′ + δ′ in

triangle DBA, and c) re-expressed again in EDA. The re-expression

between two triangles is conducted by conceptually treating them

as two right triangles adjacent to each other on the hypotenuse.

Algorithm 1 Walking on triangles

Input: k, u, v, δu, δv
Output: k̂, û, v̂

function WALKONTRIANGLES(k, u, v, δu, δv)

P ← (u, v)
Q← (u+ δu, v + δv)
if Q is inside triangle then

Return (k,Q.u,Q.v)
end if

Intersect P-Q with hypotenuse* on (u′, v′)
▷ *reorder vertices if needed

δu′ ← δu− (u′ − u)
δv′ ← δv − (v′ − v)
Return ReExpress(k, u′, v′, δu′, δv′)

end function

function REEXPRESS(k, u′, v′, δu′, δv′)
k̂ ← adjacent of k
û← 1− u′, v̂ ← 1− v′

δû← −δu′, δv̂ ← −δv′

Return WalkOnTriangles(k̂, û, v̂, δû, δv̂)
end function

(k̂, û, v̂)←WalkOnTriangles(k, u, v, δu, δv)

or deleted in the same way as Gaussian parameters. In the

split process, when a new position µ̂ is sampled from the

Gaussian, we solve a mini problem with triangle walking to

find the new embedding:

Ê = argmin
k,u,v,d

∥V(k, u, v) + d ∗ N (k, u, v)− µ̂∥22 (15)

Unity implementation for mobile device. With maximum

compatibility in mind, we made SplattingAvatar solely rely

on the warped mesh. Before exporting to Unity, we uploaded

the canonical mesh in .obj format to Mixamo [1] for auto-

rigging. In total, we exported one .ply file of the Gaussians,

one .json file describing the embedding, and one .fbx file

from Mixamo to Unity. Note that the .fbx file can be rigged
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PointAvatar INSTA NHAOurs+FLAMEGround Truth Ours+NHA

Figure 5. Qualitative comparison on head avatars. SplattingAvatar produces photorealistic rendering for avatars with high-quality details

especially in the eye and hair regions. Even the light reflection on the glasses is well reconstructed. Both PointAvatar [51] and NHA [16] can

reconstruct good geometries but the rendering quality is limited by their underlying representations, i.e., points and texture atlas respectively.

Compared to INSTA [53], our trainable embedding scheme produces better quality for off-surface geometries, especially for the glasses. The

green arrows highlight where our results have better consistency with Ground Truth, while the red arrows point to where other methods show

significant artifacts or noise. Please see the supplemental materials for illustrations of the error map.

by any other software for customized needs, as long as the

triangle order is maintained.

We implemented the Gaussian renderer in Unity’s com-

pute shaders, starting from sorting all Gaussians by the

z-axis in camera coordinates from near to far. Based on

the calculated 2D covariance Σ′, one front-parallel quad

primitive is drawn for every visible Gaussian centered at

its position. This one-primitive-one-Gaussian strategy is im-

portant for the game engine to properly handle the occlu-

sion of other regular objects. For every pixel to draw in the

fragment shader, our implementation emits color with al-

pha pre-multiplication and sets the blend function to (ONE,

ONE_MINUS_SRC_ALPHA). Our Unity program achieves a

high performance of over 300 FPS on a modern GPU while

maintaining a steady 30 FPS on an iPhone 13.

4. Experiments

To demonstrate the effectiveness of SplattingAvatar, we com-

pared it with state-of-the-art (SoTA) methods in two different

types of datasets for head and full-body avatars.

Method PSNR↑ SSIM↑ LPIPS↓

NHA [16] 20.29 0.883 0.145

INSTA [53] 26.42 0.924 0.080

PointAvatar [51] 27.84 0.913 0.067

Ours+FLAME 28.19 0.931 0.063

Ours+NHA 28.86 0.931 0.060

Table 1. Quantitative comparison on head avatars. Both vari-

ations of our method outperform existing methods in terms of

average photometric errors. With detailed meshes from NHA [16],

Ours+NHA performs the best based on the metrics. However, we

observe better visual quality with Ours+FLAME in the inner re-

gions of the rendered image.

4.1. Datasets

Monocular video for head avatar. Taking a single monocu-

lar video to construct a head avatar for the given subject, our

method takes as input images, masks, camera parameters,

and tracked FLAME meshes, denoting Ours+FLAME. We
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Figure 6. Qualitative comparison on PeopleSnapshot [2]. We show the results on PeopleSnapshot (columns 2–4) and novel pose animation

(columns 5–6). SplattingAvatar produces photorealistic rendering for full-body avatars, especially in the facial area, and captures thin

structures like the accessory on the wrist.

male-3-casual male-4-casual female-3-casual female-4-casual

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Anim-NeRF [7] 29.37 0.970 0.017 28.37 0.960 0.027 28.91 0.974 0.022 28.90 0.968 0.017

InstantAvatar [21] 30.91 0.977 0.022 29.77 0.980 0.025 29.73 0.975 0.025 30.92 0.977 0.021

Ours 33.01 0.982 0.020 30.99 0.982 0.029 30.81 0.978 0.028 32.57 0.981 0.018

Table 2. Quantitative comparison on PeopleSnapshot. Compared to two SoTA methods, we achieve significant improvements in pixel-wise

quality with PSNR and SSIM. All three methods achieve good perceptual quality in terms of LPIPS where the metrics are close.

evaluated our approach with several SoTA methods on a com-

bined dataset from NHA [16], NerFace [15], INSTA [53]

and PointAvatar [51], including 10 subjects covering dif-

ferent videos captured with DSLR, smartphones and from

the Internet. The pre-processing pipeline of IMavatar [50]

and INSTA [53] was altered to apply DECA [12] for face

tracking, RVM [37] for segmentation, and BisenetV2 [46]

for face parsing. For each video, the last 350 frames were

used as testing samples. Because our method can directly

be animated by the given mesh, we further unleashed its po-

tential by training and testing on the generated meshes from

NHA [16] which have more geometry details. This variation

is referred to as Ours+NHA.

PeopleSnapshot. We conducted a quantitative evaluation of

the rendering quality of full-body avatars on the PeopleSnap-

shot [2] dataset. Following the protocol of InstantAvatar [21],

we used SMPL meshes refined by Anim-NeRF [7]. Our

method demonstrates the generalizability to novel poses

through qualitative analysis in Section 4.2.

4.2. Comparison with SoTA

Head avatar. To evaluate the rendering quality of the

learned avatars, we animated SplattingAvatar with the regis-

tered meshes of testing images. For Ours+NHA, we trained

NHA [16] on the training set and extracted the final meshes

for both the training and testing images, which were further

used for the training and testing of our method respectively.

We conducted a comparative analysis of SplattingAvatar

against INSTA [53], PointAvatar [51], and NHA [16]. As

depicted in Figure 5, our method achieves superior quality

in terms of improved details in the eye and hair regions, and

even being able to capture the light reflection on the glasses.

For Ours+FLAME, though the off-surface geometries like

hair and glasses are not fully represented by meshes, our

method can handle the rendering decently because the em-

beddings are optimized to find correct motions from nearby

triangles. Please see Table 1 for quantitative evaluations.

Full-body avatar. We made a comparison to InstantA-

vatar [21] and Anim-NeRF [7] on PeopleSnapshot. For In-
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stantAvatar [21], a complete training was performed for 200

epochs as suggested in the most recent version of the au-

thor’s code. Image quality metrics in Table 2 demonstrate

the effectiveness of our method in terms of the lowest pixel-

wise errors. We qualitatively show the comparison of render-

ing quality of testing images in Figure 6, together with the

demonstration of generalizability to novel poses. Our repre-

sentation is friendly to thin structures like the accessory on

the wrist. Our approach produced better quality overall and

especially in the facial area compared to InstantAvatar [21],

but slightly more artifacts under the shoulder due to very

limited pose variations in the training set. We believe this

can be much improved with more training poses.

4.3. Ablation Study

Trainable embedding. The key component of our method

is the trainable embedding on the mesh. We conducted an

ablation experiment by replacing it with fixed embedding

on mesh and a trainable local shift ∆x ∈ R
3 per Gaussian.

Without trainable embedding, the Gaussians encountered

difficulties in following the mesh correctly. The right column

of Figure 7 shows the irregular rendering artifacts without

trainable embedding.

Regularization. In the optimization process of Gaussian

Splatting, some Gaussians turn to become long and thin,

generating artifacts when rendered into novel poses. We

show the results without the scaling regularization in the

middle column of Figure 7.

w/o scaling termOurs w/o trainable embedding

Figure 7. Ablation study. Without the scaling regularization term,

Gaussians that are long and thin cause needle-like artifacts. Without

trainable embedding, Gaussians do not follow the movement of the

mesh tightly, leading to irregular rendering results. The applica-

tion of our trainable embedding and the scaling term successfully

removes most of the artifacts when rendered into novel poses.

4.4. Discussion

Discussion on driving mesh. Considering efficiency, com-

patibility, and portability, SplattingAvatar is designed to

tightly rely on the motion and surface deformation of the

underlying mesh. In the comparison between Ours+FLAME

and Ours+NHA, we observe that the driving mesh should

focus on the motion instead of fully reconstructing the exact

geometry. In Figure 8 we show that when the mesh with

vertex offsets from NHA [16] is applied, the detailed surface

deformation improves the generalizability of SplattingAvatar

to large poses. However, in the second and third row of

Figure 5, the mesh from FLAME that captures the correct

motion of the glasses rather than the shape is driving the best

rendering quality of SplattingAvatar. To perform textured

mesh rendering, the mesh of NHA [16] is seamed in the

mouth region and deformed to fit the shape of the glasses,

yet both being unhelpful to the quality of Ours+NHA.

Limitations and future work. As discussed above, our

method depends on the motion representation ability of the

driving mesh. With current FLAME and SMPL models, we

do not have separate motion representations for clothes and

hair. We believe SplattingAvatar can support future works

on human avatars with disentangled mesh representations,

e.g., separate meshes for clothes and hair stands.

Ours+NHA Ours+FLAME

Figure 8. Comparison between Ours+FLAME and Ours+NHA.

The better aligned mesh from NHA [16] improves the generaliz-

ability of SplattingAvatar to large pose variations.

5. Conclusion

In this paper, we have proposed a hybrid representation for

human avatar modeling featuring Gaussian Splatting with

trainable embeddings on a mesh. We extend lifted optimiza-

tion to simultaneously optimize the parameters of the Gaus-

sians and their embeddings. Our method leverages the advan-

tages of the explicit motion representation with a mesh and

implicit rendering capability of Gaussian Splatting. Com-

pared with SoTA methods, our approach achieves the best

rendering quality for both head and full-body avatars re-

constructed from monocular videos and runs at real-time

frame rates on a mobile device. Our method lays a founda-

tion for future work in Gaussian Splatting manipulation with

mesh-based motion control.
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