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Abstract

The recent advance of deep learning technology brings
the possibility of assisting the pathologist to predict the
patients’ survival from whole-slide pathological images
(WSIs). However, most of the prevalent methods only
worked on the sampled patches in specifically or randomly
selected tumor areas of WSIs, which has very limited ca-
pability to capture the complex interactions between tumor
and its surrounding micro-environment components. As a
matter of fact, tumor is supported and nurtured in the het-
erogeneous tumor micro-environment(TME), and the de-
tailed analysis of TME and their correlation with tumors
are important to in-depth analyze the mechanism of cancer
development. In this paper, we considered the spatial inter-
actions among tumor and its two major TME components
(i.e., lymphocytes and stromal fibrosis) and presented a Tu-
mor Micro-environment Interactions Guided Graph Learn-
ing (TMEGL) algorithm for the prognosis prediction of hu-
man cancers. Specifically, we firstly selected different types
of patches as nodes to build graph for each WSI. Then, a
novel TME neighborhood organization guided graph em-
bedding algorithm was proposed to learn node representa-
tions that can preserve their topological structure informa-
tion. Finally, a Gated Graph Attention Network is applied to
capture the survival-associated intersections among tumor
and different TME components for clinical outcome predic-
tion. We tested TMEGL on three cancer cohorts derived
from The Cancer Genome Atlas (TCGA), and the experi-
mental results indicated that TMEGL not only outperforms
the existing WSI-based survival analysis models, but also
has good explainable ability for survival prediction.

1. Introduction
Cancer is an aggressive disease seriously affecting the
health and living quality of human beings[16][35]. It is re-
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ported that the number of cancer patients will dramatically
increased and is expected to achieve 28.4 million cases in
2040 [12]. Hence, it is very important to accurately predict
the patients’ clinical outcome including the survival time,
which in turn can help doctors design individual therapeu-
tic plan at the early stage [3][15].

In the past decade, image-based technologies have
shown their great potential in healthcare researches. Among
a wide variety of imaging bio-markers including CT
images[21], Ultrasound images [28] and MRI images [34]
collected from the patients, the whole-slide pathological im-
ages (WSIs) are generally considered as the golden standard
for the diagnosis and prognosis of human cancers since they
can reveal the morphology and arrangement of cells reflect-
ing the progression of human cancers[1][39]. Because of
the heterogeneous patterns shown in WSIs [26] that will
lead to the large inter-observation variation among differ-
ent pathologists, it is necessary to design machine learning
models to help pathologists assess the survival risks of hu-
man cancers.

Recently, with the rapid development of the deep learn-
ing technology [23], training WSI-based deep learning
models for cancer survival analysis have drawn much atten-
tions [37][33]. In comparison with the traditional survival
analysis models requiring the heavy burden of feature engi-
neering, the deep learning models can automatically learn
survival-associated representations from WSIs to improve
the prognosis results. However, one major challenge for an-
alyzing WSIs is that a WSI is usually with huge size (e.g.,
100,000-by-100,000 pixels), and it is impossible to directly
feed them into the deep neural network for model training .

To address the above challenges, the existing studies can
be categorized into two folds, i.e., patch-level and WSI-
level annotation methods. The patch-level annotation meth-
ods [6] [42][13] need the experts to annotate the key patches
such as the tumor patches from the WSIs at first, and then
used those patches for deep model training. However, such
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patch pre-selection step requires the extra annotation efforts
from the pathologists, which is impractical especially in the
case that a great number of WSIs need to be labeled. To re-
duce such annotation burden, another category of methods
only requiring WSI-level annotations are developed. The
WSI-level annotation methods [43][5] [25] [36] treat WSIs
as bags while the patches in WSIs are regarded as instance.
Then, the multi-instance learning (MIL) algorithms are de-
signed to aggregate the patch-level representations to esti-
mate the target of WSIs via the pooling [32] or attention
strategy [40]. Besides the MIL methods, some studies at-
tempted to apply the graph convolutional network to learn
the global representation of WSIs [41][18][8], which can
also achieve satisfied prognosis results.

Although much progress have been achieved, the exist-
ing studies have limited ability to capture the complex in-
teractions among tumor and its micro-environment compo-
nents since the selected patches are randomly generated or
derived from the tumor areas of WSIs [41][18]. As a mat-
ter of fact, it is widely recognized that cancer is not only
achieved by unlimited growth of the tumor cells, but also
supported, stimulated, and nurtured by the tumor micro-
environment (TME) mainly composed of stromal fibrosis
and lymphocytes [11]. For instance, the existing studies
have demonstrated that the prominent interactions between
lymphocytes and tumors will result in low survival risk be-
cause of the immune system could control the tumor growth
through activation of adaptive and innate immune mech-
anisms [30], while the rich intersections between tumor
and stromal fibrosis usually promote the tumor progression
since they can facilitate the invasion and metastasis of tu-
mors [29]. It can be expected that better prognosis results
can be achieved if the developed prognosis model takes the
intersections among tumor and different TME components
into consideration. Moreover, to the best of our knowledge,
all the existing WSI-based graph learning algorithms di-
rectly applied the pre-trained network i.e., ResNet101 [44],
VGG16 [18] on the selected patches to extract node fea-
tures. However, such node representations neglected to take
the topological structure of TME into consideration, which
is closely related to the development of cancer [11]

Accordingly, in this paper, we proposed a Tumor
Micro-environment Interactions Guided Graph Learning
(TMEGL) algorithm for the prognosis prediction of human
cancer (https://github.com/tmegl/tmegl-v1).
The main contribution of this study can be summarized into
the following three aspects:

1) We developed a graph learning algorithm (i.e., TMEGL)
that considers the interactions among tumor and different
TME components (i.e., lymphocytes and stromal fibrosis)
for survival analysis of human cancers.

2) We proposed a novel graph embedding algorithm preserv-
ing the spatial organization of tumor and different TME

components extracted from the graph domain.
3) We developed a gated graph attention networks (GGATs)

for predicting patients’ survival from WSIs, where the
gated graph convolution layers are used to update the
node representation from the neighbourhood nodes with
the same node type, while the graph attention layers
are used to characterize the intersections among different
types of nodes.

2. Related Work
2.1. Analyze WSIs based on Patch-level Annotation.

The patch-level annotation methods required the patholo-
gists to select a bunch of patches that can represent the ag-
gressiveness of the cancer for model training. Based on the
selected patches derived from WSIs, the study in [7] has
designed a computational pipelines that can extract various
types of hand-crafted features to conduct the diagnosis and
prognosis tasks. Recently, with the remarkable success of
deep learning, many patch-level methods are implemented
under deep neural network frameworks [42][13] [6]. For in-
stance, Zhu et al [42] firstly developed a deep CNN model
for predicting patients’ survival from the pathological im-
ages. Cheng et al [6] applied the deep autoencoder to learn
the cell representation from the extracted patches, followed
by applying the Delaunay triangulation graph to explore the
difference of cell-cell interactions between low and high
survival risk patients. Moreover, by considering the num-
ber of annotated patches is inadequate for training an effec-
tive deep learning model, some patch-based methods also
adopted the data augmentation [14][24] or transfer learning
strategy [38] to help improve the prognosis performance of
human cancers.

2.2. Analyze WSIs based on WSI-level Annotation.

Different from the patch-level methods requiring the huge
annotation efforts from the pathologists, the WSI-level
methods only relying on WSI-level annotations for analyz-
ing pathological images[43][5][25][36]. Most of the ex-
isting WSI-level methods are designed under the multi-
instance learning (MIL) framework, where a WSI is treated
as bag and the instances refer to the patches sampled from
the WSI. In order to efficient aggregate patch-level in-
formation into WSI-level representations, the studies in
[40][22][20] designed various ways of global pooling over
patch-based instances. In addition, Li et al [9] have pro-
posed a dual-stream multiple instance learning network for
the classification of WSIs and Chen et al [5] have pre-
sented the Transformer based method taking the position
information into consideration for survival analysis of hu-
man cancers. Besides the MIL framework, several studies
[18][41][8][10][10] considered the spatial structure among
the extracted patches and applied the graph convolutional
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Figure 1. The flowchart of the proposed TMEGL method. Firstly, the patches with different types (i.e., Lymphocytes, Tumor and Stromal)
are extracted from the whole-slide pathological image for graph construction. Secondly, a tumor micro-environment organization guided
graph embedding algorithm is proposed to learn node representations from the extracted patches. Thirdly, a gated graph attention network
is presented to capture the intersections among different types of nodes. Finally, the Cox model is applied for survival prediction.

network (GCN) to predict the clinical outcome of cancer
patients. However, these graph learning methods either
adopted the pre-trained networks or graph structure infor-
mation for node representation, which have limited ability
to reveal the topological organization of the tumor micro-
environment for survival prediction.

3. Method
Fig. 1 shows the schematic diagram of our proposed
method, which is consisted of the following four major
steps. Specifically, for each whole-slide pathological image
(WSI), we firstly extracted different types of image patches
(i.e., Tumor, Lymphocytes and Stromal Fibrosis) as nodes
to construct a graph. Then, we considered the tumor micro-
environment (i.e., TME) structure of each node, and pro-
posed a TME neighborhood organization guided graph em-
bedding algorithm to learn node representations. Based on
the learned node embeddings, a gated graph attention net-
works (GGAT) is applied to characterize the intersections
among tumor and different TME components. Finally, the
Cox model is applied for the survival prediction task.

3.1. WSI Pre-processing and Graph Construction

Since each of the collected WSIs is of large size (e.g.,
100,000-by-100,000 pixels). We first divided it into non-
overlap patches with the size of 512×512. Then, by consid-
ering the generated patches may not contain enough tissues,
we selected the patches whose image density are larger than
0.7 for further analysis [32]. Here, the image density is
calculated as the percentage of non-white (at least one of
the red, green, and blue values was below 200 in the 24-
bit RGB color space) pixels in that patch. Next, based on
the annotated dataset released by [1], we followed [1] and
trained a U-net++ network for the semantic segmentation
of tumor, stromal and lymphocytes regions in each patch.

Both the experimental results reported in [1] and our study
indicated that the utilized tissue segmentation model could
achieve to the dice ratio of 0.858, which are promising for
further analysis. After getting the pixel-level segmentation
results of each valid patch, we calculated its tumor, lympho-
cytes and stromal area ratios and selected 300 patches with
the largest ratios for each patch type.

Based on the extracted tumor, lymphocytes and stro-
mal patches, we constructed a graph for each WSI. Here,
given patches as nodes, we adopted the K-Nearest Neigh-
bors (KNN) algorithm to construct the graph basing on the
Euclidean distances between patch pairs, and the number of
nearest neighbors for each node is set as 50.

3.2. TME Neighborhood Organization Guided
Graph Embedding for Nodes Representations

For each patch in the constructed graph, the existing studies
usually applied the pre-trained network (e.g., ResNet-101
and VGG-16) to acquire its node representation[44][18] .
However, these feature extraction strategies cannot measure
nodes similarity based on their tumor micron-environment
(TME) organization, and it is widely recognized that the
topological organization of TME plays an important role in
the progression of human cancers [11]. For instance, a tu-
mor region surrounded with tumor-infiltration lymphocytes
will provide more chance to present immune response [30]
to slow down the tumor progression, and thus its represen-
tation should be different from regular tumor patches. For
another example, since the stromal tissues usually reveal
immunosuppressive property during cancer progression [2],
the representations of two lymphocyte patches should be
similar if they are all surrounded with stromal fibrosis. In
order to preserve such topological similarity in TME, we
proposed a TME neighborhood organization guided graph
embedding algorithm to separately learn the representations
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Figure 2. The Scheme of the Proposed TME Neighborhood Organization Guided Graph Embedding Method on Tumor Nodes.

of each type of nodes. In what follows, we will introduce
the proposed graph embedding algorithm on tumor nodes
(shown in Fig.2), which can be easily extended to other
node types (i.e., Lymphocytes and Stromal).

More specifically, let {vM1 , vM2 , ..., vM300} denotes the ex-
tracted 300 tumor nodes in graph G constructed from a
WSI. We explored the similarities among them by consider-
ing their TME neighborhood organizations. Here, the TME
organization of vMi with k-hop can be represented as:

(qMi )k = [
(NM

i )
k

(Ni)
k
,
(NL

i )
k

(Ni)
k
,
(NR

i )
k

(Ni)
k
] (1)

Where (Ni)
k indicates the number of nodes that k-hop away

from xM
i , (NM

i )k, (NL
i )

k and (NR
i )k represent the num-

ber of tumor, lymphocytes and stromal nodes in the k-hop
neighborhood of xM

i , respectively. Obviously, (qMi )k indi-
cates the proportions of different TME components that can
characterize the topological organizations of vMi . In this
study, in order to describe the spatial organization of TME
at multiple distance levels, we combined the TME neigh-
borhood information from different hop ranges (i.e., 1-hop,
2-hop and 3-hop) to represent each node as follows:

qMi = [(qMi )1, (qMi )2, (qMi )3] (2)

Then, the TME organization similarity between tumor
nodes vMi and vMj can be obtained by:

s(vMi , vMj ) =
qMi (qMj )

T∥∥qMi ∥∥∥∥qMj ∥∥ (3)

Based on the pairwise similarity information among differ-
ent nodes, we applied the spectral clustering algorithm to
aggregate all tumor nodes into B groups, and the elements
in the t-th group can be denoted as:

PM
t = {PM

t1 , PM
t2 , ...PM

t|PM
t |}, t = 1, 2, ..., B (4)

where
∣∣PM

t

∣∣ represents the cardinality of PM
t . For the t-th

group, its centroid node PM
tc refers to the sample, which has

the highest average similarity with other data points in PM
t .

Based on the clustering results, we defined a intra-group
similarity vector (So

t )
tra ∈ R|PM

t |−1 that can measure the
neighborhood organization similarity between the centroid
node and the remaining elements in PM

t :

(So
t )

tra = norm([s(PM
t1 , PM

tc ), ..., s(PM
t|PM

t |, P
M
tc )]) (5)

Where the norm(.) operator is used to normalize the vec-
tor to ensure that the sum of its elements equals to 1. On
the other hand, we also considered the inter-group similar-
ity among the derived B groups by calculating their cor-
responding centroid nodes similarities. Hence, the inter-
group similarity vector for the t-th group (So

t )
ter ∈ RB−1

can be defined as:

(So
t )

ter = norm([s(PM
1c , P

M
tc ), ..., s(PM

Bc, P
M
tc )]) (6)

Next, given the embeddings of the tumor nodes via the em-
bedding network, we applied the same way to calculate
their intra-group similarity (Se

t )
tra and inter-group similar-

ity (Se
t )

ter according to the clustering results on graph do-
main (shown in Eq.(4)). Then, in order to learn the node
embeddings that can preserve the TME organization simi-
larity extracted from the graph, the objective loss function
takes the form of Kullback–Leibler (KL) divergence on the
B groups and is formulated as follows:

L =

B∑
t=1

KL((Se
t )

tra
, (So

t )
tra

) + λ((Se
t )

ter
, (So

t )
ter

) (7)

As shown in Eq.(7), we optimize the objective to derive the
TME organization associated embeddings that can preserve
both intra-group and inter-group similarity information, and
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λ is a regularization parameter could be tuned via cross-
validation. Such TME neighborhood organization guided
graph embedding algorithm can also be applied to calculate
the representations for other types of nodes.

3.3. Gated Graph Attention Networks for Survival
Analysis of Human Cancers

Although the interactions among different types of TME
components is more relevant to cancer prognosis, recent
studies also demonstrated that the interactions within the
same type of TME components will affect their status [12].
Inspired by the above discovery, we proposed a Gated
Graph Attention Network consisted of the Gated Graph
Convolution (i.e., GGC) layers and the Graph Attention
(i.e., GAT) layers to capture the interactions among differ-
ent TME components.

Specifically, given patches as vertices for each graph G
constructed from a WSI. We defined GM , GL, GR as tu-
mor, lymphocytes and stromal sub-graph of G, and all the
nodes in Gw(w ∈ {M,L,R}) are with the same type.
Based on the learned node embeddings in each sub-graph
dwi ∈ Rd(i = 1, 2, ...300), we firstly applied the Gated
Graph Convolution layer [19] to update the representation
of each node from its neighbourhood nodes with the same
type as follows:

(hw
i )

0 = dwi ||0
(awi )

t =
∑

j∈N(i)

uij(h
w
j )

t

(hw
i )

t+1 = GRU((awi )
t, (hw

i )
t)

(8)

As shown in Eq.(8), (hw
i )

0 ∈ R2d is initialized by copy-
ing the node embeddings into its first components and
pads the rest with zeros. The remaining are Gated recur-
rent unit(GRU)-like updates that can incorporate informa-
tion from the neighboring nodes j ∈ N(i) with weight
uij and the previous step to update the status of nodes
i. Then, we applied the GAT layer to capture the inter-
actions among different types of nodes. The inputs for
GAT layers are H = [HM , HL, HR] ∈ Rd×900, where
Hw = [hw

1 , h
w
2 , ..., h

w
300] ∈ Rd×300, w ∈ {M,L,R} refers

to the output features for each types of node after the GGC
layer. The GAT layer produces a new set of node features
H

′
= [(HM )

′
, (HL)

′
, (HR)

′
] via a linear transformation

matrix T ∈ Rd×d′
and (Hw)

′ ∈ Rd′×300, w ∈ {M,L,R}.
Then, a shared attention mechanism Rd′ × Rd′ → R is ap-
plied to calculate the normalized attention coefficients be-
tween node i with type w and node j with type z as follows:

ew,z
ij = a(Thw

i , Th
z
j ), w ̸= z (9)

Moreover, GAT normalizes eij’s values of node j by apply-
ing the Softmax function:

αw,z
ij =

exp(ew,z
ij )∑

j∈Ni
v ̸=w

exp(ew,v
ij )

(10)

Where Ni refers to the neighbors of node i. Then, the out-
put feature for every node after the GAT layer can be repre-
sented as:

hw
i = σ(

∑
j∈Ni
w ̸=z

αw,z
ij Thz

j ) (11)

As shown in Eq.(11), different from the GGC layer pass-
ing information between the same type of nodes, the GAT
layer can capture the interactions among different types of
nodes. In addition, in order to avoid over-fitting and iden-
tify survival-associated interactions among different types
of TME components, we adopted SAGPooL[17] to select
top s(s ∈ [0, 100]) percentage of nodes with high attention
scores. Finally, at the last layer of GAT, a global attention
pooling strategy introduced in [19] is applied to aggregate
the node features into WSI-level feature for the following
survival analysis task. Here, we followed the methods in
[31] [8] applying the widely used Cox proportional hazard
model to conduct the survival analysis of human cancers.
We evaluate the performance of different survival analysis
models based on the metrics of Concordance Index(CI) and
AUC [31]. Both CI and AUC values range from 0 to 1, and
the larger values indicate better prognosis performance.

3.4. Time Complexity Analysis

Suppose we have n nodes for each node type in a graph,
the complexity of TMEGL is dominated by three compo-
nents. Firstly, the complexity for calculating the node sim-
ilarity within one node type is O(n2d), and d refers to the
dimensions of the embedding. Secondly, the complexity
of applying the spectral clustering algorithm to aggregate
the nodes into g groups is O(n3). Finally, we calculate the
inter-group and inter-group similarities with the complexity
of O(g2). In summary, the time complexity of our TMEGL
is O(n2d+ n3 + g2). Although the complexity for spectral
clustering is relatively high, we set n as 300 in this study
that is still effective for computation.

4. Experimental Results
4.1. Dataset

In this study, we conducted experiments on three cancer co-
horts i.e., Breast Invasive Carcinoma (BRCA), Kidney Re-
nal Clear Cell Carcinoma (KIRC) and Lung Squamous Cell
Carcinoma (LUSC) derived from The Cancer Genome At-
las (TCGA). The demographic information of these three
cancer cohorts are listed in Table 1:
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Table 1. Demographics and clinical information of the dataset.

BRCA KIRC LUSC
Number of Patients: 690 511 472
Censored Non-censored 627/63 340/171 270/202
Age (Mean) 54.6 66.17 59.20
Follow-up Time (Month) 25.3 31.8 36.1

4.2. Experimental Settings

For each cancer cohort, the 5-fold cross validation strategy
is applied to evaluate the performance of different methods.
For the training dataset, we randomly selected 25% samples
as validation set for parameter tuning. For the graph embed-
ding algorithm introduced in Section 3.2, we applied the
pre-trained ResNet-101 to extract node features at first, and
then feed them into the embedding network to get the node
embeddings with the dimension of 128. The embedding
network is consisted of two fully connected layers, whose
dimensions are 512 and 128, respectively. For each type
of node, the spectral clustering algorithm is applied to ag-
gregate them into B = 4 groups, and the regularization pa-
rameter λ applied to balance the intra-group and inter-group
similarities (shown in Eq. (7)) is tuned from 1 to 1e−5. The
Gated Graph Attention Networks introduced in Section 3.3
is consisted of 3 GAT layers, 3 Gated Graph Convolution
(GGC) layers and 2 graph pooling layers. The dimensions
for all the three GAT layers are set as 128, and the number
of recurrent step t in each GGC layer is tuned from 1 to
6. Moreover, the percentage of the preserved nodes in each
SAGPool layer is tuned from 0.3 to 1, Finally, we empiri-
cally set the number of epoch as 200, and the learning rate
is tuned from the range of 1e-8 to 1e-2.

4.3. Comparison of TMEGL with Other Survival
Analysis Models

We first compared the performance of TMEGL with the fol-
lowing WSI-based survival analysis models by the measure-
ments of CI and AUC introduced in Section 3.4. 1) WSISA
[43]: An ensemble model to make WSI-level predictions
based on the combination of individual patch-level deep
survival analysis models. 2) DeepAttnMISL [40]: A deep
multiple instance learning model to directly learn survival
patterns from gigapixel WSIs. 3) DeepGraphSurv [18]: A
graph convolutional neural network with attention learning
to extract the topological features from WSIs for survival
prediction. 4) MCAT[5]: MCAT is the Transformer based
method taking the position information into consideration
for the survival prediction task based on WSIs. 5) Patch-
GCN [4]: A context-aware graph convolutional network
that hierarchically aggregates instance-level histology fea-
tures to learn the global representations of WSIs. 6) Clu-
Siam [36]:A self-supervised learning (SSL) based represen-

tation learning method for survival prediction from WSIs.
7) Co-Pilot[25]: A dynamic point-cloud based WSI repre-
sentation methods for survival prediction of human cancers.
8) HGSurvNet [8]:A hyper-graph based learning framework
for survival prediction from WSIs.

As can be observed from Table 2, Firstly, the prog-
nostic power of the graph-based deep learning methods
(i.e., DeepGraphSurv, Patch-GCN, TMEGL,HGSurvNet)
are generally superior to the multi-instance learning algo-
rithms (i.e., WSISA, DeepAttnMISL). This is because these
GCN based methods can take the topological structure of
WSI into consideration. Secondly, our proposed TMEGL
can achieve the CI values of 0.719, 0.697 and 0.695, and
the AUC values of 0.750, 0.716 and 0.736 on BRCA, KIRC
and LUSC cohorts, respectively, which is not only signifi-
cantly better than the comparing graph learning methods but
also superior to the SOTA WSI-based representation learn-
ing algorithms(i.e., CluSiam [36] and Co-Pilot[25] ). This
is because the proposed TMEGL can effectively take the
topological organization of TME that are closely associated
with cancer progression into consideration.

4.4. Comparison of TMEGL with Other Methods
for Patient Stratification

For the survival analysis of human cancers, another impor-
tant task is to stratify patients into different subgroups for
personalized treatment. In this section, we followed the
method introduced in [44], which applied the K-means clus-
tering algorithm to aggregate the derived WSI-level features
of different patients in the testing set into 2 groups. Then,
the log-rank test [31] is applied to test if these two groups
have significant difference of clinical outcome. Here, better
prognosis prediction performance comes with the smaller
p-value by the log-rank test, and we showed the results of
different methods in Fig.3. As can be seen from Fig.3, our
TMEGL can achieve the p-values of 3.32e − 2, 2.01e − 2
and 3.01e−3 on BRCA, KIRC and LUSC datasets, respec-
tively, which are superior to the comparing HGSurvNet [8]
and Co-Pilot[25] methods, and these results again validate
the advantages of our TMEGL method.

4.5. The Difference of the Interactions Between
High and Low survival Risk Patients.

For the stratified patients on different survival groups in-
dicated in Fig.3, we also compared the proportions of
the identified survival-associated edges connecting differ-
ent types of tissues via graph pooling. As shown in Fig.4(a),
most of the survival-associated edges on BRCA cohort are
relevant to the interactions between lymphocytes and tu-
mor (L-T) in WSIs, and it is obvious that the proportion of
edges that connect lymphocytes and tumor regions in low-
risk group are higher than that in high-risk group, show-
ing that the immune system could control the tumor growth
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Table 2. Comparisons of TMEGL with Other Models by the Mesearments of CI and AUC (along with their standard deviations).

BRCA KIRC LUSC

CI AUC CI AUC CI AUC
WSISA [43] 0.621(0.02) 0.590(0.05) 0.578(0.04) 0.607(0.05) 0.577(0.04) 0.587(0.05)

DeepAttnMISL [40] 0.617(0.05) 0.637(0.04) 0.629(0.05) 0.654(0.03) 0.654(0.04) 0.677(0.03)
MCAT[5] 0.638(0.05) 0.651(0.04) 0.631(0.05) 0.659(0.05) 0.643(0.05) 0.679(0.05)

DeepGraphSurv[18] 0.653(0.04) 0.665(0.06) 0.649(0.04) 0.671(0.04) 0.651(0.04) 0.683(0.03)
Patch-GCN [4] 0.664(0.04) 0.671(0.03) 0.662(0.03) 0.686(0.03) 0.648(0.05) 0.687(0.04)
CluSiam [36] 0.644(0.07) 0.639(0.05) 0.667(0.04) 0.691(0.02) 0.651(0.04) 0.671(0.03)
Co-Pilot[25] 0.657(0.03) 0.672(0.03) 0.639(0.05) 0.661(0.03) 0.674(0.03) 0.691(0.03)

HGSurvNet [8] 0.671(0.04) 0.681(0.05) 0.659(0.04) 0.681(0.04) 0.667(0.04) 0.701(0.03)
TMEGL 0.719(0.03) 0.750(0.03) 0.697(0.03) 0.716(0.03) 0.695(0.04) 0.736(0.04)

BRCA KIRC LUSC

TMEGL

Co-Pilot

HGSurvNet

Figure 3. Comparison of the Stratification Performance Among Different Methods.

and reduce the survival risks. Moreover, we found that
the proportions of the Stromal-Tumor (S-T) interactions on
high-survival risk group is more prominent than that in low-
survival risk group. Such observations is consistent with the
existing knowledge that the rich interactions between tumor
and stromal fibrosis will provide more chance to facilitate
the invasion and metasis of tumors, and thus will lead to
high survival risk [2].

In addition, we also visualized the sampled tumor, lym-
phocytes and stromal patches and their connected edges in
Fig. 4(b). Here, the thick black lines refer to the edges with
higher weights calculated via GAT. As can be seen from
Fig.4(b), the lymphocytes density in low-survival risk pa-
tient (long survival time) is higher than that in high-survival
risk patient (short survival time) while the high-risk pa-
tient is enriched with more tumor regions. These obser-
vations indicated that the lymphocytes and tumor density
are important prognostic factor affecting the patients’ sur-
vival. In addition, as shown in Fig.4(b), the weights and
the number of the edges connecting tumor and TIL regions

are higher for patients in low-survival risk group, while the
weights and number of the tumor-stromal interactions are
more prominent in high-survival risk group. These obser-
vations are consistent with the results shown in Fig.4(a),
which again validate the good explainable ability of the pro-
posed TMEGL for investigating the association among dif-
ferent TME components on survival prediction task.

4.6. Ablation Study

To further evaluate the effectiveness of TMEGL, we com-
pared TMEGL with the their variants based on average
Concordance Index(CI) value within the five fold cross-
validation. 1) TMEGL-NE: Directly adopted the Gated
Graph Attention Networks for survival prediction without
the graph embedding step, and we applied the PCA algo-
rithm to reduce the dimension of the node representation
to 128 in order to conduct fair comparison with TMEGL. 2)
TMEGL-DW: Applied the Deepwalk [27] to learn node em-
beddings for survival prediction. 3) TMEGL-GAT: Directly
applied the GAT to capture the interactions among different
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Figure 4. (a):The proportions of edges connected different types of TME components. (b): The interactions among different types of
patches. The thick black line indicates the edges with higher weights calculated via graph Attention Network.

nodes without considering the edge is consisted of the same
type of nodes or not. 4) TMEGL-N1 and TMEGL-N2: Con-
sidering the neighborhood organization within 1-hop and 2-
hop ranges for designing the graph-embedding algorithm,
respevtively. 5) TMEGL-G2 and TMEGL-G5: Aggregated
each type of nodes into B = 2 and B = 5 groups to cal-
culate the intra-group and inter-group similarity informa-
tion for graph embedding learning. 6) TMEGL-Intra and
TMEGL-Inter: Only applying the intra-group or inter-group
similarity information to learn node embeddings. The ex-
perimental results are shown in Table 3.

As shown in Table 3, TMEGL is significantly better than
TMEGL-NE and TMEGL-DW, suggesting the advantage of
the proposed TME neighborhood organization guided graph
embedding algorithm. In addition, TMEGL is also supe-
rior to TMEGL-GAT, indicating that the prognosis results
can be further improved if we take the edge that is con-
sisted of same type or different types of nodes into consid-
eration. Moreover, TMEGL has stronger prognostic power
than TMEGL-N1 and TMEGL-N2 since it considers wider
hop range to describe the TME organization. Next, we can
clear see that the prognosis results of TMEGL will be sig-
nificantly decreased if the group number is relatively small
(TMEGL-G2) for learning the graph embeddings. This is
because the small group number may not have adequate
ability to reflect the intra-group and inter-group similarities
information extracted from the graph. Meanwhile, our re-
sults will be stable (TMEGL-G5) if the group number is
increased. Finally, TMEGL also yielded better results than
TMEGL-Intra and TMEGL-Inter, this implied that the in-
corporation of both intra-group and inter-group similarity
information to learn node embeddings will provide a good
solution to improve the prognosis performance.

5. Conclusion
In this paper, we developed a novel WSI-based survival pre-
diction model i.e., TMEGL for the prognosis prediction of

Table 3. Comparison of TMEGL with its variants based on the
measurement of CI.

BRCA KIRC LUSC
TMEGL 0.719 0.697 0.695
TMEGL-NE 0.609 0.629 0.618
TMEGL-DW 0.658 0.631 0.621
TMEGL-GAT 0.662 0.630 0.633
TMEGL-N1 0.644 0.641 0.634
TMEGL-N2 0.671 0.663 0.657
TMEGL-G2 0.643 0.633 0.641
TMEGL-G5 0.694 0.680 0.681
TMEGL-Intra 0.676 0.636 0.641
TMEGL-Inter 0.668 0.623 0.646

human cancers. To the best of our knowledge, TMEGL is
the first prospective study taking the interactions between
tumor and its TME components into consideration to pre-
dict patients’ clinical outcome. The experimental results
also verifies the effectiveness of the proposed method. In
summary, TMEGL is a general WSI-based graph learning
framework that can be used to predict cancer survival and
explain the mechanism of tumor progression, which opens
up new opportunity for personalized treatment. In future,
we plan to apply several new machine learning paradigms
e.g, active learning, semi-supervised learning to train an ac-
curate segmentation model with less annotated data for the
pre-selection of important patches in WSIs.
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