
A Vision Check-up for Language Models

Pratyusha Sharma* 1 Tamar Rott Shaham* 1 Manel Baradad1 Stephanie Fu† 2

Adrián Rodrı́guez-Muñoz1 Shivam Duggal1 Phillip Isola1 Antonio Torralba1
1MIT CSAIL 2UC Berkeley

Abstract

What does learning to model relationships between
strings teach Large Language Models (LLMs) about the vi-
sual world? We systematically evaluate LLMs’ abilities to
generate and recognize an assortment of visual concepts of
increasing complexity and then demonstrate how a prelim-
inary visual representation learning system can be trained
using models of text. As language models lack the ability to
consume or output visual information as pixels, we use code
to represent images in our study. Although LLM-generated
images do not look like natural images, results on image
generation and the ability of models to correct these gen-
erated images indicate that precise modeling of strings can
teach language models about numerous aspects of the vi-
sual world. Furthermore, experiments on self-supervised
visual representation learning, utilizing images generated
with text models, highlight the potential to train vision mod-
els capable of making semantic assessments of natural im-
ages using just LLMs.

1. Introduction
What does it mean to understand the visual concept of e.g. a
“frog”? Is it sufficient to know the color of its skin, the num-
ber of feet it has, the location of its eyes, details about how
it looks when it hops? While a subset of this information
about the appearance of a frog can be acquired from text,
it is widely believed that to understand the concept visually,
one would need to observe an image of a frog or, better still,
observe it from different perspectives and in various real-
world scenes. However, to what extent can we learn about
the visual “meaning” of different concepts from text1?

Despite operating on textual data, language model rep-
resentations have been shown to contain information about
named perceptual concepts like shape and color [9, 22, 36]

*Indicates equal contribution.
†Work done while at MIT CSAIL.
Project page: https://vision-checkup.github.io/

1While the question of what can be learned about the visual world from
natural language alone is interesting, in our case, “text” represents the
space of all strings on the internet, including natural language and code.

and have been found to be linearly translatable to represen-
tations learned by vision models [27, 37]. These experi-
ments demonstrate that independently, vision and language
models represent aspects of the world similarly. While in-
vestigating model representations for a pre-selected set of
attributes can inform us about information encoded by the
model, it limits studying a fixed set of attributes at once and
requires access to the model’s internal parameters. Instead,
as seen in Fig. 1, we ask:
1. What do language models know about the visual world?
2. Can we train a vision system for natural images using a

text-only model?
To answer these questions, we evaluate what information

about the visual world off-the-shelf language models con-
tain by testing their ability to render (draw) and recognize
(see) real-world visual concepts. This allows us to measure
their ability to model arbitrary properties, both individually
and concurrently, without training a classifier for a rigid set
of features one at a time. Although LLMs are limited in
their ability to generate images using pixels, examples pre-
sented by [8] suggest that models like GPT-4 can gener-
ate code capable of rendering objects like a unicorn. We
take this further by measuring LLMs abilities to generate vi-
sual concepts of increasing complexity via a textual prompt
→ code → image procedure. Figure 2 shows examples of
complex scenes generated by LLMs. We find that LLMs
are surprisingly good at generating intricate visual scenes
composed of multiple objects, effectively modeling spatial
relations between them. However, there are aspects of the
visual world that LLMs fail to capture, including objects’
properties like their textures, precise shapes, as well as sur-
face contact with other objects in the image.

Next, we evaluate the ability of LLMs to recognize (see)
perceptual concepts (Fig. 1 Part I (b)). We do this by collect-
ing human drawings represented as code and asking LLMs
what they depict. The code describes the ordered sequence
of shapes, their locations, and colors. We find that un-
like humans, where creation is hard and verification is easy,
models struggle to interpret/recognize code describing de-
tailed scenes that they themselves can effectively generate.

Further, we demonstrate that the visual generation com-
petence of a language model can be improved using text-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

14410

https://vision-checkup.github.io/

LLMReturn code to
draw a bed

<code>t

“Can you make it better?”
t = 0 +

LLM

(c) Correcting LLM generated Images with Self-Generated Text Feedback

Part I. Can a Language Model Draw, See and Correct with Text?

Return code to
draw a row
of bicycles

LLM

(a) Generation: Drawing Images with Text

(b) Recognition: Seeing Images with Text

fill(0);
ellipse(150, 150, 100, 100);
ellipse(250, 150, 100, 100);
...

What does the
following piece

of code generate?
+

Lake
Sky

Terrace
Traffic Lights
Sandy Beach

void drawBicycle(x, y) {
 // Wheels
 fill(30);
 ellipse(x, y, 50, 50);
 ellipse(x + 70, y, 50, 50);
 ...

Compile

Part II. Visual Representation Learning from Text-Generated Images

Dataset: LLM Images

�
(a) Pre-Training: Unsupervised Contrastive Representation Learning (b) Evaluate on Real Images

Anemone Fish
African Lion

Ice cream
...

... ResNet 50

Human
Drawing

ResNet 50

Figure 1. Vision check-up for LLMs. I. Testing the visual knowledge of Language Models. We suggest a set of tests to check the
vision abilities of language models, these include (a) the ability to write code that renders complex visual concepts (b) recognizing visual
concepts from code (c) correcting rendering code with text-only self-feedback. II. We test whether LLMs can generate data to train a
high-performance vision system that can be used to make semantic judgments on natural images.

based corrections. We do this by closing the feedback loop
between the LLMs and itself. Here, we first use the lan-
guage model to generate code illustrating a concept. Fol-
lowing that, the model is repeatedly called by condition-
ing its generation on its previously generated code and
prompted to “improve its generated code”. We find that
making such iterative calls to the model results in improved
visual depictions, as shown in Fig. 1 (Part I (c)).

Finally, we study if LLM-generated images could serve
as a data source for pre-training vision models and com-
pare them to synthetically generated and natural images. By
constructing a pre-trained visual representation system from
only text that transfers well to tests on natural images, we
demonstrate that text models capture aspects of the visual
world similar to those present in natural images.

To summarize, the paper’s main contributions are:
1. The Visual Aptitude Dataset: Introducing a hierarchi-

cal visual categories dataset consisting of shapes, ob-
jects, and scenes descriptions to test the visual capabili-
ties of language models.

2. Generation: Testing and quantifying the generation ca-
pabilities of LLM’s, showing that it is possible to gener-
ate detailed and diverse scenes using text-only models.
We also show that it is possible to improve the quality of
the generated images by using text-based feedback.

3. Recognition: Analyzing whether LLMs are also able to
recognize image generative code as well as producing it.
We test this capability using out-of-distribution samples
generated by humans, which we crowdsource.

4. Training for natural image tasks without natural im-
ages: We show that the images generated by LLMs are
useful for training visual backbones, achieving state-of-
the-art performance when complemented with other pro-
cedurally generated image datasets.

2. Related work

Vision and language models: Language models have been
shown to be extremely powerful in understanding and gen-
erating visual information when paired with vision mod-
els [42], training vision adaptors [15, 24, 27, 49], or when
trained jointly over visual and textual data [37, 40, 43]. Al-
though vision-language pre-training / chaining vision and
language models allow models to reason about aspects of
the visual world, we investigate the visual capabilities of
models representing images with text. Furthermore, several
benchmarks have been proposed to evaluate the ability of
LLMs on textual tasks [16, 18, 20, 25, 34]. Unlike them,
we propose a procedure to evaluate LLM’s vision abilities.
Visual Understanding in Language Models. Meaning

14411

O
bj
ec
ts

Sh
ap
es

A-dog-and-a-goat-with-their-noses-touching-at-fence.

Sc
en
es

Figure 2. Visual Aptitude Dataset. We collect a dataset of visual concepts of including shapes, objects and scenes, and ask LLMs to
generate corresponding images using a Text → Code → Image generation procedure. Guess the captions of the scenes!2

Representations [9, 22, 36] show that language models
contain information of the state of the world in their inter-
nal representations that can be recovered by probing these
models for attributes of interest. Additionally, [2, 28, 41]
demonstrate that language models are capable of represent-
ing visual concepts such as “color” and “shape”. However,
the attributes studied have been limited to only those that
can be described by natural language and can only be in-
vestigated one at a time. Moreover, with models being
placed behind closed walls, it becomes increasingly diffi-
cult to probe the internal representation of models for the
presence of visual attributes of interest.

Program synthesis via LLMs. Pioneered by OpenAI’s
Codex [10], Github’s Copilot [1], Meta’s Code Llama [32]
etc., LLMs have been shown to possess exceptional coding
capabilities [46]. Recently, Bubeck et al. [8] highlighted
the emergent properties of a GPT-4 model for image gener-
ation / scalable vector graphics via text-prompted TikZ or
javascript codes. In this work, we build on their insights
and carefully examine the diversity and realism of multiple
text-only language models like GPT-3.5, Davicini, GPT-4
(see Fig. 3, Fig. 5) for programmable image generations.
Furthermore, as one of our key contributions, we analyze
the usefulness of the procedurally generated images for self-
supervised visual representation learning (see Sec. 5).

Training vision models with synthetic data. The ability
to train a vision system using synthetic data was studied in

several tasks including optical flow [7, 14, 26], segmenta-
tion [12, 30], detection [31], classification [4, 33], and rep-
resentation learning [39]. Perhaps the most related set of
work studied how to train vision backbones using images
generated from human-written code which capture differ-
ent priors of the visual world, such as textures and shapes.
These include generative processes like fractals [3, 21],
dead leaves [6], sinusoidal waves [35], and even a crowd-
sourced dataset of thousands of generative programs [5].
While these approaches achieve competitive performance, it
remains unclear how to systematically introduce high-level
semantic concepts related to shapes and scene composition
without the intervention of human experts.

3. Visual Aptitude Dataset: Points to Scenes

We evaluate an LLM’s visual competence by measuring its
ability to create, recognize, and modify image-rendering
code on a hierarchy of concepts. This resulting dataset of
images also serves as the corpus used for pre-training a vi-
sion model in the later part of the paper. We construct three

2Captions for Fig 2 scenes: (left to right, top to bottom) Chef standing
next to a counter with jars; Office with leather couch, surrounded by books;
Row of bicycles; Birthday boy with car shape cake & candles; Black &
white cat sitting on side of a computer monitor; Couple of men hearding
sheep down the road; Two stuffed animals cutting bread & spreading jelly
on it; Blurred image of motorized scooters on wooded road. Bathroom
with two sinks & tow mirrors. Yellow & blue train is next to an overhang;

14412

Shapes Objects Scenes60

70

80

90

100

M
ed

ia
n

CL
IP

 p
er

ce
nt

ile
 [%

] Davinci GPT-3.5 GPT-4 Oracle (Stable Diff.)

Figure 3. Image-Text Fidelity. Median CLIP image-text retrieval
percentiles of images generated by different LLMs. We include
Stable Diffusion as an Oracle. Chance is 50%.

datasets with textual descriptions of visual concepts of grad-
ually growing complexity. Starting with simple shapes and
their compositions, to objects, and finally to complex scenes
described by elaborate natural language descriptions. Sam-
ples from the dataset can be found in Fig. 2 and in the
Supplementary Material (SM).

(i) Shapes and their compositions: The first dataset con-
tains a composition of shapes from different categories such
as points, lines, 2D-shapes, and 3D-shapes with 32 different
attributes like color, texture, location, and spatial arrange-
ment. The full dataset contains more than 400K examples,
and we sample 1500 for tests in our experiments.

(ii) Objects: The second dataset contains the 1K most
frequent objects of the ADE20K dataset [47, 48]. Objects
are more difficult to generate and recognize than shapes, as
they contain complex compositions of many shapes.

(iii) Scenes: The last dataset consists of complex scene
captions describing diverse places with multiple objects.
For this, we uniformly sample 1000 scene descriptions at
random from the MS-COCO [23] dataset.

3.1. Representing images with code

In the dataset, the visual concepts are described with lan-
guage. For instance, we can describe a scene as “a sunny
summer day on a beach, with a blue sky and calm ocean.”
We test the visual competence of LLMs by prompting them
with these descriptions and measuring their ability to gen-
erate code that can be compiled to render images depicting
the scenes. Why code? While LLMs can sequentially out-
put pixel values to generate images [8] their ability to do
so is currently limited. Code, on the other hand, can pro-
vide a descriptive yet concise representation of the visual
world. It can be used to represent higher-level perceptual
attributes and language models are already trained on exam-
ples of code. In this paper, code in different programming
languages will serve as the primary mode of interaction and
visual scene generation for LLMs.

3.2. Models and Programming Languages tested

For this study, we evaluate four language models, each
tested on four different programming languages.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
LPIPS-Diversity (higher is better)

150

200

250

300FI
D

(lo
we

r i
s b

et
te

r)

Davinci
samp

Davinci
func

GPT-3.5
sampGPT-3.5

func

GPT-4
sampGPT-4

func

Oracle
(Stable Diffusion)

Figure 4. Realism vs. Diversity. With both sampling strategies,
LLMs are able to draw diverse illustrations of the same concept.

(i) Language models: We evaluate the visual com-
petence of GPT-3.5 (both text-davinci-003 and
GPT-3.5-turbo models) and GPT-43. Models, like
Llama2 (chat 70B), GPT-J, and GPT-2 failed to generate
executable image-rendering code reliably and are excluded
from analysis in the main paper but are included in the SM.

(ii) Programming languages. To validate that a model’s
visual capability is not restricted to a specific programming
language we use four programming languages with differ-
ent expressiveness. These are: python-matplotlib, python-
turtle, Processing (built over Java), and TikZ (built over
Tex). A model’s ability to generate and recognize the same
visual concept across programming languages hints at the
model possibly having a coherent and language-agnostic
representation of that concept.

4. A Vision Checkup for LLMs
In this section, we evaluate the visual capabilities of LLMs.
The models are evaluated on three tasks: (i) Generation
/ Drawing with text: assesses an LLM’s competence in
generating image-rendering code corresponding to a spe-
cific concept. (ii) Recognition / Seeing with text: tests
the LLMs’s performance in recognizing visual concepts and
scenes represented as code. We test each model on the code
representation of human drawings. (iii) Correcting draw-
ings with text feedback: evaluates an LLM’s ability to it-
eratively modify its generated code using natural language
feedback generated by itself.

4.1. Generation: Drawing with Text
Experimental Setup. To test what LLMs are capable of
visualizing, we evaluate their ability to generate code repre-
senting concepts from our Visual Hierarchy dataset across
four programming tools. The prompt fed to the LLM is:

Prompt: “write code in the programming language
”[programming language name]” that draws a [concept]”.

We then render the images by compiling the code in its
corresponding programming language. Additional details
about the experiment protocol can be found in the SM.

3There are two types of GPT-4. We interact here with GPT-4 model
and not the GPT-4(V) model.

14413

A
rm
ch
ai
r

Va
n

St
ra
w
be
rr
y

A
rc
ad
e

Figure 5. Diversity. LLMs are capable of generating diverse
meaningful instances of the same concept, showcasing their abil-
ity to represent concepts beyond a single fixed prototype.

Evaluation protocol. We evaluate the visual quality and di-
versity of the images rendered using the following metrics.

(1) Fidelity: We compute the fidelity between the gen-
erated image and its ground-truth caption by retrieving the
best caption for the image. We first calculate the agree-
ment between each image and all potential captions within
the same category (shapes/objects/scenes) using their CLIP
score. We then report the rank of the ground-truth cap-
tion in percentage (e.g. a score of 100% implies that the
ground-truth concept is ranked first). In the SM, we aug-
ment this measure with human perceptual studies and show
that the CLIP rank reflects human preference as evidenced
from their high correlation (r = 0.82,p-val= 1.25e−09).

(2) Diversity: To assess the ability of the models to ren-
der diverse content, we use the LPIPS-diversity score [45]
over image pairs representing the same visual concept.

(3) Realism: For a uniformly sampled collection of 1K
images from ImageNet [13], we use the Fréchet Inception
Distance (FID) [19] to quantify the difference in the distri-
bution of natural images and those generated by LLMs.

Baseline: As an oracle, we include images generated by a
text-to-image model (Stable Diffusion [29]) and report their
scores across all evaluation metrics.

What can LLMs visualize? We find that LLMs can vi-
sualize real-world concepts from across the visual hierar-
chy. Examples of LLM-rendered images can be found in
Fig. 1, 2, 5, and in the SM. LLMs are capable of gen-
erating non-trivial visual compositions, examples of such
are shown in Fig. 2; The model composes two unrelated
concepts (“car shaped cake”), generates visual phenomena
(“blurred image”), and manages to correctly interpret spa-
tial relations (e.g. “a row of bicycles” arranged horizon-
tally.) Unsurprisingly, the competence of the models de-
teriorates with increasing concept complexity from shapes
to scenes, as seen in the median image-text retrieval CLIP-
scores across the different categories Fig. 3. For more com-
plex visual concepts such as drawing scenes comprising
multiple objects, GPT-3.5 and GPT-4 are more accurate at
drawing scenes with intricate descriptions using processing

Model Name Objects Scenes

Davinci 0.136 0.221
GPT3.5 0.228 0.380
GPT4 0.234 0.212

Baseline [Chance] 0.2 0.2

Table 1. Recognition of Human Drawings. Models struggle to
correctly classify human drawings into their categories. While
GPT-3.5 correctly classifies images over chance for the scenes cat-
egory, other models classify images correctly barely over chance.

and tikz than python-matplotlib and python-turtle. For ob-
jects and scenes, CLIP scores indicate that concepts con-
taining ”person”, ”vehicle”, and ”outdoor scenes” are the
easiest to draw (see full analysis in the SM). This ability
to render complex scenes comes from the expressivity of
the rendering code, the model’s programming capability in
each of them, and the quality of its internal representations
of the different concepts involved.

What can LLMs not visualize? In some cases, even rela-
tively simple concepts are difficult for the models to draw.
We identify several common failure modes: (a) Language
models specifically struggle with concepts combining a set
of shapes and a specific spatial organization, (b) Drawings
are coarse and lack detail. These are the common failure
cases for Davinci, especially when coding with matplotlib
and turtle. (c) Depiction is incomplete, corrupted, or rep-
resents only a subset of the concepts (typical for the scenes
category). An interesting standalone failure case is drawing
digits. With all models and languages, we found this task
to be challenging. See SM for a discussion of failure cases
and the effect of prompting on the model’s generation.

Diversity and Realism. Language models exhibit the abil-
ity to generate diverse visualizations of the same concept as
seen in Fig. 5. To generate different samples of the same
scenes, we compare two strategies: (i) Repeated sampling
from the model (ii) Sampling a parametrized function that
allows creating a new drawing of the concept by changing
parameters. The ability of the model to render diverse re-
alization of visual concepts is reflected in the high LPIPS-
diversity scores in Fig. 4. The ability to generate diverse
images suggests that LLMs can represent the visual concept
in many ways rather than a limited set of prototypes. LLM
generated images are far from as realistic as natural images,
with the models scoring poorly on the FID metric as com-
pared to the Stable Diffusion oracle (Fig 4). However, it
is interesting to note that modern models rank better than
older models, indicating that they might be slowly inching
towards increasingly realistic representations of the world.

4.2. Recognition: Seeing with Text

Recognizing the contents of an image requires inferring
how elements such as points, strokes, colors, and shapes

14414

(a) Objects (b) Scenes

a streetlight cakesbuildings

a strawberry a ceiling lampa shirt

a bed a goosea door

a car a coffee tablea bicycle

A couple of men herding
sheep down a road

A kitchen with a doorway leading
to a laundry room

A girl is sitting by her
dog on the stairs

An airplane high
in the sky flying overhead

A cooler and fishing
gear on a fishing pier

A car driving in an intersection,
past a furniture shop

 Three women sitting on a park
bench next to each other

A bathroom with a vanity
mirror next to a white toilet

A baseball player bobble head next
to two computer monitors on a desk

two motocross racers in
the middle of a race

A metallic toilet sitting in
a small bathroom

An adorable cat attempts to hide in
a purse to steal the persons identity

Figure 6. Human drawings. Examples of drawings made by users using our drawing interface that passed the CLIP score filtering. Each
of the collected drawings is converted into processing code and is then included in the LLM’s recognition tests.

combine spatially to give rise to objects that are them-
selves composed to represent complex scenes. Evaluating a
model’s ability to recognize image-rendering code offers in-
sights into its competence in interpreting high-dimensional
representations of visual scenes, including ones very differ-
ent from its “memorized” prototypes. While code on the
internet can be a good source to test these models, it con-
tains comments, print statements, and symbol names that
reveal essential semantic information about what the code
represents and may not actually require sophisticated infer-
ence over the steps used to create the drawing. Further, we
wanted to ensure that the code used for evaluation recog-
nition was new and not part of the training set for any of
the models tested. Therefore, we collect our own dataset of
code representing drawings as seen in Fig. 6.

Dataset. While most people excel at drawing images using
“Paint”-like applications, writing code that represents im-
ages is trickier and requires more skill. To test the recogni-
tion ability of models we collect a dataset of human draw-
ings and their corresponding representation in code. This
dataset was constructed following a setting similar to the
game Pictionary or Google’s “Quick Draw!” application.
Users were prompted to draw a concept from the Visual Ap-
titude Dataset within a two-minute time limit using a draw-
ing interface. The interface recorded their drawing steps
in the Processing programming language. Shapes were ex-
cluded from the analysis, and the generated images were
filtered for quality using the Fidelity score. The interface
was designed to mimic the components expressed in draw-
ings made with processing and to encourage users to por-
tray the entire prompt rather than a detailed but incomplete
illustration in the allotted time. We collect 600 images per
category, of which 162 object images and 113 scene images
pass the fidelity check (rank≤ 40) and are used for evalua-
tion. For further details, refer to the SM.

Evaluation protocols. We evaluate the models’ capabil-
ity of recognizing visual concepts represented as code by
measuring the model’s ability to classify the image in a
multi-class classification setting. In this test, the model is

prompted with the code and a list of visual concepts, where
one of the list’s entries describes the code accurately. The
model is then tasked with matching the visual concept to the
correct entry. The prompt to the model is:

Prompt: ”Which of the following concepts from the list
does the [code] represent? [concept1, concept2,...]”.

Baseline: The success of the chance baseline is decided
by the probability of the desired outcome. This is given by
1/N where N is the number of outcomes. For the multi-
class classification setting with five labels this is 0.2.
Analysis. Human drawings present a unique recognition
challenge as there is a lot of diversity in the images repre-
senting a given concept.
Language models can do very limited spatial reason-
ing. Table. 1 shows that GPT-3.5 beats the chance base-
line across the scenes setting, demonstrating that the visual
recognition capability of the models is non-trivial, allowing
it to (limitedly) recognize code representing human draw-
ings. While the exact mechanism that allows models to do
so is unclear, the task requires models to identify objects,
their attributes and spatial arrangements. Wrongly attribut-
ing any information can result in a completely different vi-
sual scene. Although models cannot perfectly recognize all
images, the exhibited recognition capability is non-trivial.
Models can fail to recognize concepts they can other-
wise draw very well. Unlike humans, where the ability
to draw something well automatically implies the ability to
recognize the same concept well, models can fail to recog-
nize concepts they have no problem rendering. This con-
tradicts the notion that creation is hard, but verification can
be easy. Failures in recognition, as shown in the SM, show-
case that images that models fail to recognize are the non-
stereotypical depictions of the visual concept, showcasing
that there might be limits to a model’s ability to recognize
perceptual concepts from code.

4.3. Textual-Feedback: Correcting with Text
The model’s ability to generate an image is limited in part
by the prompt. Failure to generate an image corresponding

14415

“Return
code
 to draw
a swivel
chair”

“Draw a
rectangular
back rest
for a realistic
appearence.”

“Add
rotation
function
to make
the chair
swivel.”

“Make the
legs of the
longer and
move the
casters or
mini wheels
further out”

“Generate
a more
accurate
image of a
swivel chair.”

“Draw the
chair with
a more
aesthetically
pleasing
appearence.”

Increasing Feedback Iterations Increasing Feedback Iterations

(a) Textual Feedback: Self-correcting with text

(b) Images generated with increasing feedback iterations

Figure 7. Improved visual generation with text feedback. The improvement in the visual generation of models due to feedback is
oftentimes gradual, with the addition of a few features at a time over the course of the feedback process. Conditioning on the code
generated from the previous iterations, to a limited degree, ensures that the model is constrained to modifying aspects of the current image.

to a particular concept does not necessarily imply its lack of
”knowledge” of that particular concept but rather its lack of
immediate accessibility. Could direct systematic guidance
and textual feedback help improve a model’s visual capabil-
ity? And if so, can this be automated?

Experimental Protocol. The visual competence of a gen-
erator language model can be improved by pairing it with
itself. This procedure serves as prompt-facilitated ”self-
talk” and helps scope out the model’s internal representa-
tion of a particular visual concept over multiple rounds of
generation. Additionally, selective step-wise correction of a
model’s generation gives us insights into whether the model
has memorized a fixed ”prototype” corresponding to a vi-
sual concept or if its representation can be systematically
modified by iteratively prompting it to improve its drawing.

Prompt: ”The following [code] does not accurately rep-
resent the [concept]. How can you do better?”.

Evaluation Protocol. To evaluate the improvement in the
model’s drawing capability, we use the fidelity score that
was described in Section 4.1.

Baseline: To assess whether the model’s drawing im-
provements stem from textual feedback or repeated model
calls, we conduct a ’variability’ baseline. We generate 20
independent outputs for the same concept and report the me-
dian CLIP percentile for the best images per concept. Mean
variability score is reported in Fig. 8.

The visual competence is improved solely by text-based
feedback. We present examples of images generated with
iterative feedback in Fig. 7. Visual quality and fidelity to the

Figure 8. Text-feedback improves visual generation compe-
tence: Improvement in the quality of the generations is depicted
by increasing median CLIP percentile as a function of feedback it-
erations. The model with textual corrections outperforms selecting
the best image from multiple random samples of the same concept.

visual concepts significantly improve with multiple rounds
of feedback. Fig. 8 shows that GPT-3.5, a weaker genera-
tor than GPT-4, can be made to be nearly as competent of
an image generator as GPT-4 with text feedback from it-
self. Therefore, models can benefit in returning an overall
better answer from multiple rounds of self-verification. In
fact, with 20 rounds of feedback, the average performance
of GPT-3.5 approaches that of GPT-4. Further analysis and
visualization for the dataset are in the SM.

5. Learning a Vision System from Text
Lastly, we test whether LLM-generated images can be used
to train a generally capable vision system for natural im-

14416

ages. This relates to abundant existing work [3, 5, 6, 21, 35]
that studies the same phenomena by pretraining vision sys-
tems using only procedurally generated images.
Training and evaluation protocol. We use unsupervised
contrastive learning, which allows pretraining vision back-
bones with an unlabeled set of images, and follow the train-
ing and evaluation protocol of [6]. We train a ResNet-
50 [17] using the MoCo-v2 method [11] over a dataset
of 1.3M 384 × 384 images generated by LLMs, for 200
epochs with batch size of 256. For comparison, we gen-
erate datasets of the same size and image resolution with
4 different procedural generation methods [5, 6, 21]. Af-
ter training, we evaluate the performance of models trained
on each of the datasets using two approaches: (i) training a
linear layer on top of the frozen backbone for ImageNet-1k
classification for 100 epochs, and (ii) using 5-nearest neigh-
bor retrieval on ImageNet-100 [38]. The latter is of spe-
cial interest, as nearest-neighbor retrieval shows that models
trained solely on LLM generated data yield powerful repre-
sentations for natural images, without the need of training a
linear layer. This can be qualitatively seen in Fig. 9.
Baselines and datasets. We compare our LLM gener-
ated images against existing procedurally generated im-
ages. These include simple generative programs like dead-
levaves [6], fractals [21], and StyleGAN [6], each consist-
ing of a single program that generates highly diverse im-
ages. We also consider the Shaders-21k dataset [5], a large
collection of procedural image programs, each one pro-
ducing a family of images of high diversity. Our LLM-
generated dataset consists of all the available images ob-
tained using the different LLMs as described in Sec. 4.1, a
total of 80k images. We augment these by randomly sam-
pling convex combinations of six data points using MixUP
[44] (shown to be effective for other synthetic images [5]),
and reach a total of 1.3M images. As an ablation, we re-
port an additional experiment that excludes GPT-4 images
from the training (a 31k subset of the total 80k). Addi-
tional dataset breakdowns (i.e. each LLM individually) are
reported in the SM.
Analysis. Table 2 shows that models trained with only
LLM-generated images outperform simple datasets like
dead-leaves or fractals, but are still inferior to alternatives.
Through visual inspection of the data, we attribute this in-
feriority to the lack of texture in most LLM-generated im-
ages, as observed in the figures throughout the paper and
in the SM. To overcome this, we combine the Shaders-
21k dataset [5], which generates texture-rich images with
the samples obtained from LLMs. This is done by sam-
pling with 50% chance from either dataset and applying
MixUP. As seen in Table 2, these models outperform all
procedural generation-based alternatives, showing that (i)
LLM-generated images combined with textures are power-
ful representations for natural images, and (ii) scaling up the
number of generative image procedures (by combining the

Figure 9. Nearest Neighbors Retrieval on ImageNet-100. Near-
est neighbors on ImageNet-100 for a randomly initialized network
and a network trained with all our LLM-generated images.

Pre-training Dataset I-1k I-100
Linear 5-NN

Random Init. None 4.36 4.28
Real Places 55.59 57.04

Dead-leaves 20.00 12.76
FractalDB-1k 23.86 17.24
StyleGAN 38.12 33.00

Procedural S-21k 44.83 43.24

LLMs (w/o GPT-4) 33.60 22.42
LLMs (w/ GPT-4) 36.16 27.44
LLMs (w/o GPT-4) + S-21k 45.79 43.40
LLMs (w/ GPT-4) + S-21k 46.03 43.36

Table 2. Learning a vision system. Top-1 Linear evaluation on
ImageNet-1k and 5-NN on ImageNet-100, for a ResNet-50 pre-
trained with different real and procedurally generated datasets in-
cluding LLM’s generated images.

procedures in Shaders-21k with those sampled from LLMs)
improves overall performance, as predicted in [5]. We also
note that the models trained with or without GPT-4 images
achieve roughly the same performance. We end this sec-
tion with the conclusion that LLMs, processing only textual
inputs and outputs, can produce images with useful visual
properties that complement previous procedural generation
approaches for training visual systems.

6. Conclusions
We show that LLMs learn visual properties of the real
world, and can depict them in the form of procedural im-
age code. We do so by first analyzing the properties of the
samples they generate, and showing that the model’s com-
petence can be further improved through text feedback from
the model itself. Finally, we show that the images produced
by these models can be used to train useful vision back-
bones for downstream tasks on natural images, gracefully
complementing alternative approaches.

14417

References
[1] Githubcopilot. https://github.com/features/copilot. 3
[2] Mostafa Abdou, Artur Kulmizev, Daniel Hershcovich, Stella

Frank, Ellie Pavlick, and Anders Søgaard. Can language
models encode perceptual structure without grounding? a
case study in color. In Conference on Computational Natu-
ral Language Learning, 2021. 3

[3] Connor Anderson and Ryan Farrell. Improving fractal pre-
training. CoRR, abs/2110.03091, 2021. 3, 8

[4] Shekoofeh Azizi, Simon Kornblith, Chitwan Saharia, Mo-
hammad Norouzi, and David J Fleet. Synthetic data from
diffusion models improves imagenet classification. arXiv
preprint arXiv:2304.08466, 2023. 3

[5] Manel Baradad, Chun-Fu Chen, Jonas Wulff, Tongzhou
Wang, Rogerio Feris, Antonio Torralba, and Phillip Isola.
Procedural image programs for representation learning. In
Advances in Neural Information Processing Systems, 2022.
3, 8

[6] Manel Baradad Jurjo, Jonas Wulff, Tongzhou Wang, Phillip
Isola, and Antonio Torralba. Learning to see by looking at
noise. Advances in Neural Information Processing Systems,
34:2556–2569, 2021. 3, 8

[7] John L Barron, David J Fleet, and Steven S Beauchemin.
Performance of optical flow techniques. International jour-
nal of computer vision, 12:43–77, 1994. 3

[8] Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Jo-
hannes Gehrke, Eric Horvitz, Ece Kamar, Peter Lee, Yin Tat
Lee, Yuanzhi Li, Scott Lundberg, Harsha Nori, Hamid
Palangi, Marco Tulio Ribeiro, and Yi Zhang. Sparks of ar-
tificial general intelligence: Early experiments with gpt-4,
2023. 1, 3, 4

[9] Catherine Chen, Kevin Lin, and Dan Klein. Constructing
taxonomies from pretrained language models. arXiv preprint
arXiv:2010.12813, 2020. 1, 3

[10] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Hen-
rique Ponde, Jared Kaplan, Harrison Edwards, Yura Burda,
Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish
Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ry-
der, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Moham-
mad Bavarian, Clemens Winter, Philippe Tillet, Felipe Pet-
roski Such, David W. Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William H.
Guss, Alex Nichol, Igor Babuschkin, S. Arun Balaji, Shan-
tanu Jain, Andrew Carr, Jan Leike, Joshua Achiam, Vedant
Misra, Evan Morikawa, Alec Radford, Matthew M. Knight,
Miles Brundage, Mira Murati, Katie Mayer, Peter Welin-
der, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. Evaluating large lan-
guage models trained on code. ArXiv, abs/2107.03374, 2021.
3

[11] Xinlei Chen, Haoqi Fan, Ross B. Girshick, and Kaiming
He. Improved baselines with momentum contrastive learn-
ing. CoRR, abs/2003.04297, 2020. 8

[12] Yuhua Chen, Wen Li, Xiaoran Chen, and Luc Van Gool.
Learning semantic segmentation from synthetic data: A geo-
metrically guided input-output adaptation approach. In Pro-

ceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 1841–1850, 2019. 3

[13] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.
ImageNet: A Large-Scale Hierarchical Image Database. In
CVPR09, 2009. 5

[14] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip
Hausser, Caner Hazirbas, Vladimir Golkov, Patrick Van
Der Smagt, Daniel Cremers, and Thomas Brox. Flownet:
Learning optical flow with convolutional networks. In Pro-
ceedings of the IEEE international conference on computer
vision, pages 2758–2766, 2015. 3

[15] Constantin Eichenberg, Sidney Black, Samuel Weinbach,
Letitia Parcalabescu, and Anette Frank. Magma–multimodal
augmentation of generative models through adapter-based
finetuning. arXiv preprint arXiv:2112.05253, 2021. 2

[16] Yuling Gu, Bhavana Dalvi Mishra, and Peter Clark. Do
language models have coherent mental models of everyday
things? arXiv preprint arXiv:2212.10029, 2022. 2

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep Residual Learning for Image Recognition. In Proceed-
ings of 2016 IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 770–778. IEEE, 2016. 8

[18] José Hernández-Orallo. Evaluation in artificial intelligence:
from task-oriented to ability-oriented measurement. Artifi-
cial Intelligence Review, 48:397–447, 2017. 2

[19] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. GANs trained by
a two time-scale update rule converge to a local nash equi-
librium. In NIPS, 2017. 5

[20] Yining Hong, Li Yi, Josh Tenenbaum, Antonio Torralba, and
Chuang Gan. Ptr: A benchmark for part-based conceptual,
relational, and physical reasoning. Advances in Neural In-
formation Processing Systems, 34:17427–17440, 2021. 2

[21] Hirokatsu Kataoka, Kazushige Okayasu, Asato Matsumoto,
Eisuke Yamagata, Ryosuke Yamada, Nakamasa Inoue, Akio
Nakamura, and Yutaka Satoh. Pre-training without natural
images. CoRR, abs/2101.08515, 2021. 3, 8

[22] Belinda Z Li, Maxwell Nye, and Jacob Andreas. Implicit
representations of meaning in neural language models. arXiv
preprint arXiv:2106.00737, 2021. 1, 3

[23] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
Computer Vision–ECCV 2014: 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings,
Part V 13, pages 740–755. Springer, 2014. 4

[24] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee.
Visual instruction tuning. arXiv preprint arXiv:2304.08485,
2023. 2

[25] Kyle Mahowald, Anna A Ivanova, Idan A Blank, Nancy
Kanwisher, Joshua B Tenenbaum, and Evelina Fedorenko.
Dissociating language and thought in large language models:
a cognitive perspective. arXiv preprint arXiv:2301.06627,
2023. 2

[26] Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer,
Daniel Cremers, Alexey Dosovitskiy, and Thomas Brox. A
large dataset to train convolutional networks for disparity,
optical flow, and scene flow estimation. In Proceedings of

14418

the IEEE conference on computer vision and pattern recog-
nition, pages 4040–4048, 2016. 3

[27] Jack Merullo, Louis Castricato, Carsten Eickhoff, and Ellie
Pavlick. Linearly mapping from image to text space. arXiv
preprint arXiv:2209.15162, 2022. 1, 2

[28] Roma Patel and Ellie Pavlick. Mapping language models to
grounded conceptual spaces. In International Conference on
Learning Representations, 2022. 3

[29] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 10684–10695, 2022. 5

[30] German Ros, Laura Sellart, Joanna Materzynska, David
Vazquez, and Antonio M Lopez. The synthia dataset: A large
collection of synthetic images for semantic segmentation of
urban scenes. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 3234–3243,
2016. 3

[31] Artem Rozantsev, Vincent Lepetit, and Pascal Fua. On ren-
dering synthetic images for training an object detector. Com-
puter Vision and Image Understanding, 137:24–37, 2015. 3

[32] Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Tan, Yossi Adi, Jingyu Liu, Tal
Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evti-
mov, Joanna Bitton, Manish Bhatt, Cristian Ferrer, Aaron
Grattafiori, Wenhan Xiong, Alexandre Defossez, Jade Copet,
and Gabriel Synnaeve. Code llama: Open foundation models
for code, 2023. 3

[33] Mert Bulent Sariyildiz, Karteek Alahari, Diane Larlus, and
Yannis Kalantidis. Fake it till you make it: Learning trans-
ferable representations from synthetic imagenet clones. In
CVPR 2023–IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2023. 3

[34] Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu
Awal Md Shoeb, Abubakar Abid, Adam Fisch, Adam R
Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-
Alonso, et al. Beyond the imitation game: Quantifying
and extrapolating the capabilities of language models. arXiv
preprint arXiv:2206.04615, 2022. 2

[35] Sora Takashima, Ryo Hayamizu, Nakamasa Inoue, Hi-
rokatsu Kataoka, and Rio Yokota. Visual atoms: Pre-training
vision transformers with sinusoidal waves. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 18579–18588, 2023. 3, 8

[36] Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang, Adam
Poliak, R Thomas McCoy, Najoung Kim, Benjamin
Van Durme, Samuel R Bowman, Dipanjan Das, et al. What
do you learn from context? probing for sentence struc-
ture in contextualized word representations. arXiv preprint
arXiv:1905.06316, 2019. 1, 3

[37] Yoad Tewel, Yoav Shalev, Idan Schwartz, and Lior Wolf.
Zero-shot image-to-text generation for visual-semantic arith-
metic. arXiv preprint arXiv:2111.14447, 2021. 1, 2

[38] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Con-
trastive multiview coding. CoRR, abs/1906.05849, 2019. 8

[39] Yonglong Tian, Lijie Fan, Phillip Isola, Huiwen Chang, and
Dilip Krishnan. Stablerep: Synthetic images from text-to-

image models make strong visual representation learners.
arXiv preprint arXiv:2306.00984, 2023. 3

[40] Maria Tsimpoukelli, Jacob L Menick, Serkan Cabi, SM Es-
lami, Oriol Vinyals, and Felix Hill. Multimodal few-shot
learning with frozen language models. Advances in Neural
Information Processing Systems, 34:200–212, 2021. 2

[41] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret
Zoph, Sebastian Borgeaud, Dani Yogatama, Maarten Bosma,
Denny Zhou, Donald Metzler, et al. Emergent abilities of
large language models. arXiv preprint arXiv:2206.07682,
2022. 3

[42] Chenfei Wu, Shengming Yin, Weizhen Qi, Xiaodong Wang,
Zecheng Tang, and Nan Duan. Visual chatgpt: Talking,
drawing and editing with visual foundation models. arXiv
preprint arXiv:2303.04671, 2023. 2

[43] Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin Lin,
Ehsan Azarnasab, Faisal Ahmed, Zicheng Liu, Ce Liu,
Michael Zeng, and Lijuan Wang. Mm-react: Prompting
chatgpt for multimodal reasoning and action. arXiv preprint
arXiv:2303.11381, 2023. 2

[44] Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and
David Lopez-Paz. mixup: Beyond empirical risk minimiza-
tion. CoRR, abs/1710.09412, 2017. 8

[45] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shecht-
man, and Oliver Wang. The unreasonable effectiveness of
deep features as a perceptual metric. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 586–595, 2018. 5

[46] Ziyin Zhang, Chaoyu Chen, Bingchang Liu, Cong Liao, Zi
Gong, Hang Yu, Jianguo Li, and Rui Wang. A survey on
language models for code, 2023. 3

[47] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela
Barriuso, and Antonio Torralba. Scene parsing through
ade20k dataset. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 633–641,
2017. 4

[48] Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fi-
dler, Adela Barriuso, and Antonio Torralba. Semantic under-
standing of scenes through the ade20k dataset. International
Journal of Computer Vision, 127:302–321, 2019. 4

[49] Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mo-
hamed Elhoseiny. Minigpt-4: Enhancing vision-language
understanding with advanced large language models. arXiv
preprint arXiv:2304.10592, 2023. 2

14419

	. Introduction
	. Related work
	. Visual Aptitude Dataset: Points to Scenes
	. Representing images with code
	. Models and Programming Languages tested

	. A Vision Checkup for LLM
	. Generation: Drawing with Text
	. Recognition: Seeing with Text
	. Textual-Feedback: Correcting with Text

	. Learning a Vision System from Text
	. Conclusions

