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Abstract

Spiking Neural Networks (SNNs) have been widely
praised for their high energy efficiency and immense poten-
tial. However, comprehensive research that critically con-
trasts and correlates SNNs with quantized Artificial Neural
Networks (ANNs) remains scant, often leading to skewed
comparisons lacking fairness towards ANNs. This paper
introduces a unified perspective, illustrating that the time
steps in SNNs and quantized bit-widths of activation val-
ues present analogous representations. Building on this,
we present a more pragmatic and rational approach to
estimating the energy consumption of SNNs. Diverging
from the conventional Synaptic Operations (SynOps), we
champion the ”Bit Budget” concept. This notion permits
an intricate discourse on strategically allocating compu-
tational and storage resources between weights, activa-
tion values, and temporal steps under stringent hardware
constraints. Guided by the Bit Budget paradigm, we dis-
cern that pivoting efforts towards spike patterns and weight
quantization, rather than temporal attributes, elicits pro-
found implications for model performance. Utilizing the Bit
Budget for holistic design consideration of SNNs elevates
model performance across diverse data types, encompass-
ing static imagery and neuromorphic datasets. Our revela-
tions bridge the theoretical chasm between SNNs and quan-
tized ANNs and illuminate a pragmatic trajectory for future
endeavors in energy-efficient neural computations.

1. Introduction
Spiking Neural Networks (SNNs) [24], rooted in a com-

putational framework that draws inspiration from biolog-

ical neural processes, present a compelling counterpoint

to the established paradigms of traditional Artificial Neu-

ral Networks (ANNs). This modality signifies a substan-

tial divergence from the analog and continuous activation

regimes that characterize ANNs. Predicated on an event-

driven operational principle, SNNs are inherently poised
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for reduced energy consumption, a trait that is instrumental

in the ongoing evolution of neuromorphic computing plat-

forms [17]. Building on the energy-efficient principles in-

herent to SNNs, pioneering developments in neuromorphic

chips like TrueNorth [25] and Loihi [4] have underscored

their significant potential for reducing energy consump-

tion in comparison with traditional computing approaches.

These platforms capitalize on the efficiency of SNNs to of-

fer optimized solutions for energy-constrained applications,

advancing the frontiers of computing technology.

Despite the inherently low power consumption of SNNs,

their deployment in edge computing devices such as mo-

bile phones and wearable technology remains notably in-

frequent. Despite progress in neuromorphic technology,

modern SNN configurations remain deeply rooted in the

methodologies of deep ANNs. These SNN designs typ-

ically rely on optimistic energy usage projections that

overlook the tangible overheads associated with deploy-

ing hardware in real-world environments [18]. This ap-

proach can distort the comparison with traditional ANNs,

especially when such ANNs have been refined for energy-

efficient operation. To address the severe energy and com-

putational constraints, the traditional machine learning do-

main has introduced a suite of model optimization tech-

niques, including quantization [19, 20, 22] and network

pruning [9, 10, 30]. These methods effectively reduce the

computational and memory requirements. Such adaptabil-

ity ensures that sophisticated neural models can be de-

ployed even in resource-limited settings with minimal com-

promise on performance. Conventionally, SNNs are of-

ten compared to ANNs that have not undergone similar

optimizations [28, 31, 36, 44]. Although such compar-

isons may highlight the energy efficiency of SNNs, they

do not fairly consider the significant advancements in ANN

energy-efficient optimization. Consequently, this preva-

lent comparative framework fails to substantiate the com-

putational efficacy of SNNs in a comprehensive manner

and does not adequately acknowledge the considerable en-

hancements achieved through contemporary ANN infer-

ence optimization methodologies.
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In particular, the advent of surrogate gradient meth-

ods [2] has precipitated new advancements in the field of

deep SNNs, pivoting the focus towards enhancing network

performance concurrently with the reduction of network

latency [31, 37, 41]. Incorporating advanced methodolo-

gies has precipitated a notable reduction in latency within

deep SNNs, culminating in scenarios where the processing

is streamlined to necessitate a mere one or two time steps.

This observation raises a compelling inquiry: Does an SNN,

functioning within the confines of a single time step, essen-

tially mirror the characteristics of an ANN wherein the acti-

vation is quantized? Our analysis scrutinizes the efficiency

of SNNs through the prism of neural network quantization,

allowing us to elucidate the nuanced discrepancies between

SNNs and their quantized ANN counterparts. We under-

take a thorough and methodical examination of the compu-

tational efficacy of SNNs, with an emphasis on their practi-

cal application within real-world contexts, transcending be-

yond the confines of theoretical computational advantages.

Our contribution can be summarized as follows:

• We introduce a unified framework for quantitatively an-

alyzing SNNs and ANNs, demonstrating that an SNN

with simulation step T is comparable to a T -bit quantized

ANN. This emphasizes the association between SNNs

and ANNs in terms of computational complexity.

• We define the ”Bit Budget” to measure synaptic opera-

tion complexity and present two metrics, S-ACE and NS-

ACE, to assess computational demand across hardware

platforms. Time steps, spike patterns, and weights are

taken into account for the computational overhead. These

metrics inform the development of the strategy and em-

phasize the significant impact of model weight quantifi-

cation on computation and storage

• Our validation across varied neural tasks and architec-

tures highlights the potential for our findings to bridge

SNN research with broader deep learning advances and

guide future explorations in the field.

2. Related Work
Spiking neural networks, heralded as the third genera-

tion of neural networks, are engineered to emulate the

intricate information-processing mechanism of the human

brain. Maass [24] was seminal in delineating the contrast

between SNNs and their ANN counterparts, explicitly high-

lighting the former’s proficiency in discrete-time, event-

driven processing. This paradigm shift was further cat-

alyzed by the work [31, 34, 35, 37–39] and innovative Spik-

ing Transformer architectures [36, 44]. These models are

increasingly becoming cornerstones in domains like image

recognition, natural language processing, and robotics con-

trol [32, 42, 45], underscoring the SNNs’ inherent ability

to execute computationally demanding tasks in an energy-

efficient manner, presenting a sustainable alternative to con-

ventional ANNs.

Optimization of neural network efficiency, particularly in

terms of computational overhead and resource utilization,

is a critical aspect of advancing deep learning technology.

Notable techniques such as network pruning and quantiza-

tion have dramatically diminished the computational bur-

den and storage requirements traditionally associated with

neural networks. Pruning strategies streamline network ar-

chitectures by systematically eliminating superfluous con-

nections and neurons. Han et al. [11] illustrated the over-

parameterization in deep learning models and optimized

them through pruning. This approach evolved, giving rise to

structured [15, 21] and unstructured pruning methods [12].

Quantization, on the other hand, concentrates on minimiz-

ing the precision of the numerical representation of neural

weights and activations, substantially saving on both stor-

age and computational intensity. Zhou et al. [43] show-

cased the potential of quantized neural networks. Extreme

cases, like Binary Neural Networks (BNNs), which only

use single-bit representations, have also been explored [3].

Thereon, the domain has witnessed extensive research, fo-

cusing on balancing quantization and performance [26].

Given the intertwined trajectories of SNNs, neuromor-

phic hardware, and ANNs, there is an evident need for a

comprehensive evaluation metric that accounts for practi-

cal hardware constraints. However, current measures of

the computational complexity of SNNs using the number

of Synaptic Operations (SOPs) [13] only take into account

the effects of firing rate and time step, making it challenging

to meet this burden. Our research suggests that SNNs and

ANNs can be equated to circuit complexity. Recognizing

this equivalence provides an avenue to analyze SNN energy

consumption in line with ANNs, necessitating an inclusive

energy-efficiency evaluation approach. Embracing tech-

niques from ANNs, especially quantization can further am-

plify the energy-saving potential of SNNs. Informed by this

holistic perspective, we introduce a universal framework.

Our approach delves deep into the facets of weight pre-

cision, activation function choices, and the unique tempo-

ral resolution aspect of SNNs. This framework is designed

to bridge theoretical postulations with practical implemen-

tations, championing both energy efficiency and computa-

tional excellence.

3. Method

3.1. T-step SNNs and T-bit Quantized ANNs

Both SNNs and Quantized ANNs (QANNs) enhance the

efficiency of network inference through discrete represen-

tations. However, literature rarely discusses the differences

and connections between them. We analyze both from a

unified perspective.

An SNN layer operates across three temporal phases,
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Figure 1. With the same number of feature bits, SNNs and quantized ANNs have the same complexity of representation.

delineated in Eq. 1. The input spikes (spre) from the an-

tecedent layer are weighted and transformed into currents

that modulate the neuron’s membrane potential (vt). If this

potential exceeds a certain threshold (vth), it resets after a

spike, encapsulated by the Heaviside step function (H(·)),
reflecting the all-or-none nature of neuronal firing. vrst is

the reset potential, τ is the time constant, and wj is the

synaptic weight for the jth presynaptic neuron.

vt =
1

τ
vt−1 +

∑

j

wjspre,

if v > vth then v ← vrst,

s = H(v − vth)

(1)

QANNs mirror SNNs in structure but not in temporal-

ity, operationalized through Eq. 2. The activations (apre)

are quantized and multiplied by synaptic weights, aggre-

gated, and then scaled to produce the discretized output ac-

tivations (a). a′ denotes the weighted sum of pre-activation

values, and a the quantized activations, with Δa serving as

the quantization step.

a′ =
∑

j

wjapre, a = � a′

Δa
� ×Δa (2)

SNNs and QANNs’ computational equivalence is cap-

tured in Eq. 3, where the forward pass in QANNs is decon-

structed into a summation over T quantization levels, akin

to SNNs’ summation over T time steps.

a =
∑

j

wjapre =
∑

j

wj

T∑

t=0

2ta(t)pre =

T∑

t=0

2t
∑

j

wja
(t)
pre

(3)

In this framework, a
(t)
pre represents the tth bit of the bi-

nary representation of apre, illustrating the decomposition

of QANN forward computation into bit-wise operations,

which closely resemble SNN’s temporal spike integrations,

as shown in Fig. 1.

The above discussion demonstrates that the Generalized

Matrix Multiplication (GeMM) process of input activation

values and weights in QANNs can be converted to the mul-

tiplication of binary spikes with weights, which has a sim-

ilar representation to SNNs. The distinction arises in the

subsequent integration stage; SNNs accumulate results over

time, while QANNs do so across bit-widths. Below, we ex-

plore the hardware implementations for these integrations

and their parallels.

Fig. 2 illustrates the input integration for neurons with

varying bit allocations, given a constant synaptic weight bit-

width. The P sum is the weighted presynaptic input, and

Valid signals its readiness for neuronal processing. Last
indicates the final time step, used alongside Valid to cap-

ture the quantized spike vector output. A Finite State Ma-

chine (FSM) controls the timing, resetting neuron potential

at the start. The subfigures (a)-(c) demonstrate the mem-

brane potential integration for different spike-time config-

urations, such as 1/4, 4/1, and 2/2. This setup allows for

unfolding multiple input currents for parallel processing.

Hence, we assert that varying bit allocations do not signifi-

cantly alter hardware implementation or complexity.

3.2. A Generalized Framework towards QSNNs

This subsection introduces a generalized framework for

Quantitative SNNs (QSNNs). The framework aims to pro-

vide a cohesive understanding of weight quantization, time

steps, spike pattern transformation, and energy consump-

tion evaluation.

Bit Budget: A More Atomistic Measure In conven-

tional approaches to calculating the computational over-

head of SNNs, synaptic operations (SOPs) are often utilized

as the fundamental unit of measurement. SOPs typically

assume that synaptic weights are fixed-precision floating-

point numbers and estimate energy costs based on the op-
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Figure 2. Comparison of different allocation of bit budgets.

erations between binary spikes and continuous synaptic

weights on specific neuromorphic hardware. This method-

ology presupposes an ideal operation of the designed net-

works on particular hardware. Furthermore, this method

only considers the impact of spike rate and time step on en-

ergy consumption while neglecting the potential influence

of weight bit-width and spike patterns. This oversight com-

plicates the unification of SNNs and QANNs under a com-

mon framework. Therefore, we propose refining SOPs into

a more fundamental unit, the Bit Budget, which we define

as follows:

BB = T · bw · bs (4)

As depicted in Eq. 4, we consider the following three

factors in tandem to estimate the computational overhead

of a single synapse: the time step (T ), the weight bit-width

(bw), and the bit-width of the spike (bs), also referred to as

spike patterns. This presents a more flexible degree of free-

dom compared to previous works, which only considered

the impact of the time step and assumed fixed bit-width for

synaptic weights, along with a limited binary representa-

tion for spikes. To validate the effectiveness of this metric,

we used an Field Programmable Gate Arrays (FPGA) plat-

form to analyze the bit budget corresponding to different de-

vices and their synaptic energy consumption, as illustrated

Figure 3. Bit Budget versus energy consumption for individual

synaptic operations.

in Fig. 3. The figure reveals a noticeable linear relationship

between the bit budget and synaptic energy consumption,

affirming the bit budget’s validity. Next, we will revisit

SNNs and optimize the computational overhead of SNNs,

guided by the bit budget.

Quantification of Weights In the realm of quantized neu-

ral networks, weight quantization is pivotal for optimizing

storage and computational overhead without significantly

sacrificing performance. This is essential for both ANNs

and SNNs, especially when pursuing efficient hardware im-

plementations. However, despite the importance of weight

quantization in SNNs, it has not received as much attention

as in QANNs.

The quantization function is shown in Eq. 5, which trans-

forms continuous or high-precision floating-point weights

w into a discrete integer set wq with reduced bit-width. This

function is governed by a quantized step Δ, a critical param-

eter that balances information fidelity against compression

level.

wq = �w
Δ
� ×Δ (5)

�·� is the standard rounding operation. Upon quantiza-

tion, each original weight w is supplanted by a quantized

value wq , altering network dynamics. The core challenge is

to turn Δ and the quantization scheme such that the quan-

tized network’s output yq , remains as close as possible to

that of the unquantized network y, despite the inherent loss

of precision. The similarities between SNN and QANN ar-

chitectures allow for the cross-application of quantization

strategies, as outlined in Section 3.1. Our contribution does

not delve into the complexities of specific quantization tech-

niques; rather, it presents a unified framework for QSNNs.

We utilize a symmetric quantization approach, with Δ set

to 2T−1, ensuring that the quantized weights wq fall within

the range [−1, 1].

Step-State Bit Allocation Our preliminary research re-

vealed the functional equivalence between T -step SNNs
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and T -bit quantized state ANNs. Building upon this foun-

dation, in the following sections, we will delve deeper into

how SNNs, under a fixed bit budget, can strategically al-

locate bits to the representation of spike patterns and time

steps to enhance overall performance.

In conventional SNNs, neuronal responses are binary,

leveraging the temporal dimension to encode rich informa-

tion. In contrast, QANNs encode data within quantized

state bits, devoid of a distinct temporal dimension. A pro-

posed hybrid model, therefore, seeks to synergize these ap-

proaches, judiciously distributing bits across time steps and

spike patterns. For example, rather than dedicating all bits

to spike patterns or temporal neuronal activity, a model

might apportion its bit budget to improve temporal resolu-

tion (by increasing time steps) while using the remainder

for enhanced state representation (through elevated spike

patterns). This strategy promises a more refined balance

between temporal granularity and state complexity, poten-

tially unveiling new operational modes and efficiencies be-

yond the reach of SNNs or QANNs.

The concept of bit allocation in SNNs initially stems

from the study of burst neurons [33]. The burst neu-

ron model categorizes neuronal activity into three distinct

states: resting, spiking, and bursting, demonstrating its ad-

vanced capabilities. Building upon this, we have developed

an enhanced model in which neurons dynamically allocate

computational resources or Bit Budgets between the tempo-

ral domain and spike type. This is achieved by modulating

time steps and various spike patterns, enabling neurons to

emit a collection of different states rather than mere binary

signals.

In the proposed model, the allocation of bits is more flex-

ible and is not strictly confined to representing either the

time steps or the quantization levels of the neuron’s activity.

Instead, it permits a dynamic distribution of computational

resources:

vt =
1

τ
vt−1 +

∑

j

wjspre, t ∈ {1, 2, ..., � T
N

�}

if v > vth, then v ← vrst;
(6)

s = � v

vth
� × vth (7)

As shown in Eq. 7, the neuron’s membrane potential (v)

at each time step (t) is influenced by its previous state and

the current synaptic inputs (spre), weighted by the synaptic

weights (wj). When the membrane potential exceeds the

threshold, the neuron fires a spike, after which the neuron’s

membrane potential is reset. The potential quantization de-

termines the emitted spike pattern (s). This quantization

allows the spike to carry more information, utilizing the bit

budget effectively.

This mechanism introduces an adaptable allocation strat-

egy. Part of the bit budget is used to increase the number of

time steps, enriching the temporal resolution, while the rest

is employed to enhance the spike patterns via finer quanti-

zation levels. Such balanced allocation provides more nu-

anced control over the interplay between time-sensitive dy-

namics and the richness of state information, paving the

way for more efficient and adaptable neural computations

in QSNNs.

Computational Effort Estimates for SNNs In light

of these limitations and inspired by the computational

paradigm in [40], we propose two advanced metrics aimed

at a more holistic and hardware-independent evaluation of

computational expenses based on the bit budget: the Synap-

tic Arithmetic Computation Effort (S-ACE) and the Neu-

romorphic Synaptic Arithmetic Computation Effort (NS-

ACE). These metrics are specifically tailored to assess the

resource expenditure of SNNs in both generic and neuro-

morphic computing environments, offering broader appli-

cability.

The S-ACE is calculated with Eq. 8:

S-ACE =
∑

w∈W, s∈S

nw,s · BB (8)

In Eq. 8, nw,s denotes the count of multiply-accumulate

operations (MACs) for a bw-bit number and a bs-bit num-

ber extracted directly from the neural network’s architec-

ture. W and S constitute the sets containing all bit-widths

engaged during the neural network’s inference stage.

On the contrary, NS-ACE integrates the neuron’s firing

rate (frs) into its computations to more accurately reflect

the energy dynamics inherent to neuromorphic hardware

systems. This model is predicated on the principle that en-

ergy consumption occurs exclusively during spike events.

The formulation for NS-ACE is as follows:

NS-ACE =
∑

w∈W, s∈S

frs · nw,s · BB (9)

In Eq. 9, the term frs represents the firing rate of neu-

rons, emphasizing the concept that in neuromorphic sys-

tems, the absence of spiking activity is associated with neg-

ligible energy expenditure.

Our introduction of S-ACE and NS-ACE marks a signif-

icant stride toward a more refined, realistic, and hardware-

agnostic evaluation of computational costs in SNNs. By

integrating the complexities inherent in real-world appli-

cations, these metrics offer a versatile and comprehensive

framework for researchers and engineers working in the

SNN landscape.

4. Experiments
To assess the performance of QSNNs and determine their

comparative effectiveness against conventional neural net-
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work models across various scenarios, we conducted a com-

prehensive evaluation using a range of datasets. Our analy-

sis included traditional static datasets such as ImageNet [5]

and CIFAR10/100 [14], along with a collection of neuro-

morphic datasets like CIFAR10-DVS [16], DVS128 Ges-

ture [1], and N-Caltech101 [27]. For detailed information

about these datasets and the experimental settings, please

refer to the Appendix A.

Our experimental analysis centers on the spike patterns

and weight quantization of SNNs, aiming to dissect the

subtle differences and interconnections between SNNs and

ANNs. It is worth mentioning that our research findings

can be integrated with contemporary neural network quan-

tization techniques to further enhance model performance.

However, while we have achieved state-of-the-art results

in several SNN benchmarks, the focus of our study is not

to establish new performance benchmarks for SNNs. In-

stead, our goal is to enrich the understanding of how SNNs

function under quantization constraints and their relation-

ship with their non-spiking counterparts.

4.1. Evaluation on Static Datasets

As seen in Tab. 1, we examine the influence of bit allo-

cation, model size, and accuracy on various SNN struc-

tures, including convolutional and Transformer variants on

the ImageNet dataset. Our findings indicate that for static

images, allocating bits to enhance spike patterns, rather than

increasing time steps, leads to superior performance due to

the static nature of these images. This approach, favoring

dense spike patterns, proves more efficient in information

transmission while maintaining a consistent computational

budget, as quantified by the S-ACE and NS-ACE metrics.

Additionally, Tab. 1 reveals that reducing weight bit-width

results in a reduction of parameters and variations in perfor-

mance.

Figure 4. Accuracy, S-ACE and model parameters on the CIFAR

dataset. S-ACE is expressed in logarithmic coordinates.

The results in Tab. 2 have shown the effects of allo-

cating bit budgets between spike patterns and time steps

on CIFAR10/100 datasets while keeping weight and bit-

widths consistent. The optimal model performance on CI-

FAR10/100 is achieved by limiting time steps to 1 or 2 and

maximizing the spike pattern bit-width, which is consistent

with the results on the ImageNet dataset. A detailed ex-

position is available in Appendix A.4. Furthermore, Fig. 4

graphically represents the relationships among accuracy, S-

ACE (logarithmically scaled), and model parameters, illus-

trating the unique balances each method strikes between ac-

curacy, computational cost, and model size. Our methodol-

ogy demonstrates a proficient equilibrium of these pivotal

factors.

4.2. Evaluation on Neuromorphic Datasets

For neuromorphic datasets, we utilize the model outlined

in Tab. 2 and undertake a comprehensive analysis to evalu-

ate the influence of bit distribution between spike patterns

and time steps on model performance, maintaining a uni-

form weight bit-width. For the sake of simplicity, we set

the weight bit-width bw to 1.

Tab. 3 reveals that adjusting the bit allocation between

spike patterns and time steps results in considerable perfor-

mance trade-offs. However, the effect of weight bit-width

on model performance appears less substantial, possibly

due to the constrained size of the neuromorphic datasets,

where weight bit-width may not be a critical performance

factor.

4.3. Bit Budget Allocation

The performance of SNN models is contingent upon the op-

timized interplay of weight bit-width (bw), spike patterns

(bs), and the count of time steps (T ). We conceptualize

the cumulative product of these parameters as the Bit Bud-

get, corresponding to the S-ACE for a single operation. The

pivotal aspect of our research involves determining the op-

timal allocation of these variables within the constraints of

a predetermined Bit Budget to augment the comprehensive

performance of the model.

Figure 5. Relationship between different bit budget allocations and

model performance.

As shown in Fig. 5, our trials on CIFAR100 and N-

Caltech101 unveiled a clear pattern: boosting spike bit-

width enhanced performance for static images, while in-

creasing time steps did not. This aligns with the static nature

of such images where temporal aspects are less significant.

For neuromorphic data, a careful balance between spike bit-

widths and time steps was vital. Setting time steps to T = 4
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Table 1. Evaluation on ImageNet. In quantization, bw represents the bit-width of weights, bs denotes the bit-width of spike patterns, and

T represents the time steps. SOPs refer to synaptic operations. When calculating S-ACE / NS-ACE for FP32 operations, we assume that

these operations can be performed in BF16 without a loss of precision. ↑ means the higher the better, ↓ means the lower the better.

Methods Architecture
Bit (↓)

Budget

Quantization

bw / bs / T
Params

(M) (↓)

SOPs

(G) (↓)

S-ACE

(G) (↓)

NS-ACE

(G) (↓)
Acc (%) (↑)

Hybrid training [29] ResNet-34 4000 16 / 1 / 250 21.79 - 13608 - 61.48

TET [6] SEW-ResNet-34 64 16 / 1 / 4 21.79 - 217.72 - 68.00

Spiking ResNet [13] ResNet-50 5600 16 / 1 / 350 25.56 - 18952 - 72.75

tdBN [42] Spiking-ResNet-34 96 16 / 1 / 6 21.79 - 326.60 - 63.72

SEW ResNet [7]
SEW-ResNet-34 64 16 / 1 / 4 21.79 3.96 217.72 63.14 67.04

SEW-ResNet-50 64 16 / 1 / 4 25.56 4.33 215.62 69.03 67.78

Quantized

SEW ResNet

SEW-ResNet-34 1 1 / 1 / 1 1.36 1.01 3.40 1.01 52.17

SEW-ResNet-34 4 2 / 1 / 2 2.72 2.06 13.6 4.11 60.15

SEW-ResNet-34 4 2 / 2 / 1 2.72 1.83 13.6 3.65 62.36

SEW-ResNet-34 64 8 / 8 / 1 10.89 7.05 217 56.42 70.13

Spikformer [44]

Spikformer-8-384 64 16 / 1 / 4 16.81 5.07 299.6 80.89 70.24

Spikformer-6-512 64 16 / 1 / 4 23.37 7.56 451.2 121.03 72.46

Spikformer-8-512 64 16 / 1 / 4 29.68 9.95 516.4 159.16 73.38

Spikformer-10-512 64 16 / 1 / 4 36.01 10.33 613.6 165.30 73.68

Spikformer-8-768 64 16 / 1 / 4 66.34 20.01 1197 319.64 74.81

Quantized

Spikformer

Spikformer-8-512 1 1 / 1 / 1 1.86 2.12 6.79 2.12 54.54

Spikformer-8-512 4 2 / 2 / 1 3.71 3.83 26.52 7.65 63.16

Spikformer-8-512 4 2 / 1 / 2 3.71 3.93 26.92 7.86 61.37

Spikformer-8-512 8 4 / 2 / 1 7.42 3.59 52.90 14.36 70.87

Spikformer-8-512 8 2 / 4 / 1 3.71 7.09 52.90 14.17 64.75

Spikformer-8-512 32 4 / 8 / 1 7.42 13.69 210.1 54.76 76.83

Spikformer-8-512 32 8 / 4 / 1 14.84 6.51 210.1 52.10 79.37

Table 2. Evaluation on CIFAR10/100.

Allocation

bw / bs / T
Params

(M) (↓)

S-ACE

(G) (↓)

CIFAR10

Acc(↑)

CIFAR100

Acc (↑)

16 / 1 / 4 4.15 59.10 95.51 78.21

1 / 1 / 1 0.26 0.77 90.48 70.11

1 / 4 / 1 0.26 3.08 95.00 76.90
1 / 2 / 2 0.52 3.08 94.43 75.91

1 / 1 / 4 0.26 3.69 93.91 74.13

2 / 2 / 1 0.52 3.08 95.41 76.67
2 / 1 / 2 0.52 3.09 93.56 75.91

4 / 1 / 1 1.04 3.09 94.51 74.61

4 / 4 / 1 1.04 12.32 96.84 80.13

4 / 2 / 2 1.04 12.33 96.50 80.71
4 / 1 / 4 1.04 14.77 95.94 78.77

8 / 1 / 2 2.08 12.35 95.55 77.72

8 / 2 / 1 2.08 12.33 96.29 80.00

and judiciously allocating the remaining bit budget yielded

positive results under limited model parameters and com-

putational resources. A marked increase in model accu-

racy was observed with higher weight bit-widths, plateau-

ing after a certain point. Interestingly, models with low-

weight bit-widths, like 1-bit, still performed well, a fact of-

ten overlooked in prior research. Properly adjusting weight

bit-width can significantly enhance inference efficiency and

compact the model size, which is crucial for the inherent

efficiency of SNNs.

4.4. Hardware Implementation

We have investigated various bit allocation strategies on

FPGA platforms for efficient hardware implementations of

neural networks. We examine the balance between spike

pattern complexity, time steps, fps, and accuracy, con-

strained by 8-bit weight precision. As indicated in Tab. 4,

the congruence between our FPGA-based experimental re-

sults and software simulation results underscores the robust-

ness and universality of our methodologies across varied

hardware environments. For detailed hardware experimen-

tal setup and more experimental results, please refer to the

Appendix B.

Table 3. Evaluation of different Bit Budgets on neuromorphic

datasets.

bw / bs / T DVSC10 [16] DVSG [1] NCAL [27]

16 / 1 /16 80.7 98.3 80.23

1 / 1 / 16 79.8 (+0.00) 96.67 (+0.00) 79.77 (+0.00)

1 / 2 / 8 79.3 (-0.50) 98.48 (+1.81) 80.00 (+0.23)

1 / 4 / 4 63.1 (-16.7) 97.35 (+0.68) 82.64 (+2.87)

1 / 8 / 2 43.0 (-36.8) 96.59 (-0.08) 80.46 (+0.69)

1 / 16 / 1 35.8 (-44.0) 95.45 (-1.22) 77.47 (-2.30)
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Table 4. Hardware Implementation Results on CIFAR10 and

DVS-CIFAR10

CIFAR10

Device Bit Budget bw / bs / T fps Accuracy (%)

xck26

32

8 / 1 / 4 342.35 95.45

8 / 2 / 2 343.52 95.84

8 / 4 / 1 343.29 96.41

64

8 / 1 / 8 155.30 95.47

8 / 2 / 3 155.55 95.79

8 / 4 / 2 155.47 96.43

8 / 8 / 1 155.23 96.51

DVS-CIFAR10

Device Bit Budget bw / bs / T Latency Accuracy (%)

xck26 128

8 / 1 / 16 49.58 80.30

8 / 2 / 8 49.56 80.10

8 / 4 / 4 49.58 69.13

8 / 8 / 2 49.57 51.31

4.5. Visualization of Sparsity in SNNs

In neural networks, sparsity, characterized by inactive neu-

rons and synapses, contributes to energy efficiency by re-

ducing computational and memory requirements. This sub-

section explores the influence of various bit budget alloca-

tions on neuron sparsity within SNNs. Employing the CI-

FAR100 and DVS-Gesture datasets and utilizing single-bit

weight models, we analyzed neuron firing rates across dif-

ferent allocations of bits to spike patterns and time steps.

As depicted in Fig. 6, the results reveal that neuron sparsity

was not notably prominent with single-bit spike patterns.

Conversely, increasing bits for spike patterns while reduc-

ing them for time steps led to lower firing rates, indicating

an increase in network sparsity.

The results indicate that allocating more bits to spike pat-

terns than time steps can lead to more energy-efficient SNN

operations, potentially without performance loss. This ef-

ficiency likely arises from a more effective use of the net-

work’s representational capabilities and decreased compu-

Figure 6. Comparison of firing rates of different layers corre-

sponding to different bit allocation strategies between spike pat-

terns and time steps.

tational waste. Our findings highlight that SNN sparsity is

not a fixed attribute but can be effectively managed through

design, with the Bit Budget concept being key in optimiz-

ing both sparsity and performance. This observation calls

into question the prevailing assumptions regarding intrinsic

sparsity in SNNs and propels novel strategies for architect-

ing efficient neural networks.

5. Conclusion

The current trend in the design of deep SNNs favors sim-

plified neuron models that aim to achieve a scale compara-

ble to modern artificial neural networks. While these SNNs

exhibit notable performance in specific contexts, they of-

ten struggle to surpass the performance benchmarks set by

traditional ANNs. A critical insight from our research is

that SNNs designed following the ANN paradigm inher-

ently mirror the core characteristics of ANNs, akin to ANNs

that employ activation value quantization. This revelation

highlights the challenges faced by such design philosophies.

Our in-depth analysis of SNNs accentuates the pivotal role

of bit allocation strategies in regulating network sparsity

and enhancing energy efficiency. We discern that sparsity

in SNNs is not intrinsic but can be effectively modulated

and optimized through meticulous design strategies.

Consequently, we introduce the Bit Budget concept as

a systematic approach to enhance network representational

capabilities while minimizing computational waste, thus

balancing sparsity and performance. In our bit budgeting,

prioritizing the state representation of SNNs over time steps

has been shown to augment energy efficiency without com-

promising performance. Through simulations and FPGA

experiments, we have validated the robustness and appli-

cability of our approach across various computational set-

tings. This research deepens the understanding of SNN dy-

namics and provides practical guidelines for building more

efficient SNNs. It carves out new pathways for advancing

SNNs, especially in developing energy-efficient systems for

real-world applications.

Our findings challenge the prevailing notion that contem-

porary SNNs are intrinsically high-efficiency systems. We

advocate for a paradigm that aligns harmoniously with neu-

roscience rather than pursuing efficiency as an end in itself.

We aspire to see the field pivot towards a more integrated

approach with neuroscience, fostering intelligent networks

that are energy-efficient and deeply rooted in the principles

of brain-inspired artificial intelligence.
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