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Abstract

Egocentric videos provide a first-person perspective of
the wearer’s activities, involving simultaneous interactions
with multiple objects. In this work, we propose the task
of weakly-supervised Narration-based Video Object Seg-
mentation (NVOS). Given an egocentric video clip and a
narration of the wearer’s activities, our aim is to seg-
ment object instances mentioned in the narration, with-
out using any spatial annotations during training. Exist-
ing weakly-supervised video object grounding methods typ-
ically yield bounding boxes for referred objects. In contrast,
we propose ROSA, a weakly-supervised pixel-level ground-
ing framework learning alignments between referred ob-
jects and segmentation mask proposals. Our model har-
nesses vision-language models pre-trained on image-text
pairs to embed region masks and object phrases. During
training, we combine (a) a video-narration contrastive loss
that implicitly supervises the alignment between regions
and phrases, and (b) a region-phrase contrastive loss based
on inferred latent alignments. To address the lack of anno-
tated NVOS datasets in egocentric videos, we create a new
evaluation benchmark, VISOR-NVOS, leveraging existing
annotations of segmentation masks from VISOR alongside
14.6k newly-collected, object-based video clip narrations.
Our approach achieves state-of-the-art zero-shot pixel-level
grounding performance compared to strong baselines under
similar supervision. Additionally, we demonstrate general-
ization capabilities for zero-shot video object grounding on
YouCook2, a third-person instructional video dataset.

1. Introduction

Egocentric videos [6, 12, 42] capture human interactions
with the surrounding environment from a first-person per-
spective. Recent datasets, such as Ego4D [12], have paired
such interaction-rich visual signals with manually anno-
tated textual narrations of the camera wearer’s activities,
catalyzing a surge in research at the intersection of vision
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Figure 1. Overview of the Narration-based Video Object Seg-
mentation (NVOS) task. Given a short video clip and a narra-
tion of the camera wearer’s activities, our goal is to predict seg-
mentation masks for each object phrase. This task requires more
fine-grained video-language alignment (pixel-level and phrase-
level) compared to popular grounding tasks, such as video object
grounding and referring expression segmentation. Frames taken
from the Epic-Kitchens [6] dataset.

and language. These efforts have primarily concentrated
on coarse-grained, holistic video-language understanding,
such as pairing a video clip with a narration of its content
(video-text retrieval) [24, 35, 60], egocentric video question
answering [2, 11, 18] and temporal localization of natural
language queries [3, 15, 26, 37, 61], often lacking the fine-
grained understanding at object level.

In this work, we explore a more fine-grained connection
between egocentric videos and language by introducing the
Narration-based Video Object Segmentation (NVOS) task,
linking noun phrases (objects) in narrations with segmenta-
tion masks in the video. For example, as shown in Figure 1,
given an egocentric video clip and its narration “C uses a
spoon to spread the minced meat on the cheese mixture in a
lasagna dish”, our goal is to predict a segmentation mask
at each frame for each one of the referred objects (noun
phrases): spoon, minced meat, cheese mixture, and lasagna
dish. Our task requires models to effectively disambiguate
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among multiple instances of the same object class (e.g., pre-
dict a segmentation mask for the spoon that the person uses
and not for the spoon on the chopping board).

This task is related to, but different from other popular
tasks that output segmentation masks, such as referring ex-
pression segmentation [50, 58] (Figure 1c), which gener-
ates a segmentation mask for only one object described in
an input query sentence and open vocabulary segmentation
[23, 38] (Figure 1d), which does not use narration context
and is unable to disambiguate object instances of the same
class. Besides, most prior approaches that address phrase-
level grounding in images [4, 33] and videos [22, 41, 43, 64]
were limited to predicting a single point or a bounding box
per referred object. However, detecting the bounding boxes
(Figure 1b) is not sufficient to localize highly-overlapping,
occluded, or non-grid-aligned objects which frequently oc-
cur in egocentric procedural videos.

Training models for pixel-level grounding typically re-
quires spatial annotations (e.g., segmentation masks [16,
20] or mouse traces [45]) for the referred objects. However,
obtaining precise annotations for every referred object in
textual narrations is not only arduous but also prohibitively
expensive for large-scale datasets like Ego4D [12]. Hence,
in this work we present a weakly-supervised framework for
NVOS, trained only with narrated egocentric videos, with-
out any manual spatial annotations for referred objects.
Our framework, called Referred Object-Segment Aligner
(ROSA), leverages recent breakthroughs in class-agnostic
segmentation mask generation [21] and casts grounding as
a region-phrase alignment problem.

Learning such alignments from uncurated narrated ego-
centric videos is very challenging, due to cluttered scenes,
drastically changing object appearance (e.g., cheese get-
ting shredded) and frequent occlusions. To address this,
we propose: (a) bootstrapping from powerful joint image-
text models, such as CLIP [36], to get a prior about region-
phrase alignments, and (b) formulating a global matching
score between a video and a narration based on the lo-
cal matching scores between the masks and noun phrases
across different video frames. In particular, we design a
CLIP-based Dual Encoder for obtaining context-aware em-
beddings for mask proposals and noun phrases. We also de-
sign a Global-Local Contrastive Learning framework that
operates on ground-truth video-narration pairs and pseudo-
labelled region-phrase pairs.

To address the lack of benchmarks for pixel-level
grounding in egocentric videos, we introduce a new bench-
mark, VISOR-NVOS, through manual annotations of nar-
rations referencing segmented objects from the VISOR
dataset [7]. This benchmark comprises detailed object-
based narrations for 14,612 video clips.

We summarize the contributions of this work as follows:
• We introduce a new task of weakly-supervised NVOS,

and establish a new egocentric benchmark, VISOR-
NVOS, by enriching the VISOR dataset [7] with detailed
object-based narrations.

• We propose ROSA, a weakly-supervised framework that
learns to align referred objects in narrations with mask
proposals from narrated egocentric videos, without re-
quiring spatial annotations for semantic concepts.

• We achieve state-of-the-art zero-shot NVOS grounding
performance in two egocentric video datasets (VISOR-
NVOS and VOST [44]) compared to baselines that use
similar weak supervision or stronger spatial supervision.
Additionally, we showcase generalization ability for zero-
shot video object grounding on the YouCook2-BB [64]
third-person video dataset.

2. Related Work
Video object grounding is an active research field in the
intersection of vision and language that aims to localize ob-
jects referenced in visual descriptions of videos. Prior work
has mostly focused on third-person video datasets, such
as YouCook2-BB [64] and ActivityNet Entities [65], and
on coarse-grained spatial localization of each object with a
bounding box [28, 39, 41, 49, 64] or a single point [43].
Proposed models for referring expression or active object
grounding [22, 51] in egocentric videos also output rectan-
gular regions. Instead our work explores pixel-level ground-
ing of referred objects in egocentric videos.

Our NVOS task is also closely related to the recently in-
troduced Video Narration Grounding task [45], where the
goal is to predict a segmentation mask for each noun in a
collection of captions of a third-person video. Our work dif-
fers by grounding noun phrases on egocentric videos and by
training models without any spatial annotations for referred
objects (while [45] used mouse traces).

Video object segmentation (VOS) is the problem of pixel-
accurate separation of particular objects from the back-
ground in videos. The most related ones to our work are
semi-supervised VOS [5, 14, 31, 55]. Given the segmen-
tation masks of the objects in the first one or few frames,
semi-supervised VOS aims to segment the target objects
through the video. However, those methods merely use
the visual modality to track and segment objects while our
method segments objects based on the language narrations.

Open-vocabulary segmentation aims to segment all ob-
ject instances of the same category for a list of arbitrary cat-
egories described through textual input [9, 17, 23, 52, 57,
59]. Instead, our task aims to precisely identify particular
instances of referred objects within the video.

Image phrase grounding aims to localize corresponding
objects in an image given a phrase in the image’s caption
[4, 13, 46, 47]. While related, we focus on pixel-wise
grounding of phrases in videos than rather than bounding-
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box localization in images. To address the unique chal-
lenges of video context, we adaptively weigh various frames
for establishing video-narration affinity scores during train-
ing, which has not been explored in those image-based
works. Besides, most of those works apply contrastive
learning only at image-caption level, with the exception
of [4] which proposes a contrastive learning method at the
phrase-bounding box level. Our framework is the first to
combine both global and local contrastive learning losses
for weakly-supervised region-phrase alignment.

Vision-language pre-training, e.g., CLIP [36], has fueled
a growing interest in knowledge transfer for various down-
stream tasks [25, 32, 52, 57]. Prior works [23, 57, 62, 63]
have shown that naive ways to leverage pre-trained CLIP
to represent bounding boxes or segmentation masks are not
feasible as CLIP was pre-trained on image-text pairs with-
out any pixel-level annotation. Our work explores ways of
adapting CLIP to represent local regions and phrases, which
is an exciting research question [23, 58, 63].

3. ROSA: Learning Region-Phrase Alignments
3.1. Task Formulation

Given a video-narration pair (V,S), where the video clip
V consists of T frames {I1, I2, · · · , IT } of size H ×
W , and the narration S describes the activities demon-
strated in the video and refers to N noun phrases (objects)
(o1, o2, . . . , oN ), our goal is to output a set of binary seg-
mentation masks Mtn ∈ {0, 1}H×W for the n-th referred
object at the t-th frame. In this work, we focus on weakly-
supervised training, i.e., training only with video-narration
pairs without any pixel-level annotation. To achieve this,
we extract M mask proposals {Ptm}T,M

t,m=1 at each frame
using the Segment Anything Model (SAM) [21] which is
pre-trained on object segmentation masks without object la-
bels. Then we use the video-narration pairs to supervise the
learning of a similarity function between each mask pro-
posal and each object phrase.

Method overview. Figure 2 gives an overview of our
proposed framework, Referred Object-Segment Aligner
(ROSA). We propose a CLIP-based Dual Encoder to com-
pute context-aware embeddings for mask regions and object
phrases (Section 3.2). To train our model without ground-
truth region-phrase alignments, we propose a Global-Local
Contrastive Learning framework (Section 3.3). It optimizes
two objectives: (1) a global contrastive objective, contrast-
ing ground-truth positive and negative pairs of video clips
and narrations, based on a Temporal Adaptive Pooling of
region-phrase similarities, and (2) a local contrastive ob-
jective, contrasting pseudo-labelled positive and negative
pairs of regions and phrases. After learning, grounding is
achieved by finding the mask proposal that maximizes the
region-phrase similarity (Section 3.4).

3.2. CLIP-based Dual Encoder

In order to effectively align phrases with mask proposals,
we need discriminative region representations that align
well with language and capture contextual nuances. We
propose a Context-aware Region Encoder to embed each
mask proposal, and a Context-aware Phrase Encoder to em-
bed each groundable noun phrase (object), by leveraging the
CLIP model [36] pretrained on large-scale image-text pairs.

3.2.1 Context-Aware Region Encoder

The original Vision Transformer [10] (ViT) from CLIP con-
sists of L Transformer layers and embeds a whole image in
its special CLS token of each last layer. To extract region-
level features per mask proposal of a frame, we propose
Mask-Guided Image CLIP. We pass the frame through the
first L − 1 layers of ViT, and then compute a CLS token
per mask proposal by applying a simple attention mask-
ing in the last Transformer layer, which ensures that the
CLS token exclusively attends to the masked region. As
this approach shares the computation of all hidden layers
except for the last Transformer layer among all mask pro-
posals, it is much more efficient than cropping and mask-
ing used in prior works [8, 23, 53]. Besides, as the vi-
sual encoder has access to the whole frame, it is able to
capture contextual information, making it more suitable for
grounding task that needs to disambiguate between object
instances of the same class based on context. The final re-
gion embedding rtm ∈ RD for the m-th mask proposal
at the t-th frame is computed by projecting the CLS token
to a D-dimensional vector with a shallow MLP, denoted as
rtm = RegionEncoder(Ptm, It).

3.2.2 Context-Aware Phrase Encoder

We use a language parser (spaCy [1]) to extract the noun
phrases in each narration and then apply our Context-Aware
Phrase Encoder to obtain a contextualized embedding for
each phrase. A straight-forward way for obtaining phrase
embeddings using CLIP is to pass the entire narration
through its text encoder, and perform average pooling over
the tokens corresponding to each referred object (Phrase
Pooling) to get a narration-aware phrase embedding for
each object. However, we observe that this embedding is
often heavily influenced by the narration context, resulting
in similar embeddings for nearby phrases, thus hurting dis-
ambiguation that is necessary for our grounding tasks. To
address this limitation, we additionally input each object
phrase to CLIP’s text encoder and use the EOT (End of Text)
token as a localized phrase embedding. The final phrase
embedding wn ∈ RD for the n-th object phrase in the in-
put narration is computed as the average of the localized
phrase embedding and narration-aware phrase embedding,
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pairwise region-phrase similarities. We propose Global-Local Contrastive Learning via ground-truth Video-Narration Alignment and
pseudo labelled Region-Phrase Alignment. Frames taken from Ego4D [12].

denoted as wn = PhraseEncoder(on,S),

3.3. Global-Local Contrastive Learning

In the weakly-supervised setting, we need to learn a sim-
ilarity function between mask regions and object phrases,
without ground-truth alignments of region-phrase pairs.
We propose a Global-Local Contrastive Learning frame-
work to learn the region-phrase similarities using the align-
ments at both video-narration (global) and region-phrase
(local) levels. In Sec. 3.3.1, we detail how to compute the
region-phrase similarities and aggregate them into a video-
narration affinity score for global contrastive learning. In
Sec. 3.3.2, we illustrate how we obtain the pseudo-labelled
region-phrase pairs for local contrastive learning.

3.3.1 Video-Narration Alignment

Since our only available supervision is at the video-
narration level, we propose a standard contrastive loss for
video-narration alignment, which is equipped with a region-
based affinity score between videos and narrations. In par-
ticular, inspired by Multiple Instance Learning approaches
for weakly-supervised phrase grounding [19], we formulate
an affinity score ϕ(V,S) between a video and a narration
by aggregating individual region-phrase affinity scores. In-
tuitively, a video-narration pair should have a high affinity
score if each referred object in the narration has a matched
mask proposal in each frame of the video clip. Next, we
detail how we aggregate the region-phrase similarities into
frame-phrase affinity scores resulting in an overall affinity
score between a video clip and a narration.

Frame-phrase affinity score. Given a set of segmen-
tation mask proposals {Ptm}T,M

t,m=1 and a set of object
phrases {on}Nn=1, we first compute the pairwise similarity
g(rtm,wn) between each mask proposal embedding rtm
and each noun phrase embedding wn. In particular, our
similarity function g(·, ·) is computed as the cosine sim-
ilarity between the region embedding and phrase embed-
ding, multiplied with the mask confidence score of the cor-
responding mask proposal. This multiplication prioritizes
mask proposals with higher confidence scores when align-
ing the object phrase with mask proposals. The affinity
score between a phrase and a frame is then defined based
on the best matching region at each frame It: ψ(It, on) =
maxm g(rtm,wn).

Video-phrase affinity score. To compute the affinity score
at the video-phrase level, we introduce a Temporal Adaptive
Pooling of the frame-phrase affinity scores ψ(It, on):

σ(V, on) =
∑
t

eψ(It,on)/α∑
t′ e

ψ(I′t,on)/α
ψ(It, on). (1)

The function involves a weighted sum across all temporal
frames, where the weight for each frame is determined by
the frame-phrase affinity scores divided by a temperature
parameter α. We dynamically adjust α during training, fol-
lowing the schedule α = α0β

−s, where α0 is a small con-
stant close to 0, β ∈ (0, 1) is a decay index, and s is the
iteration step. Intuitively, at the initial stage of training, the
model may struggle to effectively segment objects undergo-
ing occlusions or significant transformations. This dynamic
adjustment allows the model to prioritize the most confident
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mask proposal in a single frame early in training (with low
α) and gradually shift towards a smoother, more robust ag-
gregation of region representations from multiple frames as
training progresses (with a larger α).

Video-narration affinity score. Finally, we compute
the video-narration affinity score by averaging the video-
phrase affinity scores over all object phrases: ϕ(V,S) =∑

n σ(V,on)

N , which assumes that all referred objects in the
narration should be present in the aligned video clip.

Video-narration contrastive loss. Given a training batch
of video-narration pairs {(Vi,Si)}Bi=1, whereB is the batch
size, we use an InfoNCE loss to train the model via weak
supervision as follows:

LVNA =
1

B

B∑
i=1

− log
eϕ(Vi,Si)/τ∑
j e
ϕ(Vi,Sj)/τ

− log
eϕ(Vi,Si)/τ∑
j e
ϕ(Vj ,Si)/τ

,

(2)
where τ is a learnable temperature and ϕ(Vi,Sj) is our cus-
tom video-narration affinity score defined above. We freeze
the pre-trained CLIP image and text encoders, and optimize
the parameters of the MLP to learn region representations
better aligned with phrases.

3.3.2 Region-Phrase Alignment

While the aforementioned video-narration contrastive loss
is effective at leveraging video-narration supervision, the
loss is not directly applied to the alignment between region-
phrase pairs. In order to learn a better alignment between
mask regions and object phrases, we propose an additional
local loss at region-phrase level. To do so, we first get
pseudo-labelled alignments for region-phrase pairs. For
each phrase embedding wn, we get the embedding of its
best aligned mask proposal at each frame, denoted as r̃tn =
{rtm|m = argmax

m′
g(rtm′ ,wn)}.

Region-phrase contrastive loss. Then we apply a region-
phrase alignment loss over all object phrases and all aligned
mask regions in a batch:

LRPA = −
∑
t

log
eg(r̃tn,wn)/τ∑
n′ eg(r̃tn,wn′ )/τ︸ ︷︷ ︸
region to phrase

− log

∑
t e
g(r̃tn,wn)/τ∑

n′
∑
t e
g(r̃tn′ ,wn)/τ︸ ︷︷ ︸

phrase to region

.

(3)

The first term is a region to phrase (R2P) standard In-
foNCE contrastive loss, which treats other object phrases
as negative samples for a given mask region. The sec-
ond term is a phrase to region (P2R) MIL-NCE-type [30]
contrastive loss, which considers the aligned regions in all
frames as positive pairs for a given object phrase, while

Narration:
The person uses a [wooden spoon]<5> to 
stir [pasta]<2> in a [pan]<3> on the 
[stovetop]<6>.

Figure 3. An example of our annotated narration on the
VISOR-NVOS benchmark. The annotators are instructed to
write a detailed narration with [referred object] followed by
⟨object ID⟩.

treating regions aligned with other object phrases as neg-
ative samples. Note that Eq. (3) is the loss for one ob-
ject phrase, and we sum over all object phrases for train-
ing loss. This loss formulation facilitates the learning of
robust region-phrase associations and enhances the quality
of object segmentation and grounding. In the experiment
section, we compare various strategies on selecting the neg-
ative samples for P2R contrastive learning and show the ad-
vantages of the proposed one. Our final training objective
is: L = LVNA + λLRPA, where λ is the weight for region-
phrase alignment loss.

3.4. Inference

We ground the n-th noun phrase in the narration by select-
ing the mask proposal at each frame with the closest embed-
ding in our learned, unified region-phrase embedding space:

Mtn = Ptm∗ ,where m∗ = argmax
m

g(rtm,wn) (4)

4. Evaluation Benchmarks for NVOS
While our proposed weakly-supervised framework demon-
strates the feasibility of training NVOS models without the
need for mask annotation, evaluating the performance of
such models is equally critical. Existing egocentric video
datasets with segmentation mask annotations for objects,
such as VISOR [7], VOST [44] and PACO [38], cannot be
directly used for evaluation, since they lack narrations with
referred objects associated with the annotated object masks.
VISOR-NVOS. To address these limitations, we create a
new evaluation benchmark, VISOR-NVOS, by collecting
object-based narration annotations for video clips from the
VISOR [7] dataset. VISOR provides mask annotations for
multiple active objects in egocentric videos of the EPIC-
Kitchens [6] dataset. We pair these segmentation masks
with narrations, by instructing annotators to describe activ-
ities explicitly referring to a set of objects of interest. As
shown in Figure 3, provided with a short video clip and a
list of objects of interest (with each object name associated
with an object ID and a segmentation mask), the annotators
are instructed to write a sentence describing the person’s
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Method Supervision VISOR-NVOS VOST
Cross-Modal Mask Annotation Ego4D‡ J F J&F Junion Jins

SAM [21] upper bound 70.3 75.6 73.0 62.2 65.8

Trained w/ labeled regions
ODISE [52] mask-text class-specific 29.0 32.8 30.9 17.6 21.1
GroundedSAM [21, 27] bbox-text class-agnostic 37.3 41.8 39.5 21.8 25.3

Trained w/o labeled regions
SAM [21] + CLIP [36] (ViT-B/16) image-text class-agnostic 22.2 25.8 24.0 16.5 19.2
CoMMa† [43] + SAM [21] video-narration class-agnostic ✓ 15.3 25.3 20.3 9.4 11.5
ROSA (ViT-B/16) video-narration class-agnostic ✓ 34.9 41.2 38.1 22.2 25.4
ROSA (ViT-L/14) video-narration class-agnostic ✓ 38.7 46.0 42.4 23.2 26.7

Table 1. Comparison of grounding performance between our framework and strong baselines on our NVOS benchmarks. We
report metrics on the test split of our proposed VISOR-NVOS and the validation split of VOST. ‡ whether the model has been fine-tuned
on Ego4D. “Trained with labeled regions”: trained with annotations of bounding boxes or masks; “Trained without labeled regions”: using
video-level or image-level annotations.

activities in the video, linking noun phrases in the sentence
with the associated object IDs. In total, we have collected
detailed, object-based narrations for 14,612 video clips, in-
cluding 37,170 referred objects. On average, each narration
has 12.79 words, and 2.54 referred objects. The maximum
number of referred objects in one narration is 9. We split
the annotated videos into a validation set of 7,561 videos
and a test set of 7,051 videos, and report the performance
on the test set. We do not train our model on any of those
videos or narrations. Please see the supplementary for more
details about this benchmark.

VOST. VOST [44] is an egocentric video object segmenta-
tion dataset specifically designed to capture dramatic object
transformations. To evaluate models for NVOS on VOST,
we use the verb and noun pairs (e.g., “peel banana”, “mold
clay”) as the narrations, with the nouns serving as the ob-
jects to ground. In contrast to VISOR, which encompasses
multiple object classes in a single video, VOST contains an-
notations for a single object class (with one or multiple in-
stances) per video. However, the uniqueness of VOST lies
in the complexity of the transformations these objects un-
dergo, e.g., the peeling of bananas. Hence, this benchmark
allows us to evaluate the model’s performance in ground-
ing objects under complex transformations and its ability to
comprehend actions that induce changes in object states.

5. Experiments

5.1. Experimental Setup

Training dataset. We train our model on video-narration
pairs sourced from the Ego4D dataset [12]. Ego4D is a
massive-scale egocentric video dataset that provides over
3M text narrations of the camera wearer’s activities, syn-
chronized with timestamps for 3, 670 hours of video. We
use a subset of Ego4D for our experiments, by selecting
250k video clips with narrations related to cooking objects.

We sample four frames from each one-second clip, with an
average of 1.6 narrations available per clip. During each
training iteration, we construct video-narration pairs by ran-
domly sampling one narration per video clip.
Evaluation. After training on Ego4D, we evaluate on
the VISOR-NVOS and VOST benchmarks without fine-
tuning. Following [7, 34, 54], we use the Jaccard Index (J ,
also known as Intersection over Union, IoU), the Bound-
ary F-Measure (F), and the average of Jaccard Index and
Boundary F-Measure (J&F), as the evaluation metrics on
VISOR-NVOS. On VOST, following [44], we only use the
Jaccard Index as the contours are often not well-defined
due to the dramatic transformations and motions involved
on this dataset. As we described, VOST does not con-
tain ground-truth alignments between annotated segmenta-
tion masks and referred objects. Hence, for some samples
with multiple annotated object instances of the same object
class, there is uncertainty for grounding evaluation. To mit-
igate this issue, we report two metrics: Junion, i.e., the IoU
between the predicted mask and the union of all annotated
masks, and Jins, i.e., the IoU between the predicted mask
and the most overlapping annotated mask instance.
Implementation details. We use SAM [21] to gener-
ate mask proposals on each frame using a 32 × 32 point
grid. We apply Non-Maximum Suppression (NMS) with a
threshold of 0.9 to remove redundant mask proposals. Our
best model uses a CLIP ViT-L/14 Image Encoder (while for
ablations we use ViT-B/16). We set the weight for region-
phrase alignment loss λ as 0.5 and use three-layer MLP in
our Context-Aware Region Encoder. Please refer to the sup-
plementary for more implementation details.

5.2. Comparison with the State of the Art

We compare our method with strong baselines as well
as state-of-the-art approaches from related tasks (narra-
tion grounding [43], open-vocabulary segmentation [52])
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VNA R2P P2R J F J&F
24.8 31.3 28.1

✓ 32.4 39.6 36.0
✓ ✓ 33.9 40.1 37.0
✓ ✓ 33.9 40.6 37.3
✓ ✓ ✓ 34.9 41.2 38.1

(a) Impact of various losses.

Negative samples J F J&F

same 27.5 35.0 31.3
all 27.4 34.8 31.1
other 26.5 34.0 30.3
aligned (ours) 34.9 41.2 38.1

(b) Ablation for negative region sampling.

J F J&F

random frame 33.3 39.8 36.6
max pooling 33.7 40.5 37.1
softmax 33.6 40.4 37.0
adaptive (ours) 34.9 41.2 38.1

(c) Ablation of temporal aggregation functions.

Table 2. Ablation studies on the Global-Local Contrastive Learning framework on the VISOR-NVOS test split.

adapted for our NVOS task. Baselines trained without la-
beled regions: “SAM+CLIP”: For this simple baseline, we
use SAM to generate mask proposals, input the cropped
and masked images into CLIP image encoder and the object
phrases into CLIP text encoder, and select the best match-
ing mask proposal based on the cosine similarity of their
embeddings. “CoMMa†+SAM”: We adapt CoMMa [43], a
state-of-the-art approach for weakly-supervised point-wise
grounding of input language queries, for the NVOS task.
We train CoMMa†1 with video-narration pairs (from the
same Ego4D subset used to train our model), and during
inference use the predicted point for each object phrase
to prompt SAM and get the segmentation mask. Base-
lines trained with labeled regions: We also benchmark
ODISE [52] and GroundedSAM [21, 27], two state-of-the-
art, image-level, open-vocabulary segmentation approaches
that are trained with segmentation masks/bounding boxes
paired with semantic concepts, thus using stronger supervi-
sion than us. Since open-vocabulary segmentation outputs
masks for all instances of an object class (e.g., all spoons),
we select the mask with highest confidence score and com-
pare it with the ground-truth mask.

As can be seen in Table 1, our model (with CLIP ViT-
L/14 backbone) outperforms all compared baselines, in-
cluding approaches that have been trained with strong spa-
tial supervision (e.g., GroundedSAM is based on Ground-
ing DINO [27], an open-set object detector that has been
pre-trained on Objects365 [40], a large dataset with 10M
bbox annotations). Interestingly, the simple, out-of-the-
box “SAM+CLIP” baseline, which has not been trained
on egocentric video data, outperforms “CoMMa†+SAM”,
corroborating our intuition for using mask proposals and
harnessing CLIP pre-training for representing them. Com-
pared to this strong baseline, our model (with the same ViT-
B/16 backbone) improves the J&F by 14.1% on VISOR-
NVOS, and improves the Jins by 6.2% on VOST, which
demonstrates the effectiveness of our weakly-supervised
framework that learns region-phrase alignments from ego-
centric video narrations.

We note, however, that the performance of all compared
models on our VISOR-NVOS benchmark lags behind the

1We use CoMMa† to denote the model we trained on Ego4D to differ-
entiate with the original CoMMa model trained on HowTo100M.

upper bound performance that we could obtain based on the
best-matching SAM mask proposal (reported in the first row
of Table 1), highlighting the challenging nature of our pro-
posed task and benchmark and the need for further research
on learning better region-phrase alignments, e.g., by better
modeling temporal consistency.

5.3. Ablation Studies

What is the effect of each component of our proposed
training objective? We start by reporting the performance
of our CLIP-based Dual Encoder before weakly-supervised
training (i.e., we replace the MLP of our region encoder
with the identity mapping and just use CLIP weights for our
encoders) in the first row of Table 2a. Adding the MLP and
fine-tuning it on Ego4D with our Global Contrastive Ob-
jective, that encourages video-narration alignment (VNA),
leads to a significant performance improvement in J&F
(from 28.1% to 36.0%, rows 1 and 2). Adding our novel
region-phrase alignment loss terms, i.e., region to phrase
(R2P) and phrase to region (P2R) losses (Eq. (3)), further
boosts performance. Both loss terms contribute to the im-
provement, and their combination improves J&F by 2.1%,
suggesting that our proposed loss function is able to learn
a better region-phrase alignment by directly applying su-
pervision on region-phrase pairs, instead of just contrasting
video-narration pairs, as commonly done in prior work [64].

How to select negative region samples for region-phrase
contrastive learning? As can be seen in Table 2b, using
regions that are aligned with the other phrases in the batch
(based on the pseudo-labeled alignments) is the only strat-
egy that does not degrade the performance. We compare it
with using the rest of regions from the same video, using
the rest of regions from all the videos in the batch, and us-
ing all regions from other videos (as proposed for weakly-
supervised image phrase grounding [4]). We conjecture that
our proposed strategy avoids the issues of “fake negative”
samples when the negative mask regions are also relevant
to the object phrase if multiple mask proposals are over-
lapped, and “easy negative” samples when the mask regions
are background regions irrelevant to active objects.

What is the effect of the temporal aggregation mod-
ule? As we discussed, we aggregate region-phrase similari-
ties from multiple frames to obtain a global video-narration
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“The person puts flour 
into the bowl from the 

flour package.”

“The person mixes rice 
in a pan with a  

spoon.”

“The person picks  
food containers from 

the fridge.”

peel banana

Figure 4. Qualitative Results. Top: three examples from VISOR-
NVOS. Bottom: an example from VOST showing the model’s ro-
bustness to objects undergoing dramatic transformations.

affinity score for applying our global contrastive objective.
Our proposed aggregation module starts by focusing on one
frame for each phrase (the one with the best matching re-
gion) and then adaptively starts encouraging alignment with
the regions of other frames. As can been seen in Table 2c,
this approach (adaptive) better handles occlusions and mo-
tion blur and facilitates training compared to: (a) randomly
selecting a frame of the video clip during each iteration
(random frame), (b) using the frame with the highest frame-
phrase affinity score (max), or (c) not adapting the frame
weights (softmax).

5.4. Qualitative Results

In Figure 4, we show some qualitative results. On the top,
we show three examples from VISOR-NVOS. In the first
example, our model is able to segment the referred ob-
jects in a complex environment featuring multiple spoons
and pans. In the second example, the model successfully
distinguishes between “flour” and “flour package”. The
third example highlights some limitations of our model, in-
cluding ambiguity in mask size where the model only seg-
ments a portion of the fridge instead of the entire unit, and
challenges in understanding plurals (the narration mentions
“containers” but it only grounds one container). The bottom
section showcases the model’s predictions on three frames
from a VOST video depicting the peeling of a banana. Re-
markably, the model accurately segments the banana while
the appearance of banana has changed significantly.

5.5. Exocentric Video Object Grounding

In Table 3, to further assess the generality of our model,
we conduct evaluations on the third-person video object
grounding dataset, YouCook2-BB [64], which includes
bounding box annotations for referred objects. We convert
the segmentation masks output by our model into bound-
ing boxes for evaluation. Recall that our model is trained
on egocentric videos with a goal to align object phrases

Method box accuracy
macro micro

Trained on YouCook2

Zhou et al. [64] 35.08 42.42
NAFAE [41] 40.71 46.33
STVG [56] 41.67 48.22
SCL [48] 42.80 48.60

Zero-Shot

CoMMa†+SAM 6.63 8.98
Ours 37.93 44.96

(a) bounding box evaluation

Method point acc.

CoMMa† 53.56
CoMMa [43] 59.25
Ours 69.35

(b) point prediction evaluation

Table 3. Object grounding evaluation on YouCook2-BB.

with segmentation masks. Despite a huge domain shift, our
model achieves comparable performance with prior works
[41, 48, 56, 64] that are trained on YouCook2 using bound-
ing box proposals (Table 3a). In addition, we adopt the eval-
uation setup from CoMMa [43] to evaluate our model using
point accuracy (see supplementary for more details). We
use the center of the bounding box from our segmentation
mask as the detected point. While CoMMa is trained on ex-
ocentric videos with a similar scale (HowTo100M [29]) for
point-based grounding, our model outperforms CoMMa by
a significant margin of 10.10% (Table 3b).

6. Limitations
A limitation of our framework is that we perform infer-
ence on each frame separately, neglecting temporal infor-
mation. Integrating temporal context into our model has
the potential to enhance performance and alleviate ambi-
guities, which is a promising direction for future work.
Furthermore, we focused our training and evaluation on
the cooking domain. In the supplementary, we show that
our weakly-supervised training also improves grounding on
non-cooking videos, such as DIY, but a performance gap
still exists between the two domains.

7. Conclusion
We have explored the task of Narration-based Video Ob-
ject Segmentation and established a new evaluation bench-
mark, VISOR-NVOS. Our proposed framework, ROSA,
has effectively learnt the alignment between referred objects
and segmentation masks using weak supervision of video-
narration alignments in egocentric videos. Our approach
achieved state-of-the-art zero-shot pixel-level grounding
performance on two egocentric video datasets compared to
strong baselines.

Acknowledgements. We thank Tushar Nagarajan, Tri-
antafyllos Afouras, Yale Song, Austin Miller, and Jiabo Hu
for helpful discussions and invaluable engineering support.

14517



References
[1] spaCy. https://spacy.io/. 3
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